mirror of
https://github.com/Proxmark/proxmark3.git
synced 2025-07-14 01:03:01 -07:00
* code deduplication. Use functions from iso15693.c * speedup CodeIso15693AsReader() * invert reader command coding. 0 now means 'unmodulated' ( = field on) * decode SOF only as a valid tag response in Handle15693SamplesFromTag() * complete decoding of EOF in Handle15693SamplesFromTag() * determine and write correct times to trace * FPGA-change: generate shorter frame signal to allow proper sync in StartCountSspClk() * modify StartCountSspClk() for 16bit SSC transfers * whitespace in util.c * add specific LogTrace_ISO15693() with scaled down duration. Modify cmdhflist.c accordingly. * allow 'hf 15 raw' with single byte commands * check for buffer overflow, card timeout and single SOF in 'hf 15 raw'
1823 lines
56 KiB
C
1823 lines
56 KiB
C
//-----------------------------------------------------------------------------
|
|
// Gerhard de Koning Gans - May 2008
|
|
// Hagen Fritsch - June 2010
|
|
// Gerhard de Koning Gans - May 2011
|
|
// Gerhard de Koning Gans - June 2012 - Added iClass card and reader emulation
|
|
//
|
|
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
|
|
// at your option, any later version. See the LICENSE.txt file for the text of
|
|
// the license.
|
|
//-----------------------------------------------------------------------------
|
|
// Routines to support iClass.
|
|
//-----------------------------------------------------------------------------
|
|
// Based on ISO14443a implementation. Still in experimental phase.
|
|
// Contribution made during a security research at Radboud University Nijmegen
|
|
//
|
|
// Please feel free to contribute and extend iClass support!!
|
|
//-----------------------------------------------------------------------------
|
|
//
|
|
// FIX:
|
|
// ====
|
|
// We still have sometimes a demodulation error when snooping iClass communication.
|
|
// The resulting trace of a read-block-03 command may look something like this:
|
|
//
|
|
// + 22279: : 0c 03 e8 01
|
|
//
|
|
// ...with an incorrect answer...
|
|
//
|
|
// + 85: 0: TAG ff! ff! ff! ff! ff! ff! ff! ff! bb 33 bb 00 01! 0e! 04! bb !crc
|
|
//
|
|
// We still left the error signalling bytes in the traces like 0xbb
|
|
//
|
|
// A correct trace should look like this:
|
|
//
|
|
// + 21112: : 0c 03 e8 01
|
|
// + 85: 0: TAG ff ff ff ff ff ff ff ff ea f5
|
|
//
|
|
//-----------------------------------------------------------------------------
|
|
|
|
#include "iclass.h"
|
|
|
|
#include "proxmark3.h"
|
|
#include "apps.h"
|
|
#include "util.h"
|
|
#include "string.h"
|
|
#include "printf.h"
|
|
#include "common.h"
|
|
#include "cmd.h"
|
|
#include "iso14443a.h"
|
|
#include "iso15693.h"
|
|
// Needed for CRC in emulation mode;
|
|
// same construction as in ISO 14443;
|
|
// different initial value (CRC_ICLASS)
|
|
#include "iso14443crc.h"
|
|
#include "iso15693tools.h"
|
|
#include "protocols.h"
|
|
#include "optimized_cipher.h"
|
|
#include "usb_cdc.h" // for usb_poll_validate_length
|
|
#include "fpgaloader.h"
|
|
|
|
// iCLASS has a slightly different timing compared to ISO15693. According to the picopass data sheet the tag response is expected 330us after
|
|
// the reader command. This is measured from end of reader EOF to first modulation of the tag's SOF which starts with a 56,64us unmodulated period.
|
|
// 330us = 140 ssp_clk cycles @ 423,75kHz when simulating.
|
|
// 56,64us = 24 ssp_clk_cycles
|
|
#define DELAY_ICLASS_VCD_TO_VICC_SIM (140 - 24)
|
|
// times in ssp_clk_cycles @ 3,3625MHz when acting as reader
|
|
#define DELAY_ICLASS_VICC_TO_VCD_READER DELAY_ISO15693_VICC_TO_VCD_READER
|
|
// times in samples @ 212kHz when acting as reader
|
|
#define ICLASS_READER_TIMEOUT_ACTALL 330 // 1558us, nominal 330us + 7slots*160us = 1450us
|
|
#define ICLASS_READER_TIMEOUT_OTHERS 80 // 380us, nominal 330us
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// The software UART that receives commands from the reader, and its state
|
|
// variables.
|
|
//-----------------------------------------------------------------------------
|
|
static struct {
|
|
enum {
|
|
STATE_UNSYNCD,
|
|
STATE_START_OF_COMMUNICATION,
|
|
STATE_RECEIVING
|
|
} state;
|
|
uint16_t shiftReg;
|
|
int bitCnt;
|
|
int byteCnt;
|
|
int byteCntMax;
|
|
int posCnt;
|
|
int nOutOfCnt;
|
|
int OutOfCnt;
|
|
int syncBit;
|
|
int samples;
|
|
int highCnt;
|
|
int swapper;
|
|
int counter;
|
|
int bitBuffer;
|
|
int dropPosition;
|
|
uint8_t *output;
|
|
} Uart;
|
|
|
|
static RAMFUNC int OutOfNDecoding(int bit) {
|
|
//int error = 0;
|
|
int bitright;
|
|
|
|
if (!Uart.bitBuffer) {
|
|
Uart.bitBuffer = bit ^ 0xFF0;
|
|
return false;
|
|
} else {
|
|
Uart.bitBuffer <<= 4;
|
|
Uart.bitBuffer ^= bit;
|
|
}
|
|
|
|
/*if (Uart.swapper) {
|
|
Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF;
|
|
Uart.byteCnt++;
|
|
Uart.swapper = 0;
|
|
if (Uart.byteCnt > 15) { return true; }
|
|
}
|
|
else {
|
|
Uart.swapper = 1;
|
|
}*/
|
|
|
|
if (Uart.state != STATE_UNSYNCD) {
|
|
Uart.posCnt++;
|
|
|
|
if ((Uart.bitBuffer & Uart.syncBit) ^ Uart.syncBit) {
|
|
bit = 0x00;
|
|
} else {
|
|
bit = 0x01;
|
|
}
|
|
if (((Uart.bitBuffer << 1) & Uart.syncBit) ^ Uart.syncBit) {
|
|
bitright = 0x00;
|
|
} else {
|
|
bitright = 0x01;
|
|
}
|
|
if (bit != bitright) {
|
|
bit = bitright;
|
|
}
|
|
|
|
|
|
// So, now we only have to deal with *bit*, lets see...
|
|
if (Uart.posCnt == 1) {
|
|
// measurement first half bitperiod
|
|
if (!bit) {
|
|
// Drop in first half means that we are either seeing
|
|
// an SOF or an EOF.
|
|
|
|
if (Uart.nOutOfCnt == 1) {
|
|
// End of Communication
|
|
Uart.state = STATE_UNSYNCD;
|
|
Uart.highCnt = 0;
|
|
if (Uart.byteCnt == 0) {
|
|
// Its not straightforward to show single EOFs
|
|
// So just leave it and do not return true
|
|
Uart.output[0] = 0xf0;
|
|
Uart.byteCnt++;
|
|
} else {
|
|
return true;
|
|
}
|
|
} else if (Uart.state != STATE_START_OF_COMMUNICATION) {
|
|
// When not part of SOF or EOF, it is an error
|
|
Uart.state = STATE_UNSYNCD;
|
|
Uart.highCnt = 0;
|
|
//error = 4;
|
|
}
|
|
}
|
|
} else {
|
|
// measurement second half bitperiod
|
|
// Count the bitslot we are in... (ISO 15693)
|
|
Uart.nOutOfCnt++;
|
|
|
|
if (!bit) {
|
|
if (Uart.dropPosition) {
|
|
if (Uart.state == STATE_START_OF_COMMUNICATION) {
|
|
//error = 1;
|
|
} else {
|
|
//error = 7;
|
|
}
|
|
// It is an error if we already have seen a drop in current frame
|
|
Uart.state = STATE_UNSYNCD;
|
|
Uart.highCnt = 0;
|
|
} else {
|
|
Uart.dropPosition = Uart.nOutOfCnt;
|
|
}
|
|
}
|
|
|
|
Uart.posCnt = 0;
|
|
|
|
|
|
if (Uart.nOutOfCnt == Uart.OutOfCnt && Uart.OutOfCnt == 4) {
|
|
Uart.nOutOfCnt = 0;
|
|
|
|
if (Uart.state == STATE_START_OF_COMMUNICATION) {
|
|
if (Uart.dropPosition == 4) {
|
|
Uart.state = STATE_RECEIVING;
|
|
Uart.OutOfCnt = 256;
|
|
} else if (Uart.dropPosition == 3) {
|
|
Uart.state = STATE_RECEIVING;
|
|
Uart.OutOfCnt = 4;
|
|
//Uart.output[Uart.byteCnt] = 0xdd;
|
|
//Uart.byteCnt++;
|
|
} else {
|
|
Uart.state = STATE_UNSYNCD;
|
|
Uart.highCnt = 0;
|
|
}
|
|
Uart.dropPosition = 0;
|
|
} else {
|
|
// RECEIVING DATA
|
|
// 1 out of 4
|
|
if (!Uart.dropPosition) {
|
|
Uart.state = STATE_UNSYNCD;
|
|
Uart.highCnt = 0;
|
|
//error = 9;
|
|
} else {
|
|
Uart.shiftReg >>= 2;
|
|
|
|
// Swap bit order
|
|
Uart.dropPosition--;
|
|
//if (Uart.dropPosition == 1) { Uart.dropPosition = 2; }
|
|
//else if (Uart.dropPosition == 2) { Uart.dropPosition = 1; }
|
|
|
|
Uart.shiftReg ^= ((Uart.dropPosition & 0x03) << 6);
|
|
Uart.bitCnt += 2;
|
|
Uart.dropPosition = 0;
|
|
|
|
if (Uart.bitCnt == 8) {
|
|
Uart.output[Uart.byteCnt] = (Uart.shiftReg & 0xff);
|
|
Uart.byteCnt++;
|
|
Uart.bitCnt = 0;
|
|
Uart.shiftReg = 0;
|
|
}
|
|
}
|
|
}
|
|
} else if (Uart.nOutOfCnt == Uart.OutOfCnt) {
|
|
// RECEIVING DATA
|
|
// 1 out of 256
|
|
if (!Uart.dropPosition) {
|
|
Uart.state = STATE_UNSYNCD;
|
|
Uart.highCnt = 0;
|
|
//error = 3;
|
|
} else {
|
|
Uart.dropPosition--;
|
|
Uart.output[Uart.byteCnt] = (Uart.dropPosition & 0xff);
|
|
Uart.byteCnt++;
|
|
Uart.bitCnt = 0;
|
|
Uart.shiftReg = 0;
|
|
Uart.nOutOfCnt = 0;
|
|
Uart.dropPosition = 0;
|
|
}
|
|
}
|
|
|
|
/*if (error) {
|
|
Uart.output[Uart.byteCnt] = 0xAA;
|
|
Uart.byteCnt++;
|
|
Uart.output[Uart.byteCnt] = error & 0xFF;
|
|
Uart.byteCnt++;
|
|
Uart.output[Uart.byteCnt] = 0xAA;
|
|
Uart.byteCnt++;
|
|
Uart.output[Uart.byteCnt] = (Uart.bitBuffer >> 8) & 0xFF;
|
|
Uart.byteCnt++;
|
|
Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF;
|
|
Uart.byteCnt++;
|
|
Uart.output[Uart.byteCnt] = (Uart.syncBit >> 3) & 0xFF;
|
|
Uart.byteCnt++;
|
|
Uart.output[Uart.byteCnt] = 0xAA;
|
|
Uart.byteCnt++;
|
|
return true;
|
|
}*/
|
|
}
|
|
|
|
} else {
|
|
bit = Uart.bitBuffer & 0xf0;
|
|
bit >>= 4;
|
|
bit ^= 0x0F; // drops become 1s ;-)
|
|
if (bit) {
|
|
// should have been high or at least (4 * 128) / fc
|
|
// according to ISO this should be at least (9 * 128 + 20) / fc
|
|
if (Uart.highCnt == 8) {
|
|
// we went low, so this could be start of communication
|
|
// it turns out to be safer to choose a less significant
|
|
// syncbit... so we check whether the neighbour also represents the drop
|
|
Uart.posCnt = 1; // apparently we are busy with our first half bit period
|
|
Uart.syncBit = bit & 8;
|
|
Uart.samples = 3;
|
|
if (!Uart.syncBit) { Uart.syncBit = bit & 4; Uart.samples = 2; }
|
|
else if (bit & 4) { Uart.syncBit = bit & 4; Uart.samples = 2; bit <<= 2; }
|
|
if (!Uart.syncBit) { Uart.syncBit = bit & 2; Uart.samples = 1; }
|
|
else if (bit & 2) { Uart.syncBit = bit & 2; Uart.samples = 1; bit <<= 1; }
|
|
if (!Uart.syncBit) { Uart.syncBit = bit & 1; Uart.samples = 0;
|
|
if (Uart.syncBit && (Uart.bitBuffer & 8)) {
|
|
Uart.syncBit = 8;
|
|
|
|
// the first half bit period is expected in next sample
|
|
Uart.posCnt = 0;
|
|
Uart.samples = 3;
|
|
}
|
|
} else if (bit & 1) { Uart.syncBit = bit & 1; Uart.samples = 0; }
|
|
|
|
Uart.syncBit <<= 4;
|
|
Uart.state = STATE_START_OF_COMMUNICATION;
|
|
Uart.bitCnt = 0;
|
|
Uart.byteCnt = 0;
|
|
Uart.nOutOfCnt = 0;
|
|
Uart.OutOfCnt = 4; // Start at 1/4, could switch to 1/256
|
|
Uart.dropPosition = 0;
|
|
Uart.shiftReg = 0;
|
|
//error = 0;
|
|
} else {
|
|
Uart.highCnt = 0;
|
|
}
|
|
} else if (Uart.highCnt < 8) {
|
|
Uart.highCnt++;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
//=============================================================================
|
|
// Manchester
|
|
//=============================================================================
|
|
|
|
static struct {
|
|
enum {
|
|
DEMOD_UNSYNCD,
|
|
DEMOD_START_OF_COMMUNICATION,
|
|
DEMOD_START_OF_COMMUNICATION2,
|
|
DEMOD_START_OF_COMMUNICATION3,
|
|
DEMOD_SOF_COMPLETE,
|
|
DEMOD_MANCHESTER_D,
|
|
DEMOD_MANCHESTER_E,
|
|
DEMOD_END_OF_COMMUNICATION,
|
|
DEMOD_END_OF_COMMUNICATION2,
|
|
DEMOD_MANCHESTER_F,
|
|
DEMOD_ERROR_WAIT
|
|
} state;
|
|
int bitCount;
|
|
int posCount;
|
|
int syncBit;
|
|
uint16_t shiftReg;
|
|
int buffer;
|
|
int buffer2;
|
|
int buffer3;
|
|
int buff;
|
|
int samples;
|
|
int len;
|
|
enum {
|
|
SUB_NONE,
|
|
SUB_FIRST_HALF,
|
|
SUB_SECOND_HALF,
|
|
SUB_BOTH
|
|
} sub;
|
|
uint8_t *output;
|
|
} Demod;
|
|
|
|
static RAMFUNC int ManchesterDecoding(int v) {
|
|
int bit;
|
|
int modulation;
|
|
int error = 0;
|
|
|
|
bit = Demod.buffer;
|
|
Demod.buffer = Demod.buffer2;
|
|
Demod.buffer2 = Demod.buffer3;
|
|
Demod.buffer3 = v;
|
|
|
|
if (Demod.buff < 3) {
|
|
Demod.buff++;
|
|
return false;
|
|
}
|
|
|
|
if (Demod.state==DEMOD_UNSYNCD) {
|
|
Demod.output[Demod.len] = 0xfa;
|
|
Demod.syncBit = 0;
|
|
//Demod.samples = 0;
|
|
Demod.posCount = 1; // This is the first half bit period, so after syncing handle the second part
|
|
|
|
if (bit & 0x08) {
|
|
Demod.syncBit = 0x08;
|
|
}
|
|
|
|
if (bit & 0x04) {
|
|
if (Demod.syncBit) {
|
|
bit <<= 4;
|
|
}
|
|
Demod.syncBit = 0x04;
|
|
}
|
|
|
|
if (bit & 0x02) {
|
|
if (Demod.syncBit) {
|
|
bit <<= 2;
|
|
}
|
|
Demod.syncBit = 0x02;
|
|
}
|
|
|
|
if (bit & 0x01 && Demod.syncBit) {
|
|
Demod.syncBit = 0x01;
|
|
}
|
|
|
|
if (Demod.syncBit) {
|
|
Demod.len = 0;
|
|
Demod.state = DEMOD_START_OF_COMMUNICATION;
|
|
Demod.sub = SUB_FIRST_HALF;
|
|
Demod.bitCount = 0;
|
|
Demod.shiftReg = 0;
|
|
Demod.samples = 0;
|
|
if (Demod.posCount) {
|
|
switch (Demod.syncBit) {
|
|
case 0x08: Demod.samples = 3; break;
|
|
case 0x04: Demod.samples = 2; break;
|
|
case 0x02: Demod.samples = 1; break;
|
|
case 0x01: Demod.samples = 0; break;
|
|
}
|
|
// SOF must be long burst... otherwise stay unsynced!!!
|
|
if (!(Demod.buffer & Demod.syncBit) || !(Demod.buffer2 & Demod.syncBit)) {
|
|
Demod.state = DEMOD_UNSYNCD;
|
|
}
|
|
} else {
|
|
// SOF must be long burst... otherwise stay unsynced!!!
|
|
if (!(Demod.buffer2 & Demod.syncBit) || !(Demod.buffer3 & Demod.syncBit)) {
|
|
Demod.state = DEMOD_UNSYNCD;
|
|
error = 0x88;
|
|
}
|
|
|
|
}
|
|
error = 0;
|
|
|
|
}
|
|
} else {
|
|
// state is DEMOD is in SYNC from here on.
|
|
modulation = bit & Demod.syncBit;
|
|
modulation |= ((bit << 1) ^ ((Demod.buffer & 0x08) >> 3)) & Demod.syncBit;
|
|
|
|
Demod.samples += 4;
|
|
|
|
if (Demod.posCount == 0) {
|
|
Demod.posCount = 1;
|
|
if (modulation) {
|
|
Demod.sub = SUB_FIRST_HALF;
|
|
} else {
|
|
Demod.sub = SUB_NONE;
|
|
}
|
|
} else {
|
|
Demod.posCount = 0;
|
|
if (modulation) {
|
|
if (Demod.sub == SUB_FIRST_HALF) {
|
|
Demod.sub = SUB_BOTH;
|
|
} else {
|
|
Demod.sub = SUB_SECOND_HALF;
|
|
}
|
|
} else if (Demod.sub == SUB_NONE) {
|
|
if (Demod.state == DEMOD_SOF_COMPLETE) {
|
|
Demod.output[Demod.len] = 0x0f;
|
|
Demod.len++;
|
|
Demod.state = DEMOD_UNSYNCD;
|
|
return true;
|
|
} else {
|
|
Demod.state = DEMOD_ERROR_WAIT;
|
|
error = 0x33;
|
|
}
|
|
}
|
|
|
|
switch(Demod.state) {
|
|
case DEMOD_START_OF_COMMUNICATION:
|
|
if (Demod.sub == SUB_BOTH) {
|
|
Demod.state = DEMOD_START_OF_COMMUNICATION2;
|
|
Demod.posCount = 1;
|
|
Demod.sub = SUB_NONE;
|
|
} else {
|
|
Demod.output[Demod.len] = 0xab;
|
|
Demod.state = DEMOD_ERROR_WAIT;
|
|
error = 0xd2;
|
|
}
|
|
break;
|
|
case DEMOD_START_OF_COMMUNICATION2:
|
|
if (Demod.sub == SUB_SECOND_HALF) {
|
|
Demod.state = DEMOD_START_OF_COMMUNICATION3;
|
|
} else {
|
|
Demod.output[Demod.len] = 0xab;
|
|
Demod.state = DEMOD_ERROR_WAIT;
|
|
error = 0xd3;
|
|
}
|
|
break;
|
|
case DEMOD_START_OF_COMMUNICATION3:
|
|
if (Demod.sub == SUB_SECOND_HALF) {
|
|
Demod.state = DEMOD_SOF_COMPLETE;
|
|
} else {
|
|
Demod.output[Demod.len] = 0xab;
|
|
Demod.state = DEMOD_ERROR_WAIT;
|
|
error = 0xd4;
|
|
}
|
|
break;
|
|
case DEMOD_SOF_COMPLETE:
|
|
case DEMOD_MANCHESTER_D:
|
|
case DEMOD_MANCHESTER_E:
|
|
// OPPOSITE FROM ISO14443 - 11110000 = 0 (1 in 14443)
|
|
// 00001111 = 1 (0 in 14443)
|
|
if (Demod.sub == SUB_SECOND_HALF) { // SUB_FIRST_HALF
|
|
Demod.bitCount++;
|
|
Demod.shiftReg = (Demod.shiftReg >> 1) ^ 0x100;
|
|
Demod.state = DEMOD_MANCHESTER_D;
|
|
} else if (Demod.sub == SUB_FIRST_HALF) { // SUB_SECOND_HALF
|
|
Demod.bitCount++;
|
|
Demod.shiftReg >>= 1;
|
|
Demod.state = DEMOD_MANCHESTER_E;
|
|
} else if (Demod.sub == SUB_BOTH) {
|
|
Demod.state = DEMOD_MANCHESTER_F;
|
|
} else {
|
|
Demod.state = DEMOD_ERROR_WAIT;
|
|
error = 0x55;
|
|
}
|
|
break;
|
|
|
|
case DEMOD_MANCHESTER_F:
|
|
// Tag response does not need to be a complete byte!
|
|
if (Demod.len > 0 || Demod.bitCount > 0) {
|
|
if (Demod.bitCount > 1) { // was > 0, do not interpret last closing bit, is part of EOF
|
|
Demod.shiftReg >>= (9 - Demod.bitCount); // right align data
|
|
Demod.output[Demod.len] = Demod.shiftReg & 0xff;
|
|
Demod.len++;
|
|
}
|
|
|
|
Demod.state = DEMOD_UNSYNCD;
|
|
return true;
|
|
} else {
|
|
Demod.output[Demod.len] = 0xad;
|
|
Demod.state = DEMOD_ERROR_WAIT;
|
|
error = 0x03;
|
|
}
|
|
break;
|
|
|
|
case DEMOD_ERROR_WAIT:
|
|
Demod.state = DEMOD_UNSYNCD;
|
|
break;
|
|
|
|
default:
|
|
Demod.output[Demod.len] = 0xdd;
|
|
Demod.state = DEMOD_UNSYNCD;
|
|
break;
|
|
}
|
|
|
|
if (Demod.bitCount >= 8) {
|
|
Demod.shiftReg >>= 1;
|
|
Demod.output[Demod.len] = (Demod.shiftReg & 0xff);
|
|
Demod.len++;
|
|
Demod.bitCount = 0;
|
|
Demod.shiftReg = 0;
|
|
}
|
|
|
|
if (error) {
|
|
Demod.output[Demod.len] = 0xBB;
|
|
Demod.len++;
|
|
Demod.output[Demod.len] = error & 0xFF;
|
|
Demod.len++;
|
|
Demod.output[Demod.len] = 0xBB;
|
|
Demod.len++;
|
|
Demod.output[Demod.len] = bit & 0xFF;
|
|
Demod.len++;
|
|
Demod.output[Demod.len] = Demod.buffer & 0xFF;
|
|
Demod.len++;
|
|
// Look harder ;-)
|
|
Demod.output[Demod.len] = Demod.buffer2 & 0xFF;
|
|
Demod.len++;
|
|
Demod.output[Demod.len] = Demod.syncBit & 0xFF;
|
|
Demod.len++;
|
|
Demod.output[Demod.len] = 0xBB;
|
|
Demod.len++;
|
|
return true;
|
|
}
|
|
|
|
}
|
|
|
|
} // end (state != UNSYNCED)
|
|
|
|
return false;
|
|
}
|
|
|
|
//=============================================================================
|
|
// Finally, a `sniffer' for iClass communication
|
|
// Both sides of communication!
|
|
//=============================================================================
|
|
|
|
//-----------------------------------------------------------------------------
|
|
// Record the sequence of commands sent by the reader to the tag, with
|
|
// triggering so that we start recording at the point that the tag is moved
|
|
// near the reader.
|
|
//-----------------------------------------------------------------------------
|
|
void RAMFUNC SnoopIClass(void) {
|
|
|
|
// We won't start recording the frames that we acquire until we trigger;
|
|
// a good trigger condition to get started is probably when we see a
|
|
// response from the tag.
|
|
//int triggered = false; // false to wait first for card
|
|
|
|
// The command (reader -> tag) that we're receiving.
|
|
// The length of a received command will in most cases be no more than 18 bytes.
|
|
// So 32 should be enough!
|
|
#define ICLASS_BUFFER_SIZE 32
|
|
uint8_t readerToTagCmd[ICLASS_BUFFER_SIZE];
|
|
// The response (tag -> reader) that we're receiving.
|
|
uint8_t tagToReaderResponse[ICLASS_BUFFER_SIZE];
|
|
|
|
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
|
|
|
|
// free all BigBuf memory
|
|
BigBuf_free();
|
|
// The DMA buffer, used to stream samples from the FPGA
|
|
uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE);
|
|
|
|
set_tracing(true);
|
|
clear_trace();
|
|
iso14a_set_trigger(false);
|
|
|
|
int lastRxCounter;
|
|
uint8_t *upTo;
|
|
int smpl;
|
|
int maxBehindBy = 0;
|
|
|
|
// Count of samples received so far, so that we can include timing
|
|
// information in the trace buffer.
|
|
int samples = 0;
|
|
rsamples = 0;
|
|
|
|
// Set up the demodulator for tag -> reader responses.
|
|
Demod.output = tagToReaderResponse;
|
|
Demod.len = 0;
|
|
Demod.state = DEMOD_UNSYNCD;
|
|
|
|
// Setup for the DMA.
|
|
FpgaSetupSsc(FPGA_MAJOR_MODE_HF_ISO14443A);
|
|
upTo = dmaBuf;
|
|
lastRxCounter = DMA_BUFFER_SIZE;
|
|
FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE);
|
|
|
|
// And the reader -> tag commands
|
|
memset(&Uart, 0, sizeof(Uart));
|
|
Uart.output = readerToTagCmd;
|
|
Uart.byteCntMax = 32; // was 100 (greg)////////////////////////////////////////////////////////////////////////
|
|
Uart.state = STATE_UNSYNCD;
|
|
|
|
// And put the FPGA in the appropriate mode
|
|
// Signal field is off with the appropriate LED
|
|
LED_D_OFF();
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_SNIFFER);
|
|
SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
|
|
|
|
uint32_t time_0 = GetCountSspClk();
|
|
uint32_t time_start = 0;
|
|
uint32_t time_stop = 0;
|
|
|
|
int div = 0;
|
|
//int div2 = 0;
|
|
int decbyte = 0;
|
|
int decbyter = 0;
|
|
|
|
// And now we loop, receiving samples.
|
|
for (;;) {
|
|
LED_A_ON();
|
|
WDT_HIT();
|
|
int behindBy = (lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR) & (DMA_BUFFER_SIZE-1);
|
|
if (behindBy > maxBehindBy) {
|
|
maxBehindBy = behindBy;
|
|
if (behindBy > (9 * DMA_BUFFER_SIZE / 10)) {
|
|
Dbprintf("blew circular buffer! behindBy=0x%x", behindBy);
|
|
goto done;
|
|
}
|
|
}
|
|
if (behindBy < 1) continue;
|
|
|
|
LED_A_OFF();
|
|
smpl = upTo[0];
|
|
upTo++;
|
|
lastRxCounter -= 1;
|
|
if (upTo - dmaBuf > DMA_BUFFER_SIZE) {
|
|
upTo -= DMA_BUFFER_SIZE;
|
|
lastRxCounter += DMA_BUFFER_SIZE;
|
|
AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) upTo;
|
|
AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
|
|
}
|
|
|
|
//samples += 4;
|
|
samples += 1;
|
|
|
|
if (smpl & 0xF) {
|
|
decbyte ^= (1 << (3 - div));
|
|
}
|
|
|
|
// FOR READER SIDE COMMUMICATION...
|
|
|
|
decbyter <<= 2;
|
|
decbyter ^= (smpl & 0x30);
|
|
|
|
div++;
|
|
|
|
if ((div + 1) % 2 == 0) {
|
|
smpl = decbyter;
|
|
if (OutOfNDecoding((smpl & 0xF0) >> 4)) {
|
|
rsamples = samples - Uart.samples;
|
|
time_stop = (GetCountSspClk()-time_0) << 4;
|
|
LED_C_ON();
|
|
|
|
//if (!LogTrace(Uart.output, Uart.byteCnt, rsamples, Uart.parityBits,true)) break;
|
|
//if (!LogTrace(NULL, 0, Uart.endTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER, 0, true)) break;
|
|
uint8_t parity[MAX_PARITY_SIZE];
|
|
GetParity(Uart.output, Uart.byteCnt, parity);
|
|
LogTrace_ISO15693(Uart.output, Uart.byteCnt, time_start*32, time_stop*32, parity, true);
|
|
|
|
/* And ready to receive another command. */
|
|
Uart.state = STATE_UNSYNCD;
|
|
/* And also reset the demod code, which might have been */
|
|
/* false-triggered by the commands from the reader. */
|
|
Demod.state = DEMOD_UNSYNCD;
|
|
LED_B_OFF();
|
|
Uart.byteCnt = 0;
|
|
} else {
|
|
time_start = (GetCountSspClk()-time_0) << 4;
|
|
}
|
|
decbyter = 0;
|
|
}
|
|
|
|
if (div > 3) {
|
|
smpl = decbyte;
|
|
if (ManchesterDecoding(smpl & 0x0F)) {
|
|
time_stop = (GetCountSspClk()-time_0) << 4;
|
|
|
|
rsamples = samples - Demod.samples;
|
|
LED_B_ON();
|
|
|
|
uint8_t parity[MAX_PARITY_SIZE];
|
|
GetParity(Demod.output, Demod.len, parity);
|
|
LogTrace_ISO15693(Demod.output, Demod.len, time_start*32, time_stop*32, parity, false);
|
|
|
|
// And ready to receive another response.
|
|
memset(&Demod, 0, sizeof(Demod));
|
|
Demod.output = tagToReaderResponse;
|
|
Demod.state = DEMOD_UNSYNCD;
|
|
LED_C_OFF();
|
|
} else {
|
|
time_start = (GetCountSspClk()-time_0) << 4;
|
|
}
|
|
|
|
div = 0;
|
|
decbyte = 0x00;
|
|
}
|
|
|
|
if (BUTTON_PRESS()) {
|
|
DbpString("cancelled_a");
|
|
goto done;
|
|
}
|
|
}
|
|
|
|
DbpString("COMMAND FINISHED");
|
|
|
|
Dbprintf("%x %x %x", maxBehindBy, Uart.state, Uart.byteCnt);
|
|
Dbprintf("%x %x %x", Uart.byteCntMax, BigBuf_get_traceLen(), (int)Uart.output[0]);
|
|
|
|
done:
|
|
AT91C_BASE_PDC_SSC->PDC_PTCR = AT91C_PDC_RXTDIS;
|
|
Dbprintf("%x %x %x", maxBehindBy, Uart.state, Uart.byteCnt);
|
|
Dbprintf("%x %x %x", Uart.byteCntMax, BigBuf_get_traceLen(), (int)Uart.output[0]);
|
|
LEDsoff();
|
|
}
|
|
|
|
void rotateCSN(uint8_t* originalCSN, uint8_t* rotatedCSN) {
|
|
int i;
|
|
for (i = 0; i < 8; i++) {
|
|
rotatedCSN[i] = (originalCSN[i] >> 3) | (originalCSN[(i+1)%8] << 5);
|
|
}
|
|
}
|
|
|
|
// Encode SOF only
|
|
static void CodeIClassTagSOF() {
|
|
ToSendReset();
|
|
ToSend[++ToSendMax] = 0x1D;
|
|
ToSendMax++;
|
|
}
|
|
|
|
static void AppendCrc(uint8_t *data, int len) {
|
|
ComputeCrc14443(CRC_ICLASS, data, len, data+len, data+len+1);
|
|
}
|
|
|
|
|
|
/**
|
|
* @brief Does the actual simulation
|
|
*/
|
|
int doIClassSimulation(int simulationMode, uint8_t *reader_mac_buf) {
|
|
|
|
// free eventually allocated BigBuf memory
|
|
BigBuf_free_keep_EM();
|
|
|
|
uint16_t page_size = 32 * 8;
|
|
uint8_t current_page = 0;
|
|
|
|
// maintain cipher states for both credit and debit key for each page
|
|
State cipher_state_KC[8];
|
|
State cipher_state_KD[8];
|
|
State *cipher_state = &cipher_state_KD[0];
|
|
|
|
uint8_t *emulator = BigBuf_get_EM_addr();
|
|
uint8_t *csn = emulator;
|
|
|
|
// CSN followed by two CRC bytes
|
|
uint8_t anticoll_data[10];
|
|
uint8_t csn_data[10];
|
|
memcpy(csn_data, csn, sizeof(csn_data));
|
|
Dbprintf("Simulating CSN %02x%02x%02x%02x%02x%02x%02x%02x", csn[0], csn[1], csn[2], csn[3], csn[4], csn[5], csn[6], csn[7]);
|
|
|
|
// Construct anticollision-CSN
|
|
rotateCSN(csn_data, anticoll_data);
|
|
|
|
// Compute CRC on both CSNs
|
|
AppendCrc(anticoll_data, 8);
|
|
AppendCrc(csn_data, 8);
|
|
|
|
uint8_t diversified_key_d[8] = { 0x00 };
|
|
uint8_t diversified_key_c[8] = { 0x00 };
|
|
uint8_t *diversified_key = diversified_key_d;
|
|
|
|
// configuration block
|
|
uint8_t conf_block[10] = {0x12, 0xFF, 0xFF, 0xFF, 0x7F, 0x1F, 0xFF, 0x3C, 0x00, 0x00};
|
|
|
|
// e-Purse
|
|
uint8_t card_challenge_data[8] = { 0xfe, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
|
|
|
|
if (simulationMode == ICLASS_SIM_MODE_FULL) {
|
|
// initialize from page 0
|
|
memcpy(conf_block, emulator + 8 * 1, 8);
|
|
memcpy(card_challenge_data, emulator + 8 * 2, 8); // e-purse
|
|
memcpy(diversified_key_d, emulator + 8 * 3, 8); // Kd
|
|
memcpy(diversified_key_c, emulator + 8 * 4, 8); // Kc
|
|
}
|
|
|
|
AppendCrc(conf_block, 8);
|
|
|
|
// save card challenge for sim2,4 attack
|
|
if (reader_mac_buf != NULL) {
|
|
memcpy(reader_mac_buf, card_challenge_data, 8);
|
|
}
|
|
|
|
if (conf_block[5] & 0x80) {
|
|
page_size = 256 * 8;
|
|
}
|
|
|
|
// From PicoPass DS:
|
|
// When the page is in personalization mode this bit is equal to 1.
|
|
// Once the application issuer has personalized and coded its dedicated areas, this bit must be set to 0:
|
|
// the page is then "in application mode".
|
|
bool personalization_mode = conf_block[7] & 0x80;
|
|
|
|
// chip memory may be divided in 8 pages
|
|
uint8_t max_page = conf_block[4] & 0x10 ? 0 : 7;
|
|
|
|
// Precalculate the cipher states, feeding it the CC
|
|
cipher_state_KD[0] = opt_doTagMAC_1(card_challenge_data, diversified_key_d);
|
|
cipher_state_KC[0] = opt_doTagMAC_1(card_challenge_data, diversified_key_c);
|
|
if (simulationMode == ICLASS_SIM_MODE_FULL) {
|
|
for (int i = 1; i < max_page; i++) {
|
|
uint8_t *epurse = emulator + i*page_size + 8*2;
|
|
uint8_t *Kd = emulator + i*page_size + 8*3;
|
|
uint8_t *Kc = emulator + i*page_size + 8*4;
|
|
cipher_state_KD[i] = opt_doTagMAC_1(epurse, Kd);
|
|
cipher_state_KC[i] = opt_doTagMAC_1(epurse, Kc);
|
|
}
|
|
}
|
|
|
|
int exitLoop = 0;
|
|
// Reader 0a
|
|
// Tag 0f
|
|
// Reader 0c
|
|
// Tag anticoll. CSN
|
|
// Reader 81 anticoll. CSN
|
|
// Tag CSN
|
|
|
|
uint8_t *modulated_response;
|
|
int modulated_response_size = 0;
|
|
uint8_t *trace_data = NULL;
|
|
int trace_data_size = 0;
|
|
|
|
// Respond SOF -- takes 1 bytes
|
|
uint8_t *resp_sof = BigBuf_malloc(1);
|
|
int resp_sof_Len;
|
|
|
|
// Anticollision CSN (rotated CSN)
|
|
// 22: Takes 2 bytes for SOF/EOF and 10 * 2 = 20 bytes (2 bytes/byte)
|
|
uint8_t *resp_anticoll = BigBuf_malloc(22);
|
|
int resp_anticoll_len;
|
|
|
|
// CSN (block 0)
|
|
// 22: Takes 2 bytes for SOF/EOF and 10 * 2 = 20 bytes (2 bytes/byte)
|
|
uint8_t *resp_csn = BigBuf_malloc(22);
|
|
int resp_csn_len;
|
|
|
|
// configuration (block 1) picopass 2ks
|
|
uint8_t *resp_conf = BigBuf_malloc(22);
|
|
int resp_conf_len;
|
|
|
|
// e-Purse (block 2)
|
|
// 18: Takes 2 bytes for SOF/EOF and 8 * 2 = 16 bytes (2 bytes/bit)
|
|
uint8_t *resp_cc = BigBuf_malloc(18);
|
|
int resp_cc_len;
|
|
|
|
// Kd, Kc (blocks 3 and 4). Cannot be read. Always respond with 0xff bytes only
|
|
uint8_t *resp_ff = BigBuf_malloc(22);
|
|
int resp_ff_len;
|
|
uint8_t ff_data[10] = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00};
|
|
AppendCrc(ff_data, 8);
|
|
|
|
// Application Issuer Area (block 5)
|
|
uint8_t *resp_aia = BigBuf_malloc(22);
|
|
int resp_aia_len;
|
|
uint8_t aia_data[10] = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00};
|
|
AppendCrc(aia_data, 8);
|
|
|
|
uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE);
|
|
int len;
|
|
|
|
// Prepare card messages
|
|
|
|
// First card answer: SOF only
|
|
CodeIClassTagSOF();
|
|
memcpy(resp_sof, ToSend, ToSendMax);
|
|
resp_sof_Len = ToSendMax;
|
|
|
|
// Anticollision CSN
|
|
CodeIso15693AsTag(anticoll_data, sizeof(anticoll_data));
|
|
memcpy(resp_anticoll, ToSend, ToSendMax);
|
|
resp_anticoll_len = ToSendMax;
|
|
|
|
// CSN (block 0)
|
|
CodeIso15693AsTag(csn_data, sizeof(csn_data));
|
|
memcpy(resp_csn, ToSend, ToSendMax);
|
|
resp_csn_len = ToSendMax;
|
|
|
|
// Configuration (block 1)
|
|
CodeIso15693AsTag(conf_block, sizeof(conf_block));
|
|
memcpy(resp_conf, ToSend, ToSendMax);
|
|
resp_conf_len = ToSendMax;
|
|
|
|
// e-Purse (block 2)
|
|
CodeIso15693AsTag(card_challenge_data, sizeof(card_challenge_data));
|
|
memcpy(resp_cc, ToSend, ToSendMax);
|
|
resp_cc_len = ToSendMax;
|
|
|
|
// Kd, Kc (blocks 3 and 4)
|
|
CodeIso15693AsTag(ff_data, sizeof(ff_data));
|
|
memcpy(resp_ff, ToSend, ToSendMax);
|
|
resp_ff_len = ToSendMax;
|
|
|
|
// Application Issuer Area (block 5)
|
|
CodeIso15693AsTag(aia_data, sizeof(aia_data));
|
|
memcpy(resp_aia, ToSend, ToSendMax);
|
|
resp_aia_len = ToSendMax;
|
|
|
|
//This is used for responding to READ-block commands or other data which is dynamically generated
|
|
uint8_t *data_generic_trace = BigBuf_malloc(32 + 2); // 32 bytes data + 2byte CRC is max tag answer
|
|
uint8_t *data_response = BigBuf_malloc( (32 + 2) * 2 + 2);
|
|
|
|
bool buttonPressed = false;
|
|
enum { IDLE, ACTIVATED, SELECTED, HALTED } chip_state = IDLE;
|
|
|
|
while (!exitLoop) {
|
|
WDT_HIT();
|
|
|
|
uint32_t reader_eof_time = 0;
|
|
len = GetIso15693CommandFromReader(receivedCmd, MAX_FRAME_SIZE, &reader_eof_time);
|
|
if (len < 0) {
|
|
buttonPressed = true;
|
|
break;
|
|
}
|
|
|
|
// Now look at the reader command and provide appropriate responses
|
|
// default is no response:
|
|
modulated_response = NULL;
|
|
modulated_response_size = 0;
|
|
trace_data = NULL;
|
|
trace_data_size = 0;
|
|
|
|
if (receivedCmd[0] == ICLASS_CMD_ACTALL && len == 1) {
|
|
// Reader in anticollision phase
|
|
if (chip_state != HALTED) {
|
|
modulated_response = resp_sof;
|
|
modulated_response_size = resp_sof_Len;
|
|
chip_state = ACTIVATED;
|
|
}
|
|
|
|
} else if (receivedCmd[0] == ICLASS_CMD_READ_OR_IDENTIFY && len == 1) { // identify
|
|
// Reader asks for anticollision CSN
|
|
if (chip_state == SELECTED || chip_state == ACTIVATED) {
|
|
modulated_response = resp_anticoll;
|
|
modulated_response_size = resp_anticoll_len;
|
|
trace_data = anticoll_data;
|
|
trace_data_size = sizeof(anticoll_data);
|
|
}
|
|
|
|
} else if (receivedCmd[0] == ICLASS_CMD_SELECT && len == 9) {
|
|
// Reader selects anticollision CSN.
|
|
// Tag sends the corresponding real CSN
|
|
if (chip_state == ACTIVATED || chip_state == SELECTED) {
|
|
if (!memcmp(receivedCmd+1, anticoll_data, 8)) {
|
|
modulated_response = resp_csn;
|
|
modulated_response_size = resp_csn_len;
|
|
trace_data = csn_data;
|
|
trace_data_size = sizeof(csn_data);
|
|
chip_state = SELECTED;
|
|
} else {
|
|
chip_state = IDLE;
|
|
}
|
|
} else if (chip_state == HALTED) {
|
|
// RESELECT with CSN
|
|
if (!memcmp(receivedCmd+1, csn_data, 8)) {
|
|
modulated_response = resp_csn;
|
|
modulated_response_size = resp_csn_len;
|
|
trace_data = csn_data;
|
|
trace_data_size = sizeof(csn_data);
|
|
chip_state = SELECTED;
|
|
}
|
|
}
|
|
|
|
} else if (receivedCmd[0] == ICLASS_CMD_READ_OR_IDENTIFY && len == 4) { // read block
|
|
uint16_t blockNo = receivedCmd[1];
|
|
if (chip_state == SELECTED) {
|
|
if (simulationMode == ICLASS_SIM_MODE_EXIT_AFTER_MAC) {
|
|
// provide defaults for blocks 0 ... 5
|
|
switch (blockNo) {
|
|
case 0: // csn (block 00)
|
|
modulated_response = resp_csn;
|
|
modulated_response_size = resp_csn_len;
|
|
trace_data = csn_data;
|
|
trace_data_size = sizeof(csn_data);
|
|
break;
|
|
case 1: // configuration (block 01)
|
|
modulated_response = resp_conf;
|
|
modulated_response_size = resp_conf_len;
|
|
trace_data = conf_block;
|
|
trace_data_size = sizeof(conf_block);
|
|
break;
|
|
case 2: // e-purse (block 02)
|
|
modulated_response = resp_cc;
|
|
modulated_response_size = resp_cc_len;
|
|
trace_data = card_challenge_data;
|
|
trace_data_size = sizeof(card_challenge_data);
|
|
// set epurse of sim2,4 attack
|
|
if (reader_mac_buf != NULL) {
|
|
memcpy(reader_mac_buf, card_challenge_data, 8);
|
|
}
|
|
break;
|
|
case 3:
|
|
case 4: // Kd, Kc, always respond with 0xff bytes
|
|
modulated_response = resp_ff;
|
|
modulated_response_size = resp_ff_len;
|
|
trace_data = ff_data;
|
|
trace_data_size = sizeof(ff_data);
|
|
break;
|
|
case 5: // Application Issuer Area (block 05)
|
|
modulated_response = resp_aia;
|
|
modulated_response_size = resp_aia_len;
|
|
trace_data = aia_data;
|
|
trace_data_size = sizeof(aia_data);
|
|
break;
|
|
// default: don't respond
|
|
}
|
|
} else if (simulationMode == ICLASS_SIM_MODE_FULL) {
|
|
if (blockNo == 3 || blockNo == 4) { // Kd, Kc, always respond with 0xff bytes
|
|
modulated_response = resp_ff;
|
|
modulated_response_size = resp_ff_len;
|
|
trace_data = ff_data;
|
|
trace_data_size = sizeof(ff_data);
|
|
} else { // use data from emulator memory
|
|
memcpy(data_generic_trace, emulator + current_page*page_size + 8*blockNo, 8);
|
|
AppendCrc(data_generic_trace, 8);
|
|
trace_data = data_generic_trace;
|
|
trace_data_size = 10;
|
|
CodeIso15693AsTag(trace_data, trace_data_size);
|
|
memcpy(data_response, ToSend, ToSendMax);
|
|
modulated_response = data_response;
|
|
modulated_response_size = ToSendMax;
|
|
}
|
|
}
|
|
}
|
|
|
|
} else if ((receivedCmd[0] == ICLASS_CMD_READCHECK_KD
|
|
|| receivedCmd[0] == ICLASS_CMD_READCHECK_KC) && receivedCmd[1] == 0x02 && len == 2) {
|
|
// Read e-purse (88 02 || 18 02)
|
|
if (chip_state == SELECTED) {
|
|
if(receivedCmd[0] == ICLASS_CMD_READCHECK_KD){
|
|
cipher_state = &cipher_state_KD[current_page];
|
|
diversified_key = diversified_key_d;
|
|
} else {
|
|
cipher_state = &cipher_state_KC[current_page];
|
|
diversified_key = diversified_key_c;
|
|
}
|
|
modulated_response = resp_cc;
|
|
modulated_response_size = resp_cc_len;
|
|
trace_data = card_challenge_data;
|
|
trace_data_size = sizeof(card_challenge_data);
|
|
}
|
|
|
|
} else if ((receivedCmd[0] == ICLASS_CMD_CHECK_KC
|
|
|| receivedCmd[0] == ICLASS_CMD_CHECK_KD) && len == 9) {
|
|
// Reader random and reader MAC!!!
|
|
if (chip_state == SELECTED) {
|
|
if (simulationMode == ICLASS_SIM_MODE_FULL) {
|
|
//NR, from reader, is in receivedCmd+1
|
|
opt_doTagMAC_2(*cipher_state, receivedCmd+1, data_generic_trace, diversified_key);
|
|
trace_data = data_generic_trace;
|
|
trace_data_size = 4;
|
|
CodeIso15693AsTag(trace_data, trace_data_size);
|
|
memcpy(data_response, ToSend, ToSendMax);
|
|
modulated_response = data_response;
|
|
modulated_response_size = ToSendMax;
|
|
//exitLoop = true;
|
|
} else { // Not fullsim, we don't respond
|
|
// We do not know what to answer, so lets keep quiet
|
|
if (simulationMode == ICLASS_SIM_MODE_EXIT_AFTER_MAC) {
|
|
if (reader_mac_buf != NULL) {
|
|
// save NR and MAC for sim 2,4
|
|
memcpy(reader_mac_buf + 8, receivedCmd + 1, 8);
|
|
}
|
|
exitLoop = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
} else if (receivedCmd[0] == ICLASS_CMD_HALT && len == 1) {
|
|
if (chip_state == SELECTED) {
|
|
// Reader ends the session
|
|
modulated_response = resp_sof;
|
|
modulated_response_size = resp_sof_Len;
|
|
chip_state = HALTED;
|
|
}
|
|
|
|
} else if (simulationMode == ICLASS_SIM_MODE_FULL && receivedCmd[0] == ICLASS_CMD_READ4 && len == 4) { // 0x06
|
|
//Read 4 blocks
|
|
if (chip_state == SELECTED) {
|
|
uint8_t blockNo = receivedCmd[1];
|
|
memcpy(data_generic_trace, emulator + current_page*page_size + blockNo*8, 8 * 4);
|
|
AppendCrc(data_generic_trace, 8 * 4);
|
|
trace_data = data_generic_trace;
|
|
trace_data_size = 8 * 4 + 2;
|
|
CodeIso15693AsTag(trace_data, trace_data_size);
|
|
memcpy(data_response, ToSend, ToSendMax);
|
|
modulated_response = data_response;
|
|
modulated_response_size = ToSendMax;
|
|
}
|
|
|
|
} else if (receivedCmd[0] == ICLASS_CMD_UPDATE && (len == 12 || len == 14)) {
|
|
// We're expected to respond with the data+crc, exactly what's already in the receivedCmd
|
|
// receivedCmd is now UPDATE 1b | ADDRESS 1b | DATA 8b | Signature 4b or CRC 2b
|
|
if (chip_state == SELECTED) {
|
|
uint8_t blockNo = receivedCmd[1];
|
|
if (blockNo == 2) { // update e-purse
|
|
memcpy(card_challenge_data, receivedCmd+2, 8);
|
|
CodeIso15693AsTag(card_challenge_data, sizeof(card_challenge_data));
|
|
memcpy(resp_cc, ToSend, ToSendMax);
|
|
resp_cc_len = ToSendMax;
|
|
cipher_state_KD[current_page] = opt_doTagMAC_1(card_challenge_data, diversified_key_d);
|
|
cipher_state_KC[current_page] = opt_doTagMAC_1(card_challenge_data, diversified_key_c);
|
|
if (simulationMode == ICLASS_SIM_MODE_FULL) {
|
|
memcpy(emulator + current_page*page_size + 8*2, card_challenge_data, 8);
|
|
}
|
|
} else if (blockNo == 3) { // update Kd
|
|
for (int i = 0; i < 8; i++) {
|
|
if (personalization_mode) {
|
|
diversified_key_d[i] = receivedCmd[2 + i];
|
|
} else {
|
|
diversified_key_d[i] ^= receivedCmd[2 + i];
|
|
}
|
|
}
|
|
cipher_state_KD[current_page] = opt_doTagMAC_1(card_challenge_data, diversified_key_d);
|
|
if (simulationMode == ICLASS_SIM_MODE_FULL) {
|
|
memcpy(emulator + current_page*page_size + 8*3, diversified_key_d, 8);
|
|
}
|
|
} else if (blockNo == 4) { // update Kc
|
|
for (int i = 0; i < 8; i++) {
|
|
if (personalization_mode) {
|
|
diversified_key_c[i] = receivedCmd[2 + i];
|
|
} else {
|
|
diversified_key_c[i] ^= receivedCmd[2 + i];
|
|
}
|
|
}
|
|
cipher_state_KC[current_page] = opt_doTagMAC_1(card_challenge_data, diversified_key_c);
|
|
if (simulationMode == ICLASS_SIM_MODE_FULL) {
|
|
memcpy(emulator + current_page*page_size + 8*4, diversified_key_c, 8);
|
|
}
|
|
} else if (simulationMode == ICLASS_SIM_MODE_FULL) { // update any other data block
|
|
memcpy(emulator + current_page*page_size + 8*blockNo, receivedCmd+2, 8);
|
|
}
|
|
memcpy(data_generic_trace, receivedCmd + 2, 8);
|
|
AppendCrc(data_generic_trace, 8);
|
|
trace_data = data_generic_trace;
|
|
trace_data_size = 10;
|
|
CodeIso15693AsTag(trace_data, trace_data_size);
|
|
memcpy(data_response, ToSend, ToSendMax);
|
|
modulated_response = data_response;
|
|
modulated_response_size = ToSendMax;
|
|
}
|
|
|
|
} else if (receivedCmd[0] == ICLASS_CMD_PAGESEL && len == 4) {
|
|
// Pagesel
|
|
// Chips with a single page will not answer to this command
|
|
// Otherwise, we should answer 8bytes (conf block 1) + 2bytes CRC
|
|
if (chip_state == SELECTED) {
|
|
if (simulationMode == ICLASS_SIM_MODE_FULL && max_page > 0) {
|
|
current_page = receivedCmd[1];
|
|
memcpy(data_generic_trace, emulator + current_page*page_size + 8*1, 8);
|
|
memcpy(diversified_key_d, emulator + current_page*page_size + 8*3, 8);
|
|
memcpy(diversified_key_c, emulator + current_page*page_size + 8*4, 8);
|
|
cipher_state = &cipher_state_KD[current_page];
|
|
personalization_mode = data_generic_trace[7] & 0x80;
|
|
AppendCrc(data_generic_trace, 8);
|
|
trace_data = data_generic_trace;
|
|
trace_data_size = 10;
|
|
CodeIso15693AsTag(trace_data, trace_data_size);
|
|
memcpy(data_response, ToSend, ToSendMax);
|
|
modulated_response = data_response;
|
|
modulated_response_size = ToSendMax;
|
|
}
|
|
}
|
|
|
|
} else if (receivedCmd[0] == 0x26 && len == 5) {
|
|
// standard ISO15693 INVENTORY command. Ignore.
|
|
|
|
} else {
|
|
// don't know how to handle this command
|
|
char debug_message[250]; // should be enough
|
|
sprintf(debug_message, "Unhandled command (len = %d) received from reader:", len);
|
|
for (int i = 0; i < len && strlen(debug_message) < sizeof(debug_message) - 3 - 1; i++) {
|
|
sprintf(debug_message + strlen(debug_message), " %02x", receivedCmd[i]);
|
|
}
|
|
Dbprintf("%s", debug_message);
|
|
// Do not respond
|
|
}
|
|
|
|
/**
|
|
A legit tag has about 273,4us delay between reader EOT and tag SOF.
|
|
**/
|
|
if (modulated_response_size > 0) {
|
|
uint32_t response_time = reader_eof_time + DELAY_ICLASS_VCD_TO_VICC_SIM;
|
|
TransmitTo15693Reader(modulated_response, modulated_response_size, &response_time, 0, false);
|
|
LogTrace_ISO15693(trace_data, trace_data_size, response_time*32, response_time*32 + modulated_response_size/2, NULL, false);
|
|
}
|
|
|
|
}
|
|
|
|
if (buttonPressed)
|
|
{
|
|
DbpString("Button pressed");
|
|
}
|
|
return buttonPressed;
|
|
}
|
|
|
|
/**
|
|
* @brief SimulateIClass simulates an iClass card.
|
|
* @param arg0 type of simulation
|
|
* - 0 uses the first 8 bytes in usb data as CSN
|
|
* - 2 "dismantling iclass"-attack. This mode iterates through all CSN's specified
|
|
* in the usb data. This mode collects MAC from the reader, in order to do an offline
|
|
* attack on the keys. For more info, see "dismantling iclass" and proxclone.com.
|
|
* - Other : Uses the default CSN (031fec8af7ff12e0)
|
|
* @param arg1 - number of CSN's contained in datain (applicable for mode 2 only)
|
|
* @param arg2
|
|
* @param datain
|
|
*/
|
|
void SimulateIClass(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datain) {
|
|
|
|
LED_A_ON();
|
|
|
|
uint32_t simType = arg0;
|
|
uint32_t numberOfCSNS = arg1;
|
|
|
|
// setup hardware for simulation:
|
|
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
|
|
SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_NO_MODULATION);
|
|
LED_D_OFF();
|
|
FpgaSetupSsc(FPGA_MAJOR_MODE_HF_SIMULATOR);
|
|
StartCountSspClk();
|
|
|
|
// Enable and clear the trace
|
|
set_tracing(true);
|
|
clear_trace();
|
|
//Use the emulator memory for SIM
|
|
uint8_t *emulator = BigBuf_get_EM_addr();
|
|
|
|
if (simType == ICLASS_SIM_MODE_CSN) {
|
|
// Use the CSN from commandline
|
|
memcpy(emulator, datain, 8);
|
|
doIClassSimulation(ICLASS_SIM_MODE_CSN, NULL);
|
|
} else if (simType == ICLASS_SIM_MODE_CSN_DEFAULT) {
|
|
//Default CSN
|
|
uint8_t csn_crc[] = { 0x03, 0x1f, 0xec, 0x8a, 0xf7, 0xff, 0x12, 0xe0, 0x00, 0x00 };
|
|
// Use the CSN from commandline
|
|
memcpy(emulator, csn_crc, 8);
|
|
doIClassSimulation(ICLASS_SIM_MODE_CSN, NULL);
|
|
} else if (simType == ICLASS_SIM_MODE_READER_ATTACK) {
|
|
uint8_t mac_responses[USB_CMD_DATA_SIZE] = { 0 };
|
|
Dbprintf("Going into attack mode, %d CSNS sent", numberOfCSNS);
|
|
// In this mode, a number of csns are within datain. We'll simulate each one, one at a time
|
|
// in order to collect MAC's from the reader. This can later be used in an offline-attack
|
|
// in order to obtain the keys, as in the "dismantling iclass"-paper.
|
|
int i;
|
|
for (i = 0; i < numberOfCSNS && i*16+16 <= USB_CMD_DATA_SIZE; i++) {
|
|
// The usb data is 512 bytes, fitting 32 responses (8 byte CC + 4 Byte NR + 4 Byte MAC = 16 Byte response).
|
|
memcpy(emulator, datain+(i*8), 8);
|
|
if (doIClassSimulation(ICLASS_SIM_MODE_EXIT_AFTER_MAC, mac_responses+i*16)) {
|
|
// Button pressed
|
|
break;
|
|
}
|
|
Dbprintf("CSN: %02x %02x %02x %02x %02x %02x %02x %02x",
|
|
datain[i*8+0], datain[i*8+1], datain[i*8+2], datain[i*8+3],
|
|
datain[i*8+4], datain[i*8+5], datain[i*8+6], datain[i*8+7]);
|
|
Dbprintf("NR,MAC: %02x %02x %02x %02x %02x %02x %02x %02x",
|
|
mac_responses[i*16+ 8], mac_responses[i*16+ 9], mac_responses[i*16+10], mac_responses[i*16+11],
|
|
mac_responses[i*16+12], mac_responses[i*16+13], mac_responses[i*16+14], mac_responses[i*16+15]);
|
|
SpinDelay(100); // give the reader some time to prepare for next CSN
|
|
}
|
|
cmd_send(CMD_ACK, CMD_SIMULATE_TAG_ICLASS, i, 0, mac_responses, i*16);
|
|
} else if (simType == ICLASS_SIM_MODE_FULL) {
|
|
//This is 'full sim' mode, where we use the emulator storage for data.
|
|
doIClassSimulation(ICLASS_SIM_MODE_FULL, NULL);
|
|
} else {
|
|
// We may want a mode here where we hardcode the csns to use (from proxclone).
|
|
// That will speed things up a little, but not required just yet.
|
|
Dbprintf("The mode is not implemented, reserved for future use");
|
|
}
|
|
|
|
Dbprintf("Done...");
|
|
|
|
LED_A_OFF();
|
|
}
|
|
|
|
|
|
/// THE READER CODE
|
|
|
|
static void ReaderTransmitIClass(uint8_t *frame, int len, uint32_t *start_time) {
|
|
|
|
CodeIso15693AsReader(frame, len);
|
|
|
|
TransmitTo15693Tag(ToSend, ToSendMax, start_time);
|
|
|
|
uint32_t end_time = *start_time + 32*(8*ToSendMax-4); // substract the 4 padding bits after EOF
|
|
LogTrace_ISO15693(frame, len, *start_time*4, end_time*4, NULL, true);
|
|
}
|
|
|
|
|
|
static bool sendCmdGetResponseWithRetries(uint8_t* command, size_t cmdsize, uint8_t* resp, size_t max_resp_size,
|
|
uint8_t expected_size, uint8_t retries, uint32_t start_time, uint32_t *eof_time) {
|
|
while (retries-- > 0) {
|
|
ReaderTransmitIClass(command, cmdsize, &start_time);
|
|
if (expected_size == GetIso15693AnswerFromTag(resp, max_resp_size, ICLASS_READER_TIMEOUT_OTHERS, eof_time)) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;//Error
|
|
}
|
|
|
|
/**
|
|
* @brief Talks to an iclass tag, sends the commands to get CSN and CC.
|
|
* @param card_data where the CSN and CC are stored for return
|
|
* @return 0 = fail
|
|
* 1 = Got CSN
|
|
* 2 = Got CSN and CC
|
|
*/
|
|
static uint8_t handshakeIclassTag_ext(uint8_t *card_data, bool use_credit_key, uint32_t *eof_time) {
|
|
uint8_t act_all[] = { 0x0a };
|
|
uint8_t identify[] = { 0x0c };
|
|
uint8_t select[] = { 0x81, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
|
|
uint8_t readcheck_cc[] = { 0x88, 0x02 };
|
|
if (use_credit_key)
|
|
readcheck_cc[0] = 0x18;
|
|
else
|
|
readcheck_cc[0] = 0x88;
|
|
|
|
uint8_t resp[ICLASS_BUFFER_SIZE];
|
|
|
|
uint8_t read_status = 0;
|
|
uint32_t start_time = GetCountSspClk();
|
|
|
|
// Send act_all
|
|
ReaderTransmitIClass(act_all, 1, &start_time);
|
|
// Card present?
|
|
if (GetIso15693AnswerFromTag(resp, sizeof(resp), ICLASS_READER_TIMEOUT_ACTALL, eof_time) < 0) return read_status;//Fail
|
|
|
|
//Send Identify
|
|
start_time = *eof_time + DELAY_ICLASS_VICC_TO_VCD_READER;
|
|
ReaderTransmitIClass(identify, 1, &start_time);
|
|
// FpgaDisableTracing(); // DEBUGGING
|
|
//We expect a 10-byte response here, 8 byte anticollision-CSN and 2 byte CRC
|
|
uint8_t len = GetIso15693AnswerFromTag(resp, sizeof(resp), ICLASS_READER_TIMEOUT_OTHERS, eof_time);
|
|
if (len != 10) return read_status;//Fail
|
|
|
|
//Copy the Anti-collision CSN to our select-packet
|
|
memcpy(&select[1], resp, 8);
|
|
//Select the card
|
|
start_time = *eof_time + DELAY_ICLASS_VICC_TO_VCD_READER;
|
|
ReaderTransmitIClass(select, sizeof(select), &start_time);
|
|
//We expect a 10-byte response here, 8 byte CSN and 2 byte CRC
|
|
len = GetIso15693AnswerFromTag(resp, sizeof(resp), ICLASS_READER_TIMEOUT_OTHERS, eof_time);
|
|
if (len != 10) return read_status;//Fail
|
|
|
|
//Success - level 1, we got CSN
|
|
//Save CSN in response data
|
|
memcpy(card_data, resp, 8);
|
|
|
|
//Flag that we got to at least stage 1, read CSN
|
|
read_status = 1;
|
|
|
|
// Card selected, now read e-purse (cc) (only 8 bytes no CRC)
|
|
start_time = *eof_time + DELAY_ICLASS_VICC_TO_VCD_READER;
|
|
ReaderTransmitIClass(readcheck_cc, sizeof(readcheck_cc), &start_time);
|
|
if (GetIso15693AnswerFromTag(resp, sizeof(resp), ICLASS_READER_TIMEOUT_OTHERS, eof_time) == 8) {
|
|
//Save CC (e-purse) in response data
|
|
memcpy(card_data+8, resp, 8);
|
|
read_status++;
|
|
}
|
|
|
|
return read_status;
|
|
}
|
|
|
|
static uint8_t handshakeIclassTag(uint8_t *card_data, uint32_t *eof_time) {
|
|
return handshakeIclassTag_ext(card_data, false, eof_time);
|
|
}
|
|
|
|
|
|
// Reader iClass Anticollission
|
|
void ReaderIClass(uint8_t arg0) {
|
|
|
|
uint8_t card_data[6 * 8] = {0};
|
|
memset(card_data, 0xFF, sizeof(card_data));
|
|
uint8_t last_csn[8] = {0,0,0,0,0,0,0,0};
|
|
uint8_t resp[ICLASS_BUFFER_SIZE];
|
|
memset(resp, 0xFF, sizeof(resp));
|
|
//Read conf block CRC(0x01) => 0xfa 0x22
|
|
uint8_t readConf[] = { ICLASS_CMD_READ_OR_IDENTIFY, 0x01, 0xfa, 0x22};
|
|
//Read App Issuer Area block CRC(0x05) => 0xde 0x64
|
|
uint8_t readAA[] = { ICLASS_CMD_READ_OR_IDENTIFY, 0x05, 0xde, 0x64};
|
|
|
|
int read_status= 0;
|
|
uint8_t result_status = 0;
|
|
// flag to read until one tag is found successfully
|
|
bool abort_after_read = arg0 & FLAG_ICLASS_READER_ONLY_ONCE;
|
|
// flag to only try 5 times to find one tag then return
|
|
bool try_once = arg0 & FLAG_ICLASS_READER_ONE_TRY;
|
|
// if neither abort_after_read nor try_once then continue reading until button pressed.
|
|
|
|
bool use_credit_key = arg0 & FLAG_ICLASS_READER_CEDITKEY;
|
|
// test flags for what blocks to be sure to read
|
|
uint8_t flagReadConfig = arg0 & FLAG_ICLASS_READER_CONF;
|
|
uint8_t flagReadCC = arg0 & FLAG_ICLASS_READER_CC;
|
|
uint8_t flagReadAA = arg0 & FLAG_ICLASS_READER_AA;
|
|
|
|
set_tracing(true);
|
|
clear_trace();
|
|
Iso15693InitReader();
|
|
|
|
StartCountSspClk();
|
|
uint32_t start_time = 0;
|
|
uint32_t eof_time = 0;
|
|
|
|
uint16_t tryCnt = 0;
|
|
bool userCancelled = BUTTON_PRESS() || usb_poll_validate_length();
|
|
while (!userCancelled) {
|
|
// if only looking for one card try 2 times if we missed it the first time
|
|
if (try_once && tryCnt > 2) {
|
|
break;
|
|
}
|
|
tryCnt++;
|
|
if (!get_tracing()) {
|
|
DbpString("Trace full");
|
|
break;
|
|
}
|
|
WDT_HIT();
|
|
|
|
read_status = handshakeIclassTag_ext(card_data, use_credit_key, &eof_time);
|
|
|
|
if (read_status == 0) continue;
|
|
if (read_status == 1) result_status = FLAG_ICLASS_READER_CSN;
|
|
if (read_status == 2) result_status = FLAG_ICLASS_READER_CSN | FLAG_ICLASS_READER_CC;
|
|
|
|
start_time = eof_time + DELAY_ICLASS_VICC_TO_VCD_READER;
|
|
// handshakeIclass returns CSN|CC, but the actual block
|
|
// layout is CSN|CONFIG|CC, so here we reorder the data,
|
|
// moving CC forward 8 bytes
|
|
memcpy(card_data+16, card_data+8, 8);
|
|
//Read block 1, config
|
|
if (flagReadConfig) {
|
|
if (sendCmdGetResponseWithRetries(readConf, sizeof(readConf), resp, sizeof(resp), 10, 10, start_time, &eof_time)) {
|
|
result_status |= FLAG_ICLASS_READER_CONF;
|
|
memcpy(card_data+8, resp, 8);
|
|
} else {
|
|
Dbprintf("Failed to dump config block");
|
|
}
|
|
start_time = eof_time + DELAY_ICLASS_VICC_TO_VCD_READER;
|
|
}
|
|
|
|
//Read block 5, AA
|
|
if (flagReadAA) {
|
|
if (sendCmdGetResponseWithRetries(readAA, sizeof(readAA), resp, sizeof(resp), 10, 10, start_time, &eof_time)) {
|
|
result_status |= FLAG_ICLASS_READER_AA;
|
|
memcpy(card_data + (8*5), resp, 8);
|
|
} else {
|
|
//Dbprintf("Failed to dump AA block");
|
|
}
|
|
}
|
|
|
|
// 0 : CSN
|
|
// 1 : Configuration
|
|
// 2 : e-purse
|
|
// 3 : kd / debit / aa2 (write-only)
|
|
// 4 : kc / credit / aa1 (write-only)
|
|
// 5 : AIA, Application issuer area
|
|
//Then we can 'ship' back the 6 * 8 bytes of data,
|
|
// with 0xFF:s in block 3 and 4.
|
|
|
|
LED_B_ON();
|
|
//Send back to client, but don't bother if we already sent this -
|
|
// only useful if looping in arm (not try_once && not abort_after_read)
|
|
if (memcmp(last_csn, card_data, 8) != 0) {
|
|
// If caller requires that we get Conf, CC, AA, continue until we got it
|
|
if ( (result_status ^ FLAG_ICLASS_READER_CSN ^ flagReadConfig ^ flagReadCC ^ flagReadAA) == 0) {
|
|
cmd_send(CMD_ACK, result_status, 0, 0, card_data, sizeof(card_data));
|
|
if (abort_after_read) {
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
LED_A_OFF();
|
|
LED_B_OFF();
|
|
return;
|
|
}
|
|
//Save that we already sent this....
|
|
memcpy(last_csn, card_data, 8);
|
|
}
|
|
|
|
}
|
|
LED_B_OFF();
|
|
userCancelled = BUTTON_PRESS() || usb_poll_validate_length();
|
|
}
|
|
if (userCancelled) {
|
|
cmd_send(CMD_ACK, 0xFF, 0, 0, card_data, 0);
|
|
} else {
|
|
cmd_send(CMD_ACK, 0, 0, 0, card_data, 0);
|
|
}
|
|
LED_A_OFF();
|
|
}
|
|
|
|
void ReaderIClass_Replay(uint8_t arg0, uint8_t *MAC) {
|
|
|
|
uint8_t card_data[USB_CMD_DATA_SIZE]={0};
|
|
uint16_t block_crc_LUT[255] = {0};
|
|
|
|
//Generate a lookup table for block crc
|
|
for (int block = 0; block < 255; block++){
|
|
char bl = block;
|
|
block_crc_LUT[block] = iclass_crc16(&bl ,1);
|
|
}
|
|
//Dbprintf("Lookup table: %02x %02x %02x" ,block_crc_LUT[0],block_crc_LUT[1],block_crc_LUT[2]);
|
|
|
|
uint8_t check[] = { 0x05, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
|
|
uint8_t read[] = { 0x0c, 0x00, 0x00, 0x00 };
|
|
|
|
uint16_t crc = 0;
|
|
uint8_t cardsize = 0;
|
|
uint8_t mem = 0;
|
|
|
|
static struct memory_t {
|
|
int k16;
|
|
int book;
|
|
int k2;
|
|
int lockauth;
|
|
int keyaccess;
|
|
} memory;
|
|
|
|
uint8_t resp[ICLASS_BUFFER_SIZE];
|
|
|
|
set_tracing(true);
|
|
clear_trace();
|
|
Iso15693InitReader();
|
|
|
|
StartCountSspClk();
|
|
uint32_t start_time = 0;
|
|
uint32_t eof_time = 0;
|
|
|
|
while (!BUTTON_PRESS()) {
|
|
|
|
WDT_HIT();
|
|
|
|
if (!get_tracing()) {
|
|
DbpString("Trace full");
|
|
break;
|
|
}
|
|
|
|
uint8_t read_status = handshakeIclassTag(card_data, &eof_time);
|
|
start_time = eof_time + DELAY_ICLASS_VICC_TO_VCD_READER;
|
|
|
|
if (read_status < 2) continue;
|
|
|
|
//for now replay captured auth (as cc not updated)
|
|
memcpy(check+5, MAC, 4);
|
|
|
|
if (!sendCmdGetResponseWithRetries(check, sizeof(check), resp, sizeof(resp), 4, 5, start_time, &eof_time)) {
|
|
start_time = eof_time + DELAY_ICLASS_VICC_TO_VCD_READER;
|
|
Dbprintf("Error: Authentication Fail!");
|
|
continue;
|
|
}
|
|
|
|
start_time = eof_time + DELAY_ICLASS_VICC_TO_VCD_READER;
|
|
//first get configuration block (block 1)
|
|
crc = block_crc_LUT[1];
|
|
read[1] = 1;
|
|
read[2] = crc >> 8;
|
|
read[3] = crc & 0xff;
|
|
|
|
if (!sendCmdGetResponseWithRetries(read, sizeof(read), resp, sizeof(resp), 10, 10, start_time, &eof_time)) {
|
|
start_time = eof_time + DELAY_ICLASS_VICC_TO_VCD_READER;
|
|
Dbprintf("Dump config (block 1) failed");
|
|
continue;
|
|
}
|
|
|
|
start_time = eof_time + DELAY_ICLASS_VICC_TO_VCD_READER;
|
|
mem = resp[5];
|
|
memory.k16 = (mem & 0x80);
|
|
memory.book = (mem & 0x20);
|
|
memory.k2 = (mem & 0x8);
|
|
memory.lockauth = (mem & 0x2);
|
|
memory.keyaccess = (mem & 0x1);
|
|
|
|
cardsize = memory.k16 ? 255 : 32;
|
|
WDT_HIT();
|
|
//Set card_data to all zeroes, we'll fill it with data
|
|
memset(card_data, 0x0, USB_CMD_DATA_SIZE);
|
|
uint8_t failedRead = 0;
|
|
uint32_t stored_data_length = 0;
|
|
//then loop around remaining blocks
|
|
for (int block = 0; block < cardsize; block++) {
|
|
read[1] = block;
|
|
crc = block_crc_LUT[block];
|
|
read[2] = crc >> 8;
|
|
read[3] = crc & 0xff;
|
|
|
|
if (sendCmdGetResponseWithRetries(read, sizeof(read), resp, sizeof(resp), 10, 10, start_time, &eof_time)) {
|
|
start_time = eof_time + DELAY_ICLASS_VICC_TO_VCD_READER;
|
|
Dbprintf(" %02x: %02x %02x %02x %02x %02x %02x %02x %02x",
|
|
block, resp[0], resp[1], resp[2],
|
|
resp[3], resp[4], resp[5],
|
|
resp[6], resp[7]);
|
|
|
|
//Fill up the buffer
|
|
memcpy(card_data+stored_data_length, resp, 8);
|
|
stored_data_length += 8;
|
|
if (stored_data_length +8 > USB_CMD_DATA_SIZE) {
|
|
//Time to send this off and start afresh
|
|
cmd_send(CMD_ACK,
|
|
stored_data_length,//data length
|
|
failedRead,//Failed blocks?
|
|
0,//Not used ATM
|
|
card_data, stored_data_length);
|
|
//reset
|
|
stored_data_length = 0;
|
|
failedRead = 0;
|
|
}
|
|
|
|
} else {
|
|
failedRead = 1;
|
|
stored_data_length += 8;//Otherwise, data becomes misaligned
|
|
Dbprintf("Failed to dump block %d", block);
|
|
}
|
|
}
|
|
|
|
//Send off any remaining data
|
|
if (stored_data_length > 0) {
|
|
cmd_send(CMD_ACK,
|
|
stored_data_length,//data length
|
|
failedRead,//Failed blocks?
|
|
0,//Not used ATM
|
|
card_data,
|
|
stored_data_length);
|
|
}
|
|
//If we got here, let's break
|
|
break;
|
|
}
|
|
//Signal end of transmission
|
|
cmd_send(CMD_ACK,
|
|
0,//data length
|
|
0,//Failed blocks?
|
|
0,//Not used ATM
|
|
card_data,
|
|
0);
|
|
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
LED_A_OFF();
|
|
}
|
|
|
|
void iClass_Authentication(uint8_t *MAC) {
|
|
uint8_t check[] = { ICLASS_CMD_CHECK_KD, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
|
|
uint8_t resp[ICLASS_BUFFER_SIZE];
|
|
memcpy(check+5, MAC, 4);
|
|
bool isOK;
|
|
uint32_t eof_time;
|
|
isOK = sendCmdGetResponseWithRetries(check, sizeof(check), resp, sizeof(resp), 4, 6, 0, &eof_time);
|
|
cmd_send(CMD_ACK,isOK, 0, 0, 0, 0);
|
|
}
|
|
|
|
static bool iClass_ReadBlock(uint8_t blockNo, uint8_t *readdata) {
|
|
uint8_t readcmd[] = {ICLASS_CMD_READ_OR_IDENTIFY, blockNo, 0x00, 0x00}; //0x88, 0x00 // can i use 0C?
|
|
char bl = blockNo;
|
|
uint16_t rdCrc = iclass_crc16(&bl, 1);
|
|
readcmd[2] = rdCrc >> 8;
|
|
readcmd[3] = rdCrc & 0xff;
|
|
uint8_t resp[10];
|
|
bool isOK = false;
|
|
uint32_t eof_time;
|
|
|
|
//readcmd[1] = blockNo;
|
|
isOK = sendCmdGetResponseWithRetries(readcmd, sizeof(readcmd), resp, sizeof(resp), 10, 10, 0, &eof_time);
|
|
memcpy(readdata, resp, sizeof(resp));
|
|
|
|
return isOK;
|
|
}
|
|
|
|
void iClass_ReadBlk(uint8_t blockno) {
|
|
uint8_t readblockdata[] = {0,0,0,0,0,0,0,0,0,0};
|
|
bool isOK = false;
|
|
isOK = iClass_ReadBlock(blockno, readblockdata);
|
|
cmd_send(CMD_ACK, isOK, 0, 0, readblockdata, 8);
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
}
|
|
|
|
void iClass_Dump(uint8_t blockno, uint8_t numblks) {
|
|
uint8_t readblockdata[] = {0,0,0,0,0,0,0,0,0,0};
|
|
bool isOK = false;
|
|
uint8_t blkCnt = 0;
|
|
|
|
BigBuf_free();
|
|
uint8_t *dataout = BigBuf_malloc(255*8);
|
|
if (dataout == NULL) {
|
|
Dbprintf("out of memory");
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
LED_D_OFF();
|
|
cmd_send(CMD_ACK, 0, 1, 0, 0, 0);
|
|
LED_A_OFF();
|
|
return;
|
|
}
|
|
memset(dataout, 0xFF, 255*8);
|
|
|
|
for ( ; blkCnt < numblks; blkCnt++) {
|
|
isOK = iClass_ReadBlock(blockno+blkCnt, readblockdata);
|
|
if (!isOK || (readblockdata[0] == 0xBB || readblockdata[7] == 0xBB || readblockdata[2] == 0xBB)) { //try again
|
|
isOK = iClass_ReadBlock(blockno+blkCnt, readblockdata);
|
|
if (!isOK) {
|
|
Dbprintf("Block %02X failed to read", blkCnt+blockno);
|
|
break;
|
|
}
|
|
}
|
|
memcpy(dataout + (blkCnt*8), readblockdata, 8);
|
|
}
|
|
//return pointer to dump memory in arg3
|
|
cmd_send(CMD_ACK, isOK, blkCnt, BigBuf_max_traceLen(), 0, 0);
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
LEDsoff();
|
|
BigBuf_free();
|
|
}
|
|
|
|
static bool iClass_WriteBlock_ext(uint8_t blockNo, uint8_t *data) {
|
|
uint8_t write[] = { ICLASS_CMD_UPDATE, blockNo, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
|
|
//uint8_t readblockdata[10];
|
|
//write[1] = blockNo;
|
|
memcpy(write+2, data, 12); // data + mac
|
|
char *wrCmd = (char *)(write+1);
|
|
uint16_t wrCrc = iclass_crc16(wrCmd, 13);
|
|
write[14] = wrCrc >> 8;
|
|
write[15] = wrCrc & 0xff;
|
|
uint8_t resp[10];
|
|
bool isOK = false;
|
|
uint32_t eof_time = 0;
|
|
|
|
isOK = sendCmdGetResponseWithRetries(write, sizeof(write), resp, sizeof(resp), 10, 10, 0, &eof_time);
|
|
uint32_t start_time = eof_time + DELAY_ICLASS_VICC_TO_VCD_READER;
|
|
if (isOK) { //if reader responded correctly
|
|
//Dbprintf("WriteResp: %02X%02X%02X%02X%02X%02X%02X%02X%02X%02X",resp[0],resp[1],resp[2],resp[3],resp[4],resp[5],resp[6],resp[7],resp[8],resp[9]);
|
|
if (memcmp(write+2, resp, 8)) { //if response is not equal to write values
|
|
if (blockNo != 3 && blockNo != 4) { //if not programming key areas (note key blocks don't get programmed with actual key data it is xor data)
|
|
//error try again
|
|
isOK = sendCmdGetResponseWithRetries(write, sizeof(write), resp, sizeof(resp), 10, 10, start_time, &eof_time);
|
|
}
|
|
}
|
|
}
|
|
return isOK;
|
|
}
|
|
|
|
void iClass_WriteBlock(uint8_t blockNo, uint8_t *data) {
|
|
bool isOK = iClass_WriteBlock_ext(blockNo, data);
|
|
if (isOK){
|
|
Dbprintf("Write block [%02x] successful", blockNo);
|
|
} else {
|
|
Dbprintf("Write block [%02x] failed", blockNo);
|
|
}
|
|
cmd_send(CMD_ACK, isOK, 0, 0, 0, 0);
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
}
|
|
|
|
void iClass_Clone(uint8_t startblock, uint8_t endblock, uint8_t *data) {
|
|
int i;
|
|
int written = 0;
|
|
int total_block = (endblock - startblock) + 1;
|
|
for (i = 0; i < total_block; i++) {
|
|
// block number
|
|
if (iClass_WriteBlock_ext(i+startblock, data + (i*12))){
|
|
Dbprintf("Write block [%02x] successful", i + startblock);
|
|
written++;
|
|
} else {
|
|
if (iClass_WriteBlock_ext(i+startblock, data + (i*12))){
|
|
Dbprintf("Write block [%02x] successful", i + startblock);
|
|
written++;
|
|
} else {
|
|
Dbprintf("Write block [%02x] failed", i + startblock);
|
|
}
|
|
}
|
|
}
|
|
if (written == total_block)
|
|
Dbprintf("Clone complete");
|
|
else
|
|
Dbprintf("Clone incomplete");
|
|
|
|
cmd_send(CMD_ACK, 1, 0, 0, 0, 0);
|
|
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
|
|
LEDsoff();
|
|
}
|