DeepFaceLab/samplelib/SampleProcessor.py
Colombo 6d3607a13d New script:
5.XSeg) data_dst/src mask for XSeg trainer - fetch.bat
Copies faces containing XSeg polygons to aligned_xseg\ dir.
Useful only if you want to collect labeled faces and reuse them in other fakes.

Now you can use trained XSeg mask in the SAEHD training process.
It’s mean default ‘full_face’ mask obtained from landmarks will be replaced with the mask obtained from the trained XSeg model.
use
5.XSeg.optional) trained mask for data_dst/data_src - apply.bat
5.XSeg.optional) trained mask for data_dst/data_src - remove.bat

Normally you don’t need it. You can use it, if you want to use ‘face_style’ and ‘bg_style’ with obstructions.

XSeg trainer : now you can choose type of face
XSeg trainer : now you can restart training in “override settings”
Merger: XSeg-* modes now can be used with all types of faces.

Therefore old MaskEditor, FANSEG models, and FAN-x modes have been removed,
because the new XSeg solution is better, simpler and more convenient, which costs only 1 hour of manual masking for regular deepfake.
2020-03-30 14:00:40 +04:00

327 lines
17 KiB
Python

import collections
import math
from enum import IntEnum
import cv2
import numpy as np
from core import imagelib
from core.imagelib import sd
from facelib import FaceType, LandmarksProcessor
class SampleProcessor(object):
class SampleType(IntEnum):
NONE = 0
IMAGE = 1
FACE_IMAGE = 2
FACE_MASK = 3
LANDMARKS_ARRAY = 4
PITCH_YAW_ROLL = 5
PITCH_YAW_ROLL_SIGMOID = 6
class ChannelType(IntEnum):
NONE = 0
BGR = 1 #BGR
G = 2 #Grayscale
GGG = 3 #3xGrayscale
class FaceMaskType(IntEnum):
NONE = 0
FULL_FACE = 1 #mask all hull as grayscale
EYES = 2 #mask eyes hull as grayscale
FULL_FACE_EYES = 3 #combo all + eyes as grayscale
class Options(object):
def __init__(self, random_flip = True, rotation_range=[-10,10], scale_range=[-0.05, 0.05], tx_range=[-0.05, 0.05], ty_range=[-0.05, 0.05] ):
self.random_flip = random_flip
self.rotation_range = rotation_range
self.scale_range = scale_range
self.tx_range = tx_range
self.ty_range = ty_range
@staticmethod
def process (samples, sample_process_options, output_sample_types, debug, ct_sample=None):
SPST = SampleProcessor.SampleType
SPCT = SampleProcessor.ChannelType
SPFMT = SampleProcessor.FaceMaskType
sample_rnd_seed = np.random.randint(0x80000000)
outputs = []
for sample in samples:
sample_face_type = sample.face_type
sample_bgr = sample.load_bgr()
sample_landmarks = sample.landmarks
ct_sample_bgr = None
h,w,c = sample_bgr.shape
def get_full_face_mask():
if sample.xseg_mask is not None:
full_face_mask = sample.xseg_mask
if full_face_mask.shape[0] != h or full_face_mask.shape[1] != w:
full_face_mask = cv2.resize(full_face_mask, (w,h), interpolation=cv2.INTER_CUBIC)
full_face_mask = imagelib.normalize_channels(full_face_mask, 1)
else:
full_face_mask = LandmarksProcessor.get_image_hull_mask (sample_bgr.shape, sample_landmarks, eyebrows_expand_mod=sample.eyebrows_expand_mod )
return np.clip(full_face_mask, 0, 1)
def get_eyes_mask():
eyes_mask = LandmarksProcessor.get_image_eye_mask (sample_bgr.shape, sample_landmarks)
return np.clip(eyes_mask, 0, 1)
is_face_sample = sample_landmarks is not None
if debug and is_face_sample:
LandmarksProcessor.draw_landmarks (sample_bgr, sample_landmarks, (0, 1, 0))
params_per_resolution = {}
warp_rnd_state = np.random.RandomState (sample_rnd_seed-1)
for opts in output_sample_types:
resolution = opts.get('resolution', None)
if resolution is None:
continue
params_per_resolution[resolution] = imagelib.gen_warp_params(resolution,
sample_process_options.random_flip,
rotation_range=sample_process_options.rotation_range,
scale_range=sample_process_options.scale_range,
tx_range=sample_process_options.tx_range,
ty_range=sample_process_options.ty_range,
rnd_state=warp_rnd_state)
outputs_sample = []
for opts in output_sample_types:
sample_type = opts.get('sample_type', SPST.NONE)
channel_type = opts.get('channel_type', SPCT.NONE)
resolution = opts.get('resolution', 0)
warp = opts.get('warp', False)
transform = opts.get('transform', False)
motion_blur = opts.get('motion_blur', None)
gaussian_blur = opts.get('gaussian_blur', None)
random_bilinear_resize = opts.get('random_bilinear_resize', None)
random_rgb_levels = opts.get('random_rgb_levels', False)
random_hsv_shift = opts.get('random_hsv_shift', False)
random_circle_mask = opts.get('random_circle_mask', False)
normalize_tanh = opts.get('normalize_tanh', False)
ct_mode = opts.get('ct_mode', None)
data_format = opts.get('data_format', 'NHWC')
if sample_type == SPST.FACE_MASK or sample_type == SPST.IMAGE:
border_replicate = False
elif sample_type == SPST.FACE_IMAGE:
border_replicate = True
border_replicate = opts.get('border_replicate', border_replicate)
borderMode = cv2.BORDER_REPLICATE if border_replicate else cv2.BORDER_CONSTANT
if sample_type == SPST.FACE_IMAGE or sample_type == SPST.FACE_MASK:
if not is_face_sample:
raise ValueError("face_samples should be provided for sample_type FACE_*")
if sample_type == SPST.FACE_IMAGE or sample_type == SPST.FACE_MASK:
face_type = opts.get('face_type', None)
face_mask_type = opts.get('face_mask_type', SPFMT.NONE)
if face_type is None:
raise ValueError("face_type must be defined for face samples")
if face_type > sample.face_type:
raise Exception ('sample %s type %s does not match model requirement %s. Consider extract necessary type of faces.' % (sample.filename, sample.face_type, face_type) )
if sample_type == SPST.FACE_MASK:
if face_mask_type == SPFMT.FULL_FACE:
img = get_full_face_mask()
elif face_mask_type == SPFMT.EYES:
img = get_eyes_mask()
elif face_mask_type == SPFMT.FULL_FACE_EYES:
img = get_full_face_mask()
img += get_eyes_mask()*img
else:
img = np.zeros ( sample_bgr.shape[0:2]+(1,), dtype=np.float32)
if sample_face_type == FaceType.MARK_ONLY:
mat = LandmarksProcessor.get_transform_mat (sample_landmarks, warp_resolution, face_type)
img = cv2.warpAffine( img, mat, (warp_resolution, warp_resolution), flags=cv2.INTER_LINEAR )
img = imagelib.warp_by_params (params_per_resolution[resolution], img, warp, transform, can_flip=True, border_replicate=border_replicate, cv2_inter=cv2.INTER_LINEAR)
img = cv2.resize( img, (resolution,resolution), cv2.INTER_LINEAR )
else:
if face_type != sample_face_type:
mat = LandmarksProcessor.get_transform_mat (sample_landmarks, resolution, face_type)
img = cv2.warpAffine( img, mat, (resolution,resolution), borderMode=borderMode, flags=cv2.INTER_LINEAR )
else:
if w != resolution:
img = cv2.resize( img, (resolution, resolution), cv2.INTER_CUBIC )
img = imagelib.warp_by_params (params_per_resolution[resolution], img, warp, transform, can_flip=True, border_replicate=border_replicate, cv2_inter=cv2.INTER_LINEAR)
if len(img.shape) == 2:
img = img[...,None]
if channel_type == SPCT.G:
out_sample = img.astype(np.float32)
else:
raise ValueError("only channel_type.G supported for the mask")
elif sample_type == SPST.FACE_IMAGE:
img = sample_bgr
if random_rgb_levels:
random_mask = sd.random_circle_faded ([w,w], rnd_state=np.random.RandomState (sample_rnd_seed) ) if random_circle_mask else None
img = imagelib.apply_random_rgb_levels(img, mask=random_mask, rnd_state=np.random.RandomState (sample_rnd_seed) )
if random_hsv_shift:
random_mask = sd.random_circle_faded ([w,w], rnd_state=np.random.RandomState (sample_rnd_seed+1) ) if random_circle_mask else None
img = imagelib.apply_random_hsv_shift(img, mask=random_mask, rnd_state=np.random.RandomState (sample_rnd_seed+1) )
if face_type != sample_face_type:
mat = LandmarksProcessor.get_transform_mat (sample_landmarks, resolution, face_type)
img = cv2.warpAffine( img, mat, (resolution,resolution), borderMode=borderMode, flags=cv2.INTER_CUBIC )
else:
if w != resolution:
img = cv2.resize( img, (resolution, resolution), cv2.INTER_CUBIC )
# Apply random color transfer
if ct_mode is not None and ct_sample is not None:
if ct_sample_bgr is None:
ct_sample_bgr = ct_sample.load_bgr()
img = imagelib.color_transfer (ct_mode, img, cv2.resize( ct_sample_bgr, (resolution,resolution), cv2.INTER_LINEAR ) )
img = imagelib.warp_by_params (params_per_resolution[resolution], img, warp, transform, can_flip=True, border_replicate=border_replicate)
img = np.clip(img.astype(np.float32), 0, 1)
if motion_blur is not None:
random_mask = sd.random_circle_faded ([resolution,resolution], rnd_state=np.random.RandomState (sample_rnd_seed+2)) if random_circle_mask else None
img = imagelib.apply_random_motion_blur(img, *motion_blur, mask=random_mask,rnd_state=np.random.RandomState (sample_rnd_seed+2) )
if gaussian_blur is not None:
random_mask = sd.random_circle_faded ([resolution,resolution], rnd_state=np.random.RandomState (sample_rnd_seed+3)) if random_circle_mask else None
img = imagelib.apply_random_gaussian_blur(img, *gaussian_blur, mask=random_mask,rnd_state=np.random.RandomState (sample_rnd_seed+3) )
if random_bilinear_resize is not None:
random_mask = sd.random_circle_faded ([resolution,resolution], rnd_state=np.random.RandomState (sample_rnd_seed+4)) if random_circle_mask else None
img = imagelib.apply_random_bilinear_resize(img, *random_bilinear_resize, mask=random_mask,rnd_state=np.random.RandomState (sample_rnd_seed+4) )
# Transform from BGR to desired channel_type
if channel_type == SPCT.BGR:
out_sample = img
elif channel_type == SPCT.G:
out_sample = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)[...,None]
elif channel_type == SPCT.GGG:
out_sample = np.repeat ( np.expand_dims(cv2.cvtColor(img, cv2.COLOR_BGR2GRAY),-1), (3,), -1)
# Final transformations
if not debug:
if normalize_tanh:
out_sample = np.clip (out_sample * 2.0 - 1.0, -1.0, 1.0)
if data_format == "NCHW":
out_sample = np.transpose(out_sample, (2,0,1) )
elif sample_type == SPST.IMAGE:
img = sample_bgr
img = imagelib.warp_by_params (params_per_resolution[resolution], img, warp, transform, can_flip=True, border_replicate=True)
img = cv2.resize( img, (resolution, resolution), cv2.INTER_CUBIC )
out_sample = img
if data_format == "NCHW":
out_sample = np.transpose(out_sample, (2,0,1) )
elif sample_type == SPST.LANDMARKS_ARRAY:
l = sample_landmarks
l = np.concatenate ( [ np.expand_dims(l[:,0] / w,-1), np.expand_dims(l[:,1] / h,-1) ], -1 )
l = np.clip(l, 0.0, 1.0)
out_sample = l
elif sample_type == SPST.PITCH_YAW_ROLL or sample_type == SPST.PITCH_YAW_ROLL_SIGMOID:
pitch,yaw,roll = sample.get_pitch_yaw_roll()
if params_per_resolution[resolution]['flip']:
yaw = -yaw
if sample_type == SPST.PITCH_YAW_ROLL_SIGMOID:
pitch = np.clip( (pitch / math.pi) / 2.0 + 0.5, 0, 1)
yaw = np.clip( (yaw / math.pi) / 2.0 + 0.5, 0, 1)
roll = np.clip( (roll / math.pi) / 2.0 + 0.5, 0, 1)
out_sample = (pitch, yaw)
else:
raise ValueError ('expected sample_type')
outputs_sample.append ( out_sample )
outputs += [outputs_sample]
return outputs
"""
STRUCT = 4 #mask structure as grayscale
elif face_mask_type == SPFMT.STRUCT:
if sample.eyebrows_expand_mod is not None:
img = LandmarksProcessor.get_face_struct_mask (sample_bgr.shape, sample_landmarks, eyebrows_expand_mod=sample.eyebrows_expand_mod )
else:
img = LandmarksProcessor.get_face_struct_mask (sample_bgr.shape, sample_landmarks)
close_sample = sample.close_target_list[ np.random.randint(0, len(sample.close_target_list)) ] if sample.close_target_list is not None else None
close_sample_bgr = close_sample.load_bgr() if close_sample is not None else None
if debug and close_sample_bgr is not None:
LandmarksProcessor.draw_landmarks (close_sample_bgr, close_sample.landmarks, (0, 1, 0))
RANDOM_CLOSE = 0x00000040, #currently unused
MORPH_TO_RANDOM_CLOSE = 0x00000080, #currently unused
if f & SPTF.RANDOM_CLOSE != 0:
img_type += 10
elif f & SPTF.MORPH_TO_RANDOM_CLOSE != 0:
img_type += 20
if img_type >= 10 and img_type <= 19: #RANDOM_CLOSE
img_type -= 10
img = close_sample_bgr
cur_sample = close_sample
elif img_type >= 20 and img_type <= 29: #MORPH_TO_RANDOM_CLOSE
img_type -= 20
res = sample.shape[0]
s_landmarks = sample.landmarks.copy()
d_landmarks = close_sample.landmarks.copy()
idxs = list(range(len(s_landmarks)))
#remove landmarks near boundaries
for i in idxs[:]:
s_l = s_landmarks[i]
d_l = d_landmarks[i]
if s_l[0] < 5 or s_l[1] < 5 or s_l[0] >= res-5 or s_l[1] >= res-5 or \
d_l[0] < 5 or d_l[1] < 5 or d_l[0] >= res-5 or d_l[1] >= res-5:
idxs.remove(i)
#remove landmarks that close to each other in 5 dist
for landmarks in [s_landmarks, d_landmarks]:
for i in idxs[:]:
s_l = landmarks[i]
for j in idxs[:]:
if i == j:
continue
s_l_2 = landmarks[j]
diff_l = np.abs(s_l - s_l_2)
if np.sqrt(diff_l.dot(diff_l)) < 5:
idxs.remove(i)
break
s_landmarks = s_landmarks[idxs]
d_landmarks = d_landmarks[idxs]
s_landmarks = np.concatenate ( [s_landmarks, [ [0,0], [ res // 2, 0], [ res-1, 0], [0, res//2], [res-1, res//2] ,[0,res-1] ,[res//2, res-1] ,[res-1,res-1] ] ] )
d_landmarks = np.concatenate ( [d_landmarks, [ [0,0], [ res // 2, 0], [ res-1, 0], [0, res//2], [res-1, res//2] ,[0,res-1] ,[res//2, res-1] ,[res-1,res-1] ] ] )
img = imagelib.morph_by_points (sample_bgr, s_landmarks, d_landmarks)
cur_sample = close_sample
else:
"""