5.XSeg) data_dst/src mask for XSeg trainer - fetch.bat
Copies faces containing XSeg polygons to aligned_xseg\ dir.
Useful only if you want to collect labeled faces and reuse them in other fakes.
Now you can use trained XSeg mask in the SAEHD training process.
It’s mean default ‘full_face’ mask obtained from landmarks will be replaced with the mask obtained from the trained XSeg model.
use
5.XSeg.optional) trained mask for data_dst/data_src - apply.bat
5.XSeg.optional) trained mask for data_dst/data_src - remove.bat
Normally you don’t need it. You can use it, if you want to use ‘face_style’ and ‘bg_style’ with obstructions.
XSeg trainer : now you can choose type of face
XSeg trainer : now you can restart training in “override settings”
Merger: XSeg-* modes now can be used with all types of faces.
Therefore old MaskEditor, FANSEG models, and FAN-x modes have been removed,
because the new XSeg solution is better, simpler and more convenient, which costs only 1 hour of manual masking for regular deepfake.
Basic usage instruction: https://i.imgur.com/w7LkId2.jpg
'whole_face' requires skill in Adobe After Effects.
For using whole_face you have to extract whole_face's by using
4) data_src extract whole_face
and
5) data_dst extract whole_face
Images will be extracted in 512 resolution, so they can be used for regular full_face's and half_face's.
'whole_face' covers whole area of face include forehead in training square,
but training mask is still 'full_face'
therefore it requires manual final masking and composing in Adobe After Effects.
added option 'masked_training'
This option is available only for 'whole_face' type.
Default is ON.
Masked training clips training area to full_face mask,
thus network will train the faces properly.
When the face is trained enough, disable this option to train all area of the frame.
Merge with 'raw-rgb' mode, then use Adobe After Effects to manually mask, tune color, and compose whole face include forehead.
added option Eyes priority (y/n)
fix eye problems during training ( especially on HD architectures )
by forcing the neural network to train eyes with higher priority
before/after https://i.imgur.com/YQHOuSR.jpg
It does not guarantee the right eye direction.
SAEHD:
added new option
GAN power 0.0 .. 10.0
Train the network in Generative Adversarial manner.
Forces the neural network to learn small details of the face.
You can enable/disable this option at any time,
but better to enable it when the network is trained enough.
Typical value is 1.0
GAN power with pretrain mode will not work.
Example of enabling GAN on 81k iters +5k iters
https://i.imgur.com/OdXHLhU.jpghttps://i.imgur.com/CYAJmJx.jpg
dfhd: default Decoder dimensions are now 48
the preview for 256 res is now correctly displayed
fixed model naming/renaming/removing
Improvements for those involved in post-processing in AfterEffects:
Codec is reverted back to x264 in order to properly use in AfterEffects and video players.
Merger now always outputs the mask to workspace\data_dst\merged_mask
removed raw modes except raw-rgb
raw-rgb mode now outputs selected face mask_mode (before square mask)
'export alpha mask' button is replaced by 'show alpha mask'.
You can view the alpha mask without recompute the frames.
8) 'merged *.bat' now also output 'result_mask.' video file.
8) 'merged lossless' now uses x264 lossless codec (before PNG codec)
result_mask video file is always lossless.
Thus you can use result_mask video file as mask layer in the AfterEffects.
Removed the wait at first launch for most graphics cards.
Increased speed of training by 10-20%, but you have to retrain all models from scratch.
SAEHD:
added option 'use float16'
Experimental option. Reduces the model size by half.
Increases the speed of training.
Decreases the accuracy of the model.
The model may collapse or not train.
Model may not learn the mask in large resolutions.
true_face_training option is replaced by
"True face power". 0.0000 .. 1.0
Experimental option. Discriminates the result face to be more like the src face. Higher value - stronger discrimination.
Comparison - https://i.imgur.com/czScS9q.png
More stable and precise version of the face transformation matrix.
Now full_faces are aligned with the upper and lateral boundaries of the frame,
result: fix of cutted mouth, increase area of the cheeks of side faces
before/after https://i.imgur.com/t9IyGZv.jpg
therefore, additional training is required for existing models.
Optionally, you can re-extract dst faces of your project, if they have problems with cutted mouth or cheeks.
removed option 'apply random ct'
added option
Color transfer mode apply to src faceset. ( none/rct/lct/mkl/idt, ?:help skip: none )
Change color distribution of src samples close to dst samples. Try all modes to find the best.
before was lct mode, but sometime it does not work properly for some facesets.
Random warp is required to generalize facial expressions of both faces. When the face is trained enough, you can disable it to get extra sharpness for less amount of iterations.
removed TrueFace model.
added SAEv2 model. Differences from SAE:
+ default e_ch_dims is now 21
+ new encoder produces more stable face and less scale jitter
before: https://i.imgur.com/4jUcol8.gifv
after: https://i.imgur.com/lyiax49.gifv - scale of the face is less changed within frame size
+ decoder now has only 1 residual block instead of 2, result is same quality with less decoder size
+ added mid-full face, which covers 30% more area than half face.
+ added option " Enable 'true face' training "
Enable it only after 50k iters, when the face is sharp enough.
the result face will be more like src.
The most src-like face with 'true-face-training' you can achieve with DF architecture.
Session is now saved to the model folder.
blur and erode ranges are increased to -400+400
hist-match-bw is now replaced with seamless2 mode.
Added 'ebs' color transfer mode (works only on Windows).
FANSEG model (used in FAN-x mask modes) is retrained with new model configuration
and now produces better precision and less jitter
ConvertAvatar: fix input image after fix landmarks face align,
VideoEd: video_from_sequence now uses pipe input to input any filenames instead of %.5d. formatted
With interactive converter you can change any parameter of any frame and see the result in real time.
Converter: added motion_blur_power param.
Motion blur is applied by precomputed motion vectors.
So the moving face will look more realistic.
RecycleGAN model is removed.
Added experimental AVATAR model. Minimum required VRAM is 6GB (NVIDIA), 12GB (AMD)
Usage:
1) place data_src.mp4 10-20min square resolution video of news reporter sitting at the table with static background,
other faces should not appear in frames.
2) process "extract images from video data_src.bat" with FULL fps
3) place data_dst.mp4 video of face who will control the src face
4) process "extract images from video data_dst FULL FPS.bat"
5) process "data_src mark faces S3FD best GPU.bat"
6) process "data_dst extract unaligned faces S3FD best GPU.bat"
7) train AVATAR.bat stage 1, tune batch size to maximum for your card (32 for 6GB), train to 50k+ iters.
8) train AVATAR.bat stage 2, tune batch size to maximum for your card (4 for 6GB), train to decent sharpness.
9) convert AVATAR.bat
10) converted to mp4.bat
updated versions of modules