mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-07-06 04:52:13 -07:00
SAEHD: added new option GAN power 0.0 .. 10.0 Train the network in Generative Adversarial manner. Forces the neural network to learn small details of the face. You can enable/disable this option at any time, but better to enable it when the network is trained enough. Typical value is 1.0 GAN power with pretrain mode will not work. Example of enabling GAN on 81k iters +5k iters https://i.imgur.com/OdXHLhU.jpg https://i.imgur.com/CYAJmJx.jpg dfhd: default Decoder dimensions are now 48 the preview for 256 res is now correctly displayed fixed model naming/renaming/removing Improvements for those involved in post-processing in AfterEffects: Codec is reverted back to x264 in order to properly use in AfterEffects and video players. Merger now always outputs the mask to workspace\data_dst\merged_mask removed raw modes except raw-rgb raw-rgb mode now outputs selected face mask_mode (before square mask) 'export alpha mask' button is replaced by 'show alpha mask'. You can view the alpha mask without recompute the frames. 8) 'merged *.bat' now also output 'result_mask.' video file. 8) 'merged lossless' now uses x264 lossless codec (before PNG codec) result_mask video file is always lossless. Thus you can use result_mask video file as mask layer in the AfterEffects.
329 lines
16 KiB
Python
329 lines
16 KiB
Python
import collections
|
|
from enum import IntEnum
|
|
|
|
import cv2
|
|
import numpy as np
|
|
|
|
from core import imagelib
|
|
from facelib import FaceType, LandmarksProcessor
|
|
|
|
|
|
"""
|
|
output_sample_types = [
|
|
{} opts,
|
|
...
|
|
]
|
|
|
|
opts:
|
|
'types' : (S,S,...,S)
|
|
where S:
|
|
'IMG_SOURCE'
|
|
'IMG_WARPED'
|
|
'IMG_WARPED_TRANSFORMED''
|
|
'IMG_TRANSFORMED'
|
|
'IMG_LANDMARKS_ARRAY' #currently unused
|
|
'IMG_PITCH_YAW_ROLL'
|
|
|
|
'FACE_TYPE_HALF'
|
|
'FACE_TYPE_FULL'
|
|
'FACE_TYPE_HEAD' #currently unused
|
|
'FACE_TYPE_AVATAR' #currently unused
|
|
|
|
'MODE_BGR' #BGR
|
|
'MODE_G' #Grayscale
|
|
'MODE_GGG' #3xGrayscale
|
|
'MODE_M' #mask only
|
|
'MODE_BGR_SHUFFLE' #BGR shuffle
|
|
|
|
'resolution' : N
|
|
'motion_blur' : (chance_int, range) - chance 0..100 to apply to face (not mask), and max_size of motion blur
|
|
'ct_mode' :
|
|
'normalize_tanh' : bool
|
|
|
|
"""
|
|
|
|
class SampleProcessor(object):
|
|
class Types(IntEnum):
|
|
NONE = 0
|
|
|
|
IMG_TYPE_BEGIN = 1
|
|
IMG_SOURCE = 1
|
|
IMG_WARPED = 2
|
|
IMG_WARPED_TRANSFORMED = 3
|
|
IMG_TRANSFORMED = 4
|
|
IMG_LANDMARKS_ARRAY = 5 #currently unused
|
|
IMG_PITCH_YAW_ROLL = 6
|
|
IMG_PITCH_YAW_ROLL_SIGMOID = 7
|
|
IMG_TYPE_END = 10
|
|
|
|
FACE_TYPE_BEGIN = 10
|
|
FACE_TYPE_HALF = 10
|
|
FACE_TYPE_MID_FULL = 11
|
|
FACE_TYPE_FULL = 12
|
|
FACE_TYPE_HEAD = 13 #currently unused
|
|
FACE_TYPE_AVATAR = 14 #currently unused
|
|
FACE_TYPE_FULL_NO_ALIGN = 15
|
|
FACE_TYPE_HEAD_NO_ALIGN = 16
|
|
FACE_TYPE_END = 20
|
|
|
|
MODE_BEGIN = 40
|
|
MODE_BGR = 40 #BGR
|
|
MODE_G = 41 #Grayscale
|
|
MODE_GGG = 42 #3xGrayscale
|
|
MODE_M = 43 #mask only
|
|
MODE_BGR_SHUFFLE = 44 #BGR shuffle
|
|
MODE_BGR_RANDOM_HSV_SHIFT = 45
|
|
MODE_END = 50
|
|
|
|
class Options(object):
|
|
def __init__(self, random_flip = True, rotation_range=[-10,10], scale_range=[-0.05, 0.05], tx_range=[-0.05, 0.05], ty_range=[-0.05, 0.05] ):
|
|
self.random_flip = random_flip
|
|
self.rotation_range = rotation_range
|
|
self.scale_range = scale_range
|
|
self.tx_range = tx_range
|
|
self.ty_range = ty_range
|
|
|
|
SPTF_FACETYPE_TO_FACETYPE = { Types.FACE_TYPE_HALF : FaceType.HALF,
|
|
Types.FACE_TYPE_MID_FULL : FaceType.MID_FULL,
|
|
Types.FACE_TYPE_FULL : FaceType.FULL,
|
|
Types.FACE_TYPE_HEAD : FaceType.HEAD,
|
|
Types.FACE_TYPE_FULL_NO_ALIGN : FaceType.FULL_NO_ALIGN,
|
|
Types.FACE_TYPE_HEAD_NO_ALIGN : FaceType.HEAD_NO_ALIGN,
|
|
}
|
|
|
|
@staticmethod
|
|
def process (samples, sample_process_options, output_sample_types, debug, ct_sample=None):
|
|
SPTF = SampleProcessor.Types
|
|
|
|
sample_rnd_seed = np.random.randint(0x80000000)
|
|
|
|
outputs = []
|
|
for sample in samples:
|
|
sample_bgr = sample.load_bgr()
|
|
ct_sample_bgr = None
|
|
h,w,c = sample_bgr.shape
|
|
|
|
is_face_sample = sample.landmarks is not None
|
|
|
|
if debug and is_face_sample:
|
|
LandmarksProcessor.draw_landmarks (sample_bgr, sample.landmarks, (0, 1, 0))
|
|
|
|
params = imagelib.gen_warp_params(sample_bgr, sample_process_options.random_flip, rotation_range=sample_process_options.rotation_range, scale_range=sample_process_options.scale_range, tx_range=sample_process_options.tx_range, ty_range=sample_process_options.ty_range, rnd_seed=sample_rnd_seed )
|
|
|
|
outputs_sample = []
|
|
for opts in output_sample_types:
|
|
|
|
resolution = opts.get('resolution', 0)
|
|
types = opts.get('types', [] )
|
|
|
|
motion_blur = opts.get('motion_blur', None)
|
|
gaussian_blur = opts.get('gaussian_blur', None)
|
|
|
|
ct_mode = opts.get('ct_mode', 'None')
|
|
normalize_tanh = opts.get('normalize_tanh', False)
|
|
data_format = opts.get('data_format', 'NHWC')
|
|
|
|
|
|
img_type = SPTF.NONE
|
|
target_face_type = SPTF.NONE
|
|
mode_type = SPTF.NONE
|
|
for t in types:
|
|
if t >= SPTF.IMG_TYPE_BEGIN and t < SPTF.IMG_TYPE_END:
|
|
img_type = t
|
|
elif t >= SPTF.FACE_TYPE_BEGIN and t < SPTF.FACE_TYPE_END:
|
|
target_face_type = t
|
|
elif t >= SPTF.MODE_BEGIN and t < SPTF.MODE_END:
|
|
mode_type = t
|
|
|
|
if mode_type == SPTF.MODE_M and not is_face_sample:
|
|
raise ValueError("MODE_M applicable only for face samples")
|
|
|
|
can_warp = (img_type==SPTF.IMG_WARPED or img_type==SPTF.IMG_WARPED_TRANSFORMED)
|
|
can_transform = (img_type==SPTF.IMG_WARPED_TRANSFORMED or img_type==SPTF.IMG_TRANSFORMED)
|
|
|
|
if img_type == SPTF.NONE:
|
|
raise ValueError ('expected IMG_ type')
|
|
|
|
if img_type == SPTF.IMG_LANDMARKS_ARRAY:
|
|
l = sample.landmarks
|
|
l = np.concatenate ( [ np.expand_dims(l[:,0] / w,-1), np.expand_dims(l[:,1] / h,-1) ], -1 )
|
|
l = np.clip(l, 0.0, 1.0)
|
|
out_sample = l
|
|
elif img_type == SPTF.IMG_PITCH_YAW_ROLL or img_type == SPTF.IMG_PITCH_YAW_ROLL_SIGMOID:
|
|
pitch_yaw_roll = sample.get_pitch_yaw_roll()
|
|
|
|
if params['flip']:
|
|
yaw = -yaw
|
|
|
|
if img_type == SPTF.IMG_PITCH_YAW_ROLL_SIGMOID:
|
|
pitch = np.clip( (pitch / math.pi) / 2.0 + 0.5, 0, 1)
|
|
yaw = np.clip( (yaw / math.pi) / 2.0 + 0.5, 0, 1)
|
|
roll = np.clip( (roll / math.pi) / 2.0 + 0.5, 0, 1)
|
|
|
|
out_sample = (pitch, yaw, roll)
|
|
else:
|
|
if mode_type == SPTF.NONE:
|
|
raise ValueError ('expected MODE_ type')
|
|
|
|
need_img = mode_type != SPTF.MODE_M
|
|
need_mask = mode_type == SPTF.MODE_M
|
|
|
|
if need_mask:
|
|
if sample.eyebrows_expand_mod is not None:
|
|
mask = LandmarksProcessor.get_image_hull_mask (sample_bgr.shape, sample.landmarks, eyebrows_expand_mod=sample.eyebrows_expand_mod )
|
|
else:
|
|
mask = LandmarksProcessor.get_image_hull_mask (sample_bgr.shape, sample.landmarks)
|
|
|
|
if sample.ie_polys is not None:
|
|
sample.ie_polys.overlay_mask(mask)
|
|
|
|
if need_img:
|
|
img = sample_bgr
|
|
if motion_blur is not None:
|
|
chance, mb_max_size = motion_blur
|
|
chance = np.clip(chance, 0, 100)
|
|
|
|
if np.random.randint(100) < chance:
|
|
img = imagelib.LinearMotionBlur (img, np.random.randint( mb_max_size )+1, np.random.randint(360) )
|
|
|
|
if gaussian_blur is not None:
|
|
chance, kernel_max_size = gaussian_blur
|
|
chance = np.clip(chance, 0, 100)
|
|
|
|
if np.random.randint(100) < chance:
|
|
img = cv2.GaussianBlur(img, ( np.random.randint( kernel_max_size )*2+1 ,) *2 , 0)
|
|
|
|
if is_face_sample and target_face_type != SPTF.NONE:
|
|
target_ft = SampleProcessor.SPTF_FACETYPE_TO_FACETYPE[target_face_type]
|
|
if target_ft > sample.face_type:
|
|
raise Exception ('sample %s type %s does not match model requirement %s. Consider extract necessary type of faces.' % (sample.filename, sample.face_type, target_ft) )
|
|
|
|
if sample.face_type == FaceType.MARK_ONLY:
|
|
mat = LandmarksProcessor.get_transform_mat (sample.landmarks, sample.shape[0], target_ft), (sample.shape[0],sample.shape[0])
|
|
|
|
if need_img:
|
|
img = cv2.warpAffine( img, mat, flags=cv2.INTER_CUBIC )
|
|
img = imagelib.warp_by_params (params, img, can_warp, can_transform, can_flip=True, border_replicate=True)
|
|
img = cv2.resize( img, (resolution,resolution), cv2.INTER_CUBIC )
|
|
|
|
if need_mask:
|
|
mask = cv2.warpAffine( mask, mat, flags=cv2.INTER_CUBIC )
|
|
mask = imagelib.warp_by_params (params, mask, can_warp, can_transform, can_flip=True, border_replicate=False)
|
|
mask = cv2.resize( mask, (resolution,resolution), cv2.INTER_CUBIC )[...,None]
|
|
else:
|
|
mat = LandmarksProcessor.get_transform_mat (sample.landmarks, resolution, target_ft)
|
|
|
|
if need_img:
|
|
img = imagelib.warp_by_params (params, img, can_warp, can_transform, can_flip=True, border_replicate=True)
|
|
img = cv2.warpAffine( img, mat, (resolution,resolution), borderMode=cv2.BORDER_REPLICATE, flags=cv2.INTER_CUBIC )
|
|
|
|
if need_mask:
|
|
mask = imagelib.warp_by_params (params, mask, can_warp, can_transform, can_flip=True, border_replicate=False)
|
|
mask = cv2.warpAffine( mask, mat, (resolution,resolution), borderMode=cv2.BORDER_CONSTANT, flags=cv2.INTER_CUBIC )[...,None]
|
|
|
|
else:
|
|
if need_img:
|
|
img = imagelib.warp_by_params (params, img, can_warp, can_transform, can_flip=True, border_replicate=True)
|
|
img = cv2.resize( img, (resolution,resolution), cv2.INTER_CUBIC )
|
|
|
|
if need_mask:
|
|
mask = imagelib.warp_by_params (params, mask, can_warp, can_transform, can_flip=True, border_replicate=False)
|
|
mask = cv2.resize( mask, (resolution,resolution), cv2.INTER_CUBIC )[...,None]
|
|
|
|
|
|
if mode_type == SPTF.MODE_M:
|
|
out_sample = np.clip(mask, 0, 1).astype(np.float32)
|
|
else:
|
|
img = np.clip(img, 0, 1).astype(np.float32)
|
|
|
|
if ct_mode is not None and ct_sample is not None:
|
|
if ct_sample_bgr is None:
|
|
ct_sample_bgr = ct_sample.load_bgr()
|
|
img = imagelib.color_transfer (ct_mode,
|
|
img,
|
|
cv2.resize( ct_sample_bgr, (resolution,resolution), cv2.INTER_LINEAR ) )
|
|
|
|
if mode_type == SPTF.MODE_BGR:
|
|
out_sample = img
|
|
elif mode_type == SPTF.MODE_BGR_SHUFFLE:
|
|
rnd_state = np.random.RandomState (sample_rnd_seed)
|
|
out_sample = np.take (img, rnd_state.permutation(img.shape[-1]), axis=-1)
|
|
|
|
elif mode_type == SPTF.MODE_BGR_RANDOM_HSV_SHIFT:
|
|
rnd_state = np.random.RandomState (sample_rnd_seed)
|
|
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
|
|
h, s, v = cv2.split(hsv)
|
|
h = (h + rnd_state.randint(360) ) % 360
|
|
s = np.clip ( s + rnd_state.random()-0.5, 0, 1 )
|
|
v = np.clip ( v + rnd_state.random()-0.5, 0, 1 )
|
|
hsv = cv2.merge([h, s, v])
|
|
out_sample = np.clip( cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR) , 0, 1 )
|
|
elif mode_type == SPTF.MODE_G:
|
|
out_sample = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)[...,None]
|
|
elif mode_type == SPTF.MODE_GGG:
|
|
out_sample = np.repeat ( np.expand_dims(cv2.cvtColor(img, cv2.COLOR_BGR2GRAY),-1), (3,), -1)
|
|
|
|
if not debug:
|
|
if normalize_tanh:
|
|
out_sample = np.clip (out_sample * 2.0 - 1.0, -1.0, 1.0)
|
|
|
|
if data_format == "NCHW":
|
|
out_sample = np.transpose(out_sample, (2,0,1) )
|
|
|
|
outputs_sample.append ( out_sample )
|
|
outputs += [outputs_sample]
|
|
|
|
return outputs
|
|
|
|
"""
|
|
close_sample = sample.close_target_list[ np.random.randint(0, len(sample.close_target_list)) ] if sample.close_target_list is not None else None
|
|
close_sample_bgr = close_sample.load_bgr() if close_sample is not None else None
|
|
|
|
if debug and close_sample_bgr is not None:
|
|
LandmarksProcessor.draw_landmarks (close_sample_bgr, close_sample.landmarks, (0, 1, 0))
|
|
RANDOM_CLOSE = 0x00000040, #currently unused
|
|
MORPH_TO_RANDOM_CLOSE = 0x00000080, #currently unused
|
|
|
|
if f & SPTF.RANDOM_CLOSE != 0:
|
|
img_type += 10
|
|
elif f & SPTF.MORPH_TO_RANDOM_CLOSE != 0:
|
|
img_type += 20
|
|
if img_type >= 10 and img_type <= 19: #RANDOM_CLOSE
|
|
img_type -= 10
|
|
img = close_sample_bgr
|
|
cur_sample = close_sample
|
|
|
|
elif img_type >= 20 and img_type <= 29: #MORPH_TO_RANDOM_CLOSE
|
|
img_type -= 20
|
|
res = sample.shape[0]
|
|
|
|
s_landmarks = sample.landmarks.copy()
|
|
d_landmarks = close_sample.landmarks.copy()
|
|
idxs = list(range(len(s_landmarks)))
|
|
#remove landmarks near boundaries
|
|
for i in idxs[:]:
|
|
s_l = s_landmarks[i]
|
|
d_l = d_landmarks[i]
|
|
if s_l[0] < 5 or s_l[1] < 5 or s_l[0] >= res-5 or s_l[1] >= res-5 or \
|
|
d_l[0] < 5 or d_l[1] < 5 or d_l[0] >= res-5 or d_l[1] >= res-5:
|
|
idxs.remove(i)
|
|
#remove landmarks that close to each other in 5 dist
|
|
for landmarks in [s_landmarks, d_landmarks]:
|
|
for i in idxs[:]:
|
|
s_l = landmarks[i]
|
|
for j in idxs[:]:
|
|
if i == j:
|
|
continue
|
|
s_l_2 = landmarks[j]
|
|
diff_l = np.abs(s_l - s_l_2)
|
|
if np.sqrt(diff_l.dot(diff_l)) < 5:
|
|
idxs.remove(i)
|
|
break
|
|
s_landmarks = s_landmarks[idxs]
|
|
d_landmarks = d_landmarks[idxs]
|
|
s_landmarks = np.concatenate ( [s_landmarks, [ [0,0], [ res // 2, 0], [ res-1, 0], [0, res//2], [res-1, res//2] ,[0,res-1] ,[res//2, res-1] ,[res-1,res-1] ] ] )
|
|
d_landmarks = np.concatenate ( [d_landmarks, [ [0,0], [ res // 2, 0], [ res-1, 0], [0, res//2], [res-1, res//2] ,[0,res-1] ,[res//2, res-1] ,[res-1,res-1] ] ] )
|
|
img = imagelib.morph_by_points (sample_bgr, s_landmarks, d_landmarks)
|
|
cur_sample = close_sample
|
|
else:
|
|
"""
|