DeepFaceLab/samplelib/SampleProcessor.py
2019-05-11 19:42:03 +04:00

316 lines
13 KiB
Python

import collections
from enum import IntEnum
import cv2
import numpy as np
import imagelib
from facelib import FaceType, LandmarksProcessor
"""
output_sample_types = [
{} opts,
...
]
opts:
'types' : (S,S,...,S)
where S:
'IMG_SOURCE'
'IMG_WARPED'
'IMG_WARPED_TRANSFORMED''
'IMG_TRANSFORMED'
'IMG_LANDMARKS_ARRAY' #currently unused
'IMG_PITCH_YAW_ROLL'
'FACE_TYPE_HALF'
'FACE_TYPE_FULL'
'FACE_TYPE_HEAD' #currently unused
'FACE_TYPE_AVATAR' #currently unused
'MODE_BGR' #BGR
'MODE_G' #Grayscale
'MODE_GGG' #3xGrayscale
'MODE_M' #mask only
'MODE_BGR_SHUFFLE' #BGR shuffle
'resolution' : N
'motion_blur' : (chance_int, range) - chance 0..100 to apply to face (not mask), and range [1..3] where 3 is highest power of motion blur
'apply_ct' : bool
'normalize_tanh' : bool
"""
class SampleProcessor(object):
class Types(IntEnum):
NONE = 0
IMG_TYPE_BEGIN = 1
IMG_SOURCE = 1
IMG_WARPED = 2
IMG_WARPED_TRANSFORMED = 3
IMG_TRANSFORMED = 4
IMG_LANDMARKS_ARRAY = 5 #currently unused
IMG_PITCH_YAW_ROLL = 6
IMG_PITCH_YAW_ROLL_SIGMOID = 7
IMG_TYPE_END = 10
FACE_TYPE_BEGIN = 10
FACE_TYPE_HALF = 10
FACE_TYPE_FULL = 11
FACE_TYPE_HEAD = 12 #currently unused
FACE_TYPE_AVATAR = 13 #currently unused
FACE_TYPE_END = 20
MODE_BEGIN = 40
MODE_BGR = 40 #BGR
MODE_G = 41 #Grayscale
MODE_GGG = 42 #3xGrayscale
MODE_M = 43 #mask only
MODE_BGR_SHUFFLE = 44 #BGR shuffle
MODE_END = 50
class Options(object):
def __init__(self, random_flip = True, rotation_range=[-10,10], scale_range=[-0.05, 0.05], tx_range=[-0.05, 0.05], ty_range=[-0.05, 0.05] ):
self.random_flip = random_flip
self.rotation_range = rotation_range
self.scale_range = scale_range
self.tx_range = tx_range
self.ty_range = ty_range
@staticmethod
def process (sample, sample_process_options, output_sample_types, debug, ct_sample=None):
SPTF = SampleProcessor.Types
sample_bgr = sample.load_bgr()
ct_sample_bgr = None
ct_sample_mask = None
h,w,c = sample_bgr.shape
is_face_sample = sample.landmarks is not None
if debug and is_face_sample:
LandmarksProcessor.draw_landmarks (sample_bgr, sample.landmarks, (0, 1, 0))
params = imagelib.gen_warp_params(sample_bgr, sample_process_options.random_flip, rotation_range=sample_process_options.rotation_range, scale_range=sample_process_options.scale_range, tx_range=sample_process_options.tx_range, ty_range=sample_process_options.ty_range )
cached_images = collections.defaultdict(dict)
sample_rnd_seed = np.random.randint(0x80000000)
SPTF_FACETYPE_TO_FACETYPE = { SPTF.FACE_TYPE_HALF : FaceType.HALF,
SPTF.FACE_TYPE_FULL : FaceType.FULL,
SPTF.FACE_TYPE_HEAD : FaceType.HEAD,
SPTF.FACE_TYPE_AVATAR : FaceType.AVATAR }
outputs = []
for opts in output_sample_types:
resolution = opts.get('resolution', 0)
types = opts.get('types', [] )
random_sub_res = opts.get('random_sub_res', 0)
normalize_std_dev = opts.get('normalize_std_dev', False)
normalize_vgg = opts.get('normalize_vgg', False)
motion_blur = opts.get('motion_blur', None)
apply_ct = opts.get('apply_ct', False)
normalize_tanh = opts.get('normalize_tanh', False)
img_type = SPTF.NONE
target_face_type = SPTF.NONE
face_mask_type = SPTF.NONE
mode_type = SPTF.NONE
for t in types:
if t >= SPTF.IMG_TYPE_BEGIN and t < SPTF.IMG_TYPE_END:
img_type = t
elif t >= SPTF.FACE_TYPE_BEGIN and t < SPTF.FACE_TYPE_END:
target_face_type = t
elif t >= SPTF.MODE_BEGIN and t < SPTF.MODE_END:
mode_type = t
if img_type == SPTF.NONE:
raise ValueError ('expected IMG_ type')
if img_type == SPTF.IMG_LANDMARKS_ARRAY:
l = sample.landmarks
l = np.concatenate ( [ np.expand_dims(l[:,0] / w,-1), np.expand_dims(l[:,1] / h,-1) ], -1 )
l = np.clip(l, 0.0, 1.0)
img = l
elif img_type == SPTF.IMG_PITCH_YAW_ROLL or img_type == SPTF.IMG_PITCH_YAW_ROLL_SIGMOID:
pitch_yaw_roll = sample.pitch_yaw_roll
if pitch_yaw_roll is not None:
pitch, yaw, roll = pitch_yaw_roll
else:
pitch, yaw, roll = LandmarksProcessor.estimate_pitch_yaw_roll (sample.landmarks)
if params['flip']:
yaw = -yaw
if img_type == SPTF.IMG_PITCH_YAW_ROLL_SIGMOID:
pitch = (pitch+1.0) / 2.0
yaw = (yaw+1.0) / 2.0
roll = (roll+1.0) / 2.0
img = (pitch, yaw, roll)
else:
if mode_type == SPTF.NONE:
raise ValueError ('expected MODE_ type')
img = cached_images.get(img_type, None)
if img is None:
img = sample_bgr
mask = None
cur_sample = sample
if is_face_sample:
if motion_blur is not None:
chance, mb_range = motion_blur
chance = np.clip(chance, 0, 100)
if np.random.randint(100) < chance:
mb_range = [3,5,7,9][ : np.clip(mb_range, 0, 3)+1 ]
dim = mb_range[ np.random.randint(len(mb_range) ) ]
img = imagelib.LinearMotionBlur (img, dim, np.random.randint(180) )
mask = cur_sample.load_fanseg_mask() #using fanseg_mask if exist
if mask is None:
mask = LandmarksProcessor.get_image_hull_mask (img.shape, cur_sample.landmarks)
if cur_sample.ie_polys is not None:
cur_sample.ie_polys.overlay_mask(mask)
warp = (img_type==SPTF.IMG_WARPED or img_type==SPTF.IMG_WARPED_TRANSFORMED)
transform = (img_type==SPTF.IMG_WARPED_TRANSFORMED or img_type==SPTF.IMG_TRANSFORMED)
flip = img_type != SPTF.IMG_WARPED
img = imagelib.warp_by_params (params, img, warp, transform, flip, True)
if mask is not None:
mask = imagelib.warp_by_params (params, mask, warp, transform, flip, False)[...,np.newaxis]
img = np.concatenate( (img, mask ), -1 )
cached_images[img_type] = img
if is_face_sample and target_face_type != SPTF.NONE:
ft = SPTF_FACETYPE_TO_FACETYPE[target_face_type]
if ft > sample.face_type:
raise Exception ('sample %s type %s does not match model requirement %s. Consider extract necessary type of faces.' % (sample.filename, sample.face_type, ft) )
img = cv2.warpAffine( img, LandmarksProcessor.get_transform_mat (sample.landmarks, resolution, ft), (resolution,resolution), flags=cv2.INTER_CUBIC )
else:
img = cv2.resize( img, (resolution,resolution), cv2.INTER_CUBIC )
if random_sub_res != 0:
sub_size = resolution - random_sub_res
rnd_state = np.random.RandomState (sample_rnd_seed+random_sub_res)
start_x = rnd_state.randint(sub_size+1)
start_y = rnd_state.randint(sub_size+1)
img = img[start_y:start_y+sub_size,start_x:start_x+sub_size,:]
img = np.clip(img, 0, 1)
img_bgr = img[...,0:3]
img_mask = img[...,3:4]
if apply_ct:
if ct_sample_bgr is not None:
ct_sample_bgr = ct_sample.load_bgr()
ct_sample_bgr_resized = cv2.resize( ct_sample_bgr, (resolution,resolution), cv2.INTER_LINEAR )
img_bgr = imagelib.linear_color_transfer (img_bgr, ct_sample_bgr_resized)
img_bgr = np.clip( img_bgr, 0.0, 1.0)
if normalize_std_dev:
img_bgr = (img_bgr - img_bgr.mean( (0,1)) ) / img_bgr.std( (0,1) )
elif normalize_vgg:
img_bgr = np.clip(img_bgr*255, 0, 255)
img_bgr[:,:,0] -= 103.939
img_bgr[:,:,1] -= 116.779
img_bgr[:,:,2] -= 123.68
if mode_type == SPTF.MODE_BGR:
img = img_bgr
elif mode_type == SPTF.MODE_BGR_SHUFFLE:
rnd_state = np.random.RandomState (sample_rnd_seed)
img = np.take (img_bgr, rnd_state.permutation(img_bgr.shape[-1]), axis=-1)
elif mode_type == SPTF.MODE_G:
img = np.concatenate ( (np.expand_dims(cv2.cvtColor(img_bgr, cv2.COLOR_BGR2GRAY),-1),img_mask) , -1 )
elif mode_type == SPTF.MODE_GGG:
img = np.concatenate ( ( np.repeat ( np.expand_dims(cv2.cvtColor(img_bgr, cv2.COLOR_BGR2GRAY),-1), (3,), -1), img_mask), -1)
elif mode_type == SPTF.MODE_M and is_face_sample:
img = img_mask
if not debug:
if normalize_tanh:
img = np.clip (img * 2.0 - 1.0, -1.0, 1.0)
else:
img = np.clip (img, 0.0, 1.0)
outputs.append ( img )
if debug:
result = []
for output in outputs:
if output.shape[2] < 4:
result += [output,]
elif output.shape[2] == 4:
result += [output[...,0:3]*output[...,3:4],]
return result
else:
return outputs
"""
close_sample = sample.close_target_list[ np.random.randint(0, len(sample.close_target_list)) ] if sample.close_target_list is not None else None
close_sample_bgr = close_sample.load_bgr() if close_sample is not None else None
if debug and close_sample_bgr is not None:
LandmarksProcessor.draw_landmarks (close_sample_bgr, close_sample.landmarks, (0, 1, 0))
RANDOM_CLOSE = 0x00000040, #currently unused
MORPH_TO_RANDOM_CLOSE = 0x00000080, #currently unused
if f & SPTF.RANDOM_CLOSE != 0:
img_type += 10
elif f & SPTF.MORPH_TO_RANDOM_CLOSE != 0:
img_type += 20
if img_type >= 10 and img_type <= 19: #RANDOM_CLOSE
img_type -= 10
img = close_sample_bgr
cur_sample = close_sample
elif img_type >= 20 and img_type <= 29: #MORPH_TO_RANDOM_CLOSE
img_type -= 20
res = sample.shape[0]
s_landmarks = sample.landmarks.copy()
d_landmarks = close_sample.landmarks.copy()
idxs = list(range(len(s_landmarks)))
#remove landmarks near boundaries
for i in idxs[:]:
s_l = s_landmarks[i]
d_l = d_landmarks[i]
if s_l[0] < 5 or s_l[1] < 5 or s_l[0] >= res-5 or s_l[1] >= res-5 or \
d_l[0] < 5 or d_l[1] < 5 or d_l[0] >= res-5 or d_l[1] >= res-5:
idxs.remove(i)
#remove landmarks that close to each other in 5 dist
for landmarks in [s_landmarks, d_landmarks]:
for i in idxs[:]:
s_l = landmarks[i]
for j in idxs[:]:
if i == j:
continue
s_l_2 = landmarks[j]
diff_l = np.abs(s_l - s_l_2)
if np.sqrt(diff_l.dot(diff_l)) < 5:
idxs.remove(i)
break
s_landmarks = s_landmarks[idxs]
d_landmarks = d_landmarks[idxs]
s_landmarks = np.concatenate ( [s_landmarks, [ [0,0], [ res // 2, 0], [ res-1, 0], [0, res//2], [res-1, res//2] ,[0,res-1] ,[res//2, res-1] ,[res-1,res-1] ] ] )
d_landmarks = np.concatenate ( [d_landmarks, [ [0,0], [ res // 2, 0], [ res-1, 0], [0, res//2], [res-1, res//2] ,[0,res-1] ,[res//2, res-1] ,[res-1,res-1] ] ] )
img = imagelib.morph_by_points (sample_bgr, s_landmarks, d_landmarks)
cur_sample = close_sample
else:
"""