//----------------------------------------------------------------------------- // Gerhard de Koning Gans - May 2008 // Hagen Fritsch - June 2010 // Gerhard de Koning Gans - May 2011 // Gerhard de Koning Gans - June 2012 - Added iClass card and reader emulation // // This code is licensed to you under the terms of the GNU GPL, version 2 or, // at your option, any later version. See the LICENSE.txt file for the text of // the license. //----------------------------------------------------------------------------- // Routines to support iClass. //----------------------------------------------------------------------------- // Based on ISO14443a implementation. Still in experimental phase. // Contribution made during a security research at Radboud University Nijmegen // // Please feel free to contribute and extend iClass support!! //----------------------------------------------------------------------------- // // FIX: // ==== // We still have sometimes a demodulation error when snooping iClass communication. // The resulting trace of a read-block-03 command may look something like this: // // + 22279: : 0c 03 e8 01 // // ...with an incorrect answer... // // + 85: 0: TAG ff! ff! ff! ff! ff! ff! ff! ff! bb 33 bb 00 01! 0e! 04! bb !crc // // We still left the error signalling bytes in the traces like 0xbb // // A correct trace should look like this: // // + 21112: : 0c 03 e8 01 // + 85: 0: TAG ff ff ff ff ff ff ff ff ea f5 // //----------------------------------------------------------------------------- #include "iclass.h" #include "proxmark3.h" #include "apps.h" #include "util.h" #include "string.h" #include "printf.h" #include "common.h" #include "cmd.h" #include "iso14443a.h" #include "iso15693.h" // Needed for CRC in emulation mode; // same construction as in ISO 14443; // different initial value (CRC_ICLASS) #include "iso14443crc.h" #include "iso15693tools.h" #include "protocols.h" #include "optimized_cipher.h" #include "usb_cdc.h" // for usb_poll_validate_length #include "fpgaloader.h" // iCLASS has a slightly different timing compared to ISO15693. According to the picopass data sheet the tag response is expected 330us after // the reader command. This is measured from end of reader EOF to first modulation of the tag's SOF which starts with a 56,64us unmodulated period. // 330us = 140 ssp_clk cycles @ 423,75kHz when simulating. // 56,64us = 24 ssp_clk_cycles #define DELAY_ICLASS_VCD_TO_VICC_SIM (140 - 24) // times in ssp_clk_cycles @ 3,3625MHz when acting as reader #define DELAY_ICLASS_VICC_TO_VCD_READER DELAY_ISO15693_VICC_TO_VCD_READER // times in samples @ 212kHz when acting as reader #define ICLASS_READER_TIMEOUT_ACTALL 330 // 1558us, nominal 330us + 7slots*160us = 1450us #define ICLASS_READER_TIMEOUT_OTHERS 80 // 380us, nominal 330us //----------------------------------------------------------------------------- // The software UART that receives commands from the reader, and its state // variables. //----------------------------------------------------------------------------- static struct { enum { STATE_UNSYNCD, STATE_START_OF_COMMUNICATION, STATE_RECEIVING } state; uint16_t shiftReg; int bitCnt; int byteCnt; int byteCntMax; int posCnt; int nOutOfCnt; int OutOfCnt; int syncBit; int samples; int highCnt; int swapper; int counter; int bitBuffer; int dropPosition; uint8_t *output; } Uart; static RAMFUNC int OutOfNDecoding(int bit) { //int error = 0; int bitright; if (!Uart.bitBuffer) { Uart.bitBuffer = bit ^ 0xFF0; return false; } else { Uart.bitBuffer <<= 4; Uart.bitBuffer ^= bit; } /*if (Uart.swapper) { Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF; Uart.byteCnt++; Uart.swapper = 0; if (Uart.byteCnt > 15) { return true; } } else { Uart.swapper = 1; }*/ if (Uart.state != STATE_UNSYNCD) { Uart.posCnt++; if ((Uart.bitBuffer & Uart.syncBit) ^ Uart.syncBit) { bit = 0x00; } else { bit = 0x01; } if (((Uart.bitBuffer << 1) & Uart.syncBit) ^ Uart.syncBit) { bitright = 0x00; } else { bitright = 0x01; } if (bit != bitright) { bit = bitright; } // So, now we only have to deal with *bit*, lets see... if (Uart.posCnt == 1) { // measurement first half bitperiod if (!bit) { // Drop in first half means that we are either seeing // an SOF or an EOF. if (Uart.nOutOfCnt == 1) { // End of Communication Uart.state = STATE_UNSYNCD; Uart.highCnt = 0; if (Uart.byteCnt == 0) { // Its not straightforward to show single EOFs // So just leave it and do not return true Uart.output[0] = 0xf0; Uart.byteCnt++; } else { return true; } } else if (Uart.state != STATE_START_OF_COMMUNICATION) { // When not part of SOF or EOF, it is an error Uart.state = STATE_UNSYNCD; Uart.highCnt = 0; //error = 4; } } } else { // measurement second half bitperiod // Count the bitslot we are in... (ISO 15693) Uart.nOutOfCnt++; if (!bit) { if (Uart.dropPosition) { if (Uart.state == STATE_START_OF_COMMUNICATION) { //error = 1; } else { //error = 7; } // It is an error if we already have seen a drop in current frame Uart.state = STATE_UNSYNCD; Uart.highCnt = 0; } else { Uart.dropPosition = Uart.nOutOfCnt; } } Uart.posCnt = 0; if (Uart.nOutOfCnt == Uart.OutOfCnt && Uart.OutOfCnt == 4) { Uart.nOutOfCnt = 0; if (Uart.state == STATE_START_OF_COMMUNICATION) { if (Uart.dropPosition == 4) { Uart.state = STATE_RECEIVING; Uart.OutOfCnt = 256; } else if (Uart.dropPosition == 3) { Uart.state = STATE_RECEIVING; Uart.OutOfCnt = 4; //Uart.output[Uart.byteCnt] = 0xdd; //Uart.byteCnt++; } else { Uart.state = STATE_UNSYNCD; Uart.highCnt = 0; } Uart.dropPosition = 0; } else { // RECEIVING DATA // 1 out of 4 if (!Uart.dropPosition) { Uart.state = STATE_UNSYNCD; Uart.highCnt = 0; //error = 9; } else { Uart.shiftReg >>= 2; // Swap bit order Uart.dropPosition--; //if (Uart.dropPosition == 1) { Uart.dropPosition = 2; } //else if (Uart.dropPosition == 2) { Uart.dropPosition = 1; } Uart.shiftReg ^= ((Uart.dropPosition & 0x03) << 6); Uart.bitCnt += 2; Uart.dropPosition = 0; if (Uart.bitCnt == 8) { Uart.output[Uart.byteCnt] = (Uart.shiftReg & 0xff); Uart.byteCnt++; Uart.bitCnt = 0; Uart.shiftReg = 0; } } } } else if (Uart.nOutOfCnt == Uart.OutOfCnt) { // RECEIVING DATA // 1 out of 256 if (!Uart.dropPosition) { Uart.state = STATE_UNSYNCD; Uart.highCnt = 0; //error = 3; } else { Uart.dropPosition--; Uart.output[Uart.byteCnt] = (Uart.dropPosition & 0xff); Uart.byteCnt++; Uart.bitCnt = 0; Uart.shiftReg = 0; Uart.nOutOfCnt = 0; Uart.dropPosition = 0; } } /*if (error) { Uart.output[Uart.byteCnt] = 0xAA; Uart.byteCnt++; Uart.output[Uart.byteCnt] = error & 0xFF; Uart.byteCnt++; Uart.output[Uart.byteCnt] = 0xAA; Uart.byteCnt++; Uart.output[Uart.byteCnt] = (Uart.bitBuffer >> 8) & 0xFF; Uart.byteCnt++; Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF; Uart.byteCnt++; Uart.output[Uart.byteCnt] = (Uart.syncBit >> 3) & 0xFF; Uart.byteCnt++; Uart.output[Uart.byteCnt] = 0xAA; Uart.byteCnt++; return true; }*/ } } else { bit = Uart.bitBuffer & 0xf0; bit >>= 4; bit ^= 0x0F; // drops become 1s ;-) if (bit) { // should have been high or at least (4 * 128) / fc // according to ISO this should be at least (9 * 128 + 20) / fc if (Uart.highCnt == 8) { // we went low, so this could be start of communication // it turns out to be safer to choose a less significant // syncbit... so we check whether the neighbour also represents the drop Uart.posCnt = 1; // apparently we are busy with our first half bit period Uart.syncBit = bit & 8; Uart.samples = 3; if (!Uart.syncBit) { Uart.syncBit = bit & 4; Uart.samples = 2; } else if (bit & 4) { Uart.syncBit = bit & 4; Uart.samples = 2; bit <<= 2; } if (!Uart.syncBit) { Uart.syncBit = bit & 2; Uart.samples = 1; } else if (bit & 2) { Uart.syncBit = bit & 2; Uart.samples = 1; bit <<= 1; } if (!Uart.syncBit) { Uart.syncBit = bit & 1; Uart.samples = 0; if (Uart.syncBit && (Uart.bitBuffer & 8)) { Uart.syncBit = 8; // the first half bit period is expected in next sample Uart.posCnt = 0; Uart.samples = 3; } } else if (bit & 1) { Uart.syncBit = bit & 1; Uart.samples = 0; } Uart.syncBit <<= 4; Uart.state = STATE_START_OF_COMMUNICATION; Uart.bitCnt = 0; Uart.byteCnt = 0; Uart.nOutOfCnt = 0; Uart.OutOfCnt = 4; // Start at 1/4, could switch to 1/256 Uart.dropPosition = 0; Uart.shiftReg = 0; //error = 0; } else { Uart.highCnt = 0; } } else if (Uart.highCnt < 8) { Uart.highCnt++; } } return false; } //============================================================================= // Manchester //============================================================================= static struct { enum { DEMOD_UNSYNCD, DEMOD_START_OF_COMMUNICATION, DEMOD_START_OF_COMMUNICATION2, DEMOD_START_OF_COMMUNICATION3, DEMOD_SOF_COMPLETE, DEMOD_MANCHESTER_D, DEMOD_MANCHESTER_E, DEMOD_END_OF_COMMUNICATION, DEMOD_END_OF_COMMUNICATION2, DEMOD_MANCHESTER_F, DEMOD_ERROR_WAIT } state; int bitCount; int posCount; int syncBit; uint16_t shiftReg; int buffer; int buffer2; int buffer3; int buff; int samples; int len; enum { SUB_NONE, SUB_FIRST_HALF, SUB_SECOND_HALF, SUB_BOTH } sub; uint8_t *output; } Demod; static RAMFUNC int ManchesterDecoding(int v) { int bit; int modulation; int error = 0; bit = Demod.buffer; Demod.buffer = Demod.buffer2; Demod.buffer2 = Demod.buffer3; Demod.buffer3 = v; if (Demod.buff < 3) { Demod.buff++; return false; } if (Demod.state==DEMOD_UNSYNCD) { Demod.output[Demod.len] = 0xfa; Demod.syncBit = 0; //Demod.samples = 0; Demod.posCount = 1; // This is the first half bit period, so after syncing handle the second part if (bit & 0x08) { Demod.syncBit = 0x08; } if (bit & 0x04) { if (Demod.syncBit) { bit <<= 4; } Demod.syncBit = 0x04; } if (bit & 0x02) { if (Demod.syncBit) { bit <<= 2; } Demod.syncBit = 0x02; } if (bit & 0x01 && Demod.syncBit) { Demod.syncBit = 0x01; } if (Demod.syncBit) { Demod.len = 0; Demod.state = DEMOD_START_OF_COMMUNICATION; Demod.sub = SUB_FIRST_HALF; Demod.bitCount = 0; Demod.shiftReg = 0; Demod.samples = 0; if (Demod.posCount) { switch (Demod.syncBit) { case 0x08: Demod.samples = 3; break; case 0x04: Demod.samples = 2; break; case 0x02: Demod.samples = 1; break; case 0x01: Demod.samples = 0; break; } // SOF must be long burst... otherwise stay unsynced!!! if (!(Demod.buffer & Demod.syncBit) || !(Demod.buffer2 & Demod.syncBit)) { Demod.state = DEMOD_UNSYNCD; } } else { // SOF must be long burst... otherwise stay unsynced!!! if (!(Demod.buffer2 & Demod.syncBit) || !(Demod.buffer3 & Demod.syncBit)) { Demod.state = DEMOD_UNSYNCD; error = 0x88; } } error = 0; } } else { // state is DEMOD is in SYNC from here on. modulation = bit & Demod.syncBit; modulation |= ((bit << 1) ^ ((Demod.buffer & 0x08) >> 3)) & Demod.syncBit; Demod.samples += 4; if (Demod.posCount == 0) { Demod.posCount = 1; if (modulation) { Demod.sub = SUB_FIRST_HALF; } else { Demod.sub = SUB_NONE; } } else { Demod.posCount = 0; if (modulation) { if (Demod.sub == SUB_FIRST_HALF) { Demod.sub = SUB_BOTH; } else { Demod.sub = SUB_SECOND_HALF; } } else if (Demod.sub == SUB_NONE) { if (Demod.state == DEMOD_SOF_COMPLETE) { Demod.output[Demod.len] = 0x0f; Demod.len++; Demod.state = DEMOD_UNSYNCD; return true; } else { Demod.state = DEMOD_ERROR_WAIT; error = 0x33; } } switch(Demod.state) { case DEMOD_START_OF_COMMUNICATION: if (Demod.sub == SUB_BOTH) { Demod.state = DEMOD_START_OF_COMMUNICATION2; Demod.posCount = 1; Demod.sub = SUB_NONE; } else { Demod.output[Demod.len] = 0xab; Demod.state = DEMOD_ERROR_WAIT; error = 0xd2; } break; case DEMOD_START_OF_COMMUNICATION2: if (Demod.sub == SUB_SECOND_HALF) { Demod.state = DEMOD_START_OF_COMMUNICATION3; } else { Demod.output[Demod.len] = 0xab; Demod.state = DEMOD_ERROR_WAIT; error = 0xd3; } break; case DEMOD_START_OF_COMMUNICATION3: if (Demod.sub == SUB_SECOND_HALF) { Demod.state = DEMOD_SOF_COMPLETE; } else { Demod.output[Demod.len] = 0xab; Demod.state = DEMOD_ERROR_WAIT; error = 0xd4; } break; case DEMOD_SOF_COMPLETE: case DEMOD_MANCHESTER_D: case DEMOD_MANCHESTER_E: // OPPOSITE FROM ISO14443 - 11110000 = 0 (1 in 14443) // 00001111 = 1 (0 in 14443) if (Demod.sub == SUB_SECOND_HALF) { // SUB_FIRST_HALF Demod.bitCount++; Demod.shiftReg = (Demod.shiftReg >> 1) ^ 0x100; Demod.state = DEMOD_MANCHESTER_D; } else if (Demod.sub == SUB_FIRST_HALF) { // SUB_SECOND_HALF Demod.bitCount++; Demod.shiftReg >>= 1; Demod.state = DEMOD_MANCHESTER_E; } else if (Demod.sub == SUB_BOTH) { Demod.state = DEMOD_MANCHESTER_F; } else { Demod.state = DEMOD_ERROR_WAIT; error = 0x55; } break; case DEMOD_MANCHESTER_F: // Tag response does not need to be a complete byte! if (Demod.len > 0 || Demod.bitCount > 0) { if (Demod.bitCount > 1) { // was > 0, do not interpret last closing bit, is part of EOF Demod.shiftReg >>= (9 - Demod.bitCount); // right align data Demod.output[Demod.len] = Demod.shiftReg & 0xff; Demod.len++; } Demod.state = DEMOD_UNSYNCD; return true; } else { Demod.output[Demod.len] = 0xad; Demod.state = DEMOD_ERROR_WAIT; error = 0x03; } break; case DEMOD_ERROR_WAIT: Demod.state = DEMOD_UNSYNCD; break; default: Demod.output[Demod.len] = 0xdd; Demod.state = DEMOD_UNSYNCD; break; } if (Demod.bitCount >= 8) { Demod.shiftReg >>= 1; Demod.output[Demod.len] = (Demod.shiftReg & 0xff); Demod.len++; Demod.bitCount = 0; Demod.shiftReg = 0; } if (error) { Demod.output[Demod.len] = 0xBB; Demod.len++; Demod.output[Demod.len] = error & 0xFF; Demod.len++; Demod.output[Demod.len] = 0xBB; Demod.len++; Demod.output[Demod.len] = bit & 0xFF; Demod.len++; Demod.output[Demod.len] = Demod.buffer & 0xFF; Demod.len++; // Look harder ;-) Demod.output[Demod.len] = Demod.buffer2 & 0xFF; Demod.len++; Demod.output[Demod.len] = Demod.syncBit & 0xFF; Demod.len++; Demod.output[Demod.len] = 0xBB; Demod.len++; return true; } } } // end (state != UNSYNCED) return false; } //============================================================================= // Finally, a `sniffer' for iClass communication // Both sides of communication! //============================================================================= //----------------------------------------------------------------------------- // Record the sequence of commands sent by the reader to the tag, with // triggering so that we start recording at the point that the tag is moved // near the reader. //----------------------------------------------------------------------------- void RAMFUNC SnoopIClass(void) { // We won't start recording the frames that we acquire until we trigger; // a good trigger condition to get started is probably when we see a // response from the tag. //int triggered = false; // false to wait first for card // The command (reader -> tag) that we're receiving. // The length of a received command will in most cases be no more than 18 bytes. // So 32 should be enough! #define ICLASS_BUFFER_SIZE 32 uint8_t readerToTagCmd[ICLASS_BUFFER_SIZE]; // The response (tag -> reader) that we're receiving. uint8_t tagToReaderResponse[ICLASS_BUFFER_SIZE]; FpgaDownloadAndGo(FPGA_BITSTREAM_HF); // free all BigBuf memory BigBuf_free(); // The DMA buffer, used to stream samples from the FPGA uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE); set_tracing(true); clear_trace(); iso14a_set_trigger(false); int lastRxCounter; uint8_t *upTo; int smpl; int maxBehindBy = 0; // Count of samples received so far, so that we can include timing // information in the trace buffer. int samples = 0; rsamples = 0; // Set up the demodulator for tag -> reader responses. Demod.output = tagToReaderResponse; Demod.len = 0; Demod.state = DEMOD_UNSYNCD; // Setup for the DMA. FpgaSetupSsc(FPGA_MAJOR_MODE_HF_ISO14443A); upTo = dmaBuf; lastRxCounter = DMA_BUFFER_SIZE; FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); // And the reader -> tag commands memset(&Uart, 0, sizeof(Uart)); Uart.output = readerToTagCmd; Uart.byteCntMax = 32; // was 100 (greg)//////////////////////////////////////////////////////////////////////// Uart.state = STATE_UNSYNCD; // And put the FPGA in the appropriate mode // Signal field is off with the appropriate LED LED_D_OFF(); FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_SNIFFER); SetAdcMuxFor(GPIO_MUXSEL_HIPKD); uint32_t time_0 = GetCountSspClk(); uint32_t time_start = 0; uint32_t time_stop = 0; int div = 0; //int div2 = 0; int decbyte = 0; int decbyter = 0; // And now we loop, receiving samples. for (;;) { LED_A_ON(); WDT_HIT(); int behindBy = (lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR) & (DMA_BUFFER_SIZE-1); if (behindBy > maxBehindBy) { maxBehindBy = behindBy; if (behindBy > (9 * DMA_BUFFER_SIZE / 10)) { Dbprintf("blew circular buffer! behindBy=0x%x", behindBy); goto done; } } if (behindBy < 1) continue; LED_A_OFF(); smpl = upTo[0]; upTo++; lastRxCounter -= 1; if (upTo - dmaBuf > DMA_BUFFER_SIZE) { upTo -= DMA_BUFFER_SIZE; lastRxCounter += DMA_BUFFER_SIZE; AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) upTo; AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE; } //samples += 4; samples += 1; if (smpl & 0xF) { decbyte ^= (1 << (3 - div)); } // FOR READER SIDE COMMUMICATION... decbyter <<= 2; decbyter ^= (smpl & 0x30); div++; if ((div + 1) % 2 == 0) { smpl = decbyter; if (OutOfNDecoding((smpl & 0xF0) >> 4)) { rsamples = samples - Uart.samples; time_stop = (GetCountSspClk()-time_0) << 4; LED_C_ON(); //if (!LogTrace(Uart.output, Uart.byteCnt, rsamples, Uart.parityBits,true)) break; //if (!LogTrace(NULL, 0, Uart.endTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER, 0, true)) break; uint8_t parity[MAX_PARITY_SIZE]; GetParity(Uart.output, Uart.byteCnt, parity); LogTrace_ISO15693(Uart.output, Uart.byteCnt, time_start*32, time_stop*32, parity, true); /* And ready to receive another command. */ Uart.state = STATE_UNSYNCD; /* And also reset the demod code, which might have been */ /* false-triggered by the commands from the reader. */ Demod.state = DEMOD_UNSYNCD; LED_B_OFF(); Uart.byteCnt = 0; } else { time_start = (GetCountSspClk()-time_0) << 4; } decbyter = 0; } if (div > 3) { smpl = decbyte; if (ManchesterDecoding(smpl & 0x0F)) { time_stop = (GetCountSspClk()-time_0) << 4; rsamples = samples - Demod.samples; LED_B_ON(); uint8_t parity[MAX_PARITY_SIZE]; GetParity(Demod.output, Demod.len, parity); LogTrace_ISO15693(Demod.output, Demod.len, time_start*32, time_stop*32, parity, false); // And ready to receive another response. memset(&Demod, 0, sizeof(Demod)); Demod.output = tagToReaderResponse; Demod.state = DEMOD_UNSYNCD; LED_C_OFF(); } else { time_start = (GetCountSspClk()-time_0) << 4; } div = 0; decbyte = 0x00; } if (BUTTON_PRESS()) { DbpString("cancelled_a"); goto done; } } DbpString("COMMAND FINISHED"); Dbprintf("%x %x %x", maxBehindBy, Uart.state, Uart.byteCnt); Dbprintf("%x %x %x", Uart.byteCntMax, BigBuf_get_traceLen(), (int)Uart.output[0]); done: AT91C_BASE_PDC_SSC->PDC_PTCR = AT91C_PDC_RXTDIS; Dbprintf("%x %x %x", maxBehindBy, Uart.state, Uart.byteCnt); Dbprintf("%x %x %x", Uart.byteCntMax, BigBuf_get_traceLen(), (int)Uart.output[0]); LEDsoff(); } void rotateCSN(uint8_t* originalCSN, uint8_t* rotatedCSN) { int i; for (i = 0; i < 8; i++) { rotatedCSN[i] = (originalCSN[i] >> 3) | (originalCSN[(i+1)%8] << 5); } } // Encode SOF only static void CodeIClassTagSOF() { ToSendReset(); ToSend[++ToSendMax] = 0x1D; ToSendMax++; } static void AppendCrc(uint8_t *data, int len) { ComputeCrc14443(CRC_ICLASS, data, len, data+len, data+len+1); } /** * @brief Does the actual simulation */ int doIClassSimulation(int simulationMode, uint8_t *reader_mac_buf) { // free eventually allocated BigBuf memory BigBuf_free_keep_EM(); uint16_t page_size = 32 * 8; uint8_t current_page = 0; // maintain cipher states for both credit and debit key for each page State cipher_state_KC[8]; State cipher_state_KD[8]; State *cipher_state = &cipher_state_KD[0]; uint8_t *emulator = BigBuf_get_EM_addr(); uint8_t *csn = emulator; // CSN followed by two CRC bytes uint8_t anticoll_data[10]; uint8_t csn_data[10]; memcpy(csn_data, csn, sizeof(csn_data)); Dbprintf("Simulating CSN %02x%02x%02x%02x%02x%02x%02x%02x", csn[0], csn[1], csn[2], csn[3], csn[4], csn[5], csn[6], csn[7]); // Construct anticollision-CSN rotateCSN(csn_data, anticoll_data); // Compute CRC on both CSNs AppendCrc(anticoll_data, 8); AppendCrc(csn_data, 8); uint8_t diversified_key_d[8] = { 0x00 }; uint8_t diversified_key_c[8] = { 0x00 }; uint8_t *diversified_key = diversified_key_d; // configuration block uint8_t conf_block[10] = {0x12, 0xFF, 0xFF, 0xFF, 0x7F, 0x1F, 0xFF, 0x3C, 0x00, 0x00}; // e-Purse uint8_t card_challenge_data[8] = { 0xfe, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; if (simulationMode == ICLASS_SIM_MODE_FULL) { // initialize from page 0 memcpy(conf_block, emulator + 8 * 1, 8); memcpy(card_challenge_data, emulator + 8 * 2, 8); // e-purse memcpy(diversified_key_d, emulator + 8 * 3, 8); // Kd memcpy(diversified_key_c, emulator + 8 * 4, 8); // Kc } AppendCrc(conf_block, 8); // save card challenge for sim2,4 attack if (reader_mac_buf != NULL) { memcpy(reader_mac_buf, card_challenge_data, 8); } if (conf_block[5] & 0x80) { page_size = 256 * 8; } // From PicoPass DS: // When the page is in personalization mode this bit is equal to 1. // Once the application issuer has personalized and coded its dedicated areas, this bit must be set to 0: // the page is then "in application mode". bool personalization_mode = conf_block[7] & 0x80; // chip memory may be divided in 8 pages uint8_t max_page = conf_block[4] & 0x10 ? 0 : 7; // Precalculate the cipher states, feeding it the CC cipher_state_KD[0] = opt_doTagMAC_1(card_challenge_data, diversified_key_d); cipher_state_KC[0] = opt_doTagMAC_1(card_challenge_data, diversified_key_c); if (simulationMode == ICLASS_SIM_MODE_FULL) { for (int i = 1; i < max_page; i++) { uint8_t *epurse = emulator + i*page_size + 8*2; uint8_t *Kd = emulator + i*page_size + 8*3; uint8_t *Kc = emulator + i*page_size + 8*4; cipher_state_KD[i] = opt_doTagMAC_1(epurse, Kd); cipher_state_KC[i] = opt_doTagMAC_1(epurse, Kc); } } int exitLoop = 0; // Reader 0a // Tag 0f // Reader 0c // Tag anticoll. CSN // Reader 81 anticoll. CSN // Tag CSN uint8_t *modulated_response; int modulated_response_size = 0; uint8_t *trace_data = NULL; int trace_data_size = 0; // Respond SOF -- takes 1 bytes uint8_t *resp_sof = BigBuf_malloc(1); int resp_sof_Len; // Anticollision CSN (rotated CSN) // 22: Takes 2 bytes for SOF/EOF and 10 * 2 = 20 bytes (2 bytes/byte) uint8_t *resp_anticoll = BigBuf_malloc(22); int resp_anticoll_len; // CSN (block 0) // 22: Takes 2 bytes for SOF/EOF and 10 * 2 = 20 bytes (2 bytes/byte) uint8_t *resp_csn = BigBuf_malloc(22); int resp_csn_len; // configuration (block 1) picopass 2ks uint8_t *resp_conf = BigBuf_malloc(22); int resp_conf_len; // e-Purse (block 2) // 18: Takes 2 bytes for SOF/EOF and 8 * 2 = 16 bytes (2 bytes/bit) uint8_t *resp_cc = BigBuf_malloc(18); int resp_cc_len; // Kd, Kc (blocks 3 and 4). Cannot be read. Always respond with 0xff bytes only uint8_t *resp_ff = BigBuf_malloc(22); int resp_ff_len; uint8_t ff_data[10] = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00}; AppendCrc(ff_data, 8); // Application Issuer Area (block 5) uint8_t *resp_aia = BigBuf_malloc(22); int resp_aia_len; uint8_t aia_data[10] = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00}; AppendCrc(aia_data, 8); uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE); int len; // Prepare card messages // First card answer: SOF only CodeIClassTagSOF(); memcpy(resp_sof, ToSend, ToSendMax); resp_sof_Len = ToSendMax; // Anticollision CSN CodeIso15693AsTag(anticoll_data, sizeof(anticoll_data)); memcpy(resp_anticoll, ToSend, ToSendMax); resp_anticoll_len = ToSendMax; // CSN (block 0) CodeIso15693AsTag(csn_data, sizeof(csn_data)); memcpy(resp_csn, ToSend, ToSendMax); resp_csn_len = ToSendMax; // Configuration (block 1) CodeIso15693AsTag(conf_block, sizeof(conf_block)); memcpy(resp_conf, ToSend, ToSendMax); resp_conf_len = ToSendMax; // e-Purse (block 2) CodeIso15693AsTag(card_challenge_data, sizeof(card_challenge_data)); memcpy(resp_cc, ToSend, ToSendMax); resp_cc_len = ToSendMax; // Kd, Kc (blocks 3 and 4) CodeIso15693AsTag(ff_data, sizeof(ff_data)); memcpy(resp_ff, ToSend, ToSendMax); resp_ff_len = ToSendMax; // Application Issuer Area (block 5) CodeIso15693AsTag(aia_data, sizeof(aia_data)); memcpy(resp_aia, ToSend, ToSendMax); resp_aia_len = ToSendMax; //This is used for responding to READ-block commands or other data which is dynamically generated uint8_t *data_generic_trace = BigBuf_malloc(32 + 2); // 32 bytes data + 2byte CRC is max tag answer uint8_t *data_response = BigBuf_malloc( (32 + 2) * 2 + 2); bool buttonPressed = false; enum { IDLE, ACTIVATED, SELECTED, HALTED } chip_state = IDLE; while (!exitLoop) { WDT_HIT(); uint32_t reader_eof_time = 0; len = GetIso15693CommandFromReader(receivedCmd, MAX_FRAME_SIZE, &reader_eof_time); if (len < 0) { buttonPressed = true; break; } // Now look at the reader command and provide appropriate responses // default is no response: modulated_response = NULL; modulated_response_size = 0; trace_data = NULL; trace_data_size = 0; if (receivedCmd[0] == ICLASS_CMD_ACTALL && len == 1) { // Reader in anticollision phase if (chip_state != HALTED) { modulated_response = resp_sof; modulated_response_size = resp_sof_Len; chip_state = ACTIVATED; } } else if (receivedCmd[0] == ICLASS_CMD_READ_OR_IDENTIFY && len == 1) { // identify // Reader asks for anticollision CSN if (chip_state == SELECTED || chip_state == ACTIVATED) { modulated_response = resp_anticoll; modulated_response_size = resp_anticoll_len; trace_data = anticoll_data; trace_data_size = sizeof(anticoll_data); } } else if (receivedCmd[0] == ICLASS_CMD_SELECT && len == 9) { // Reader selects anticollision CSN. // Tag sends the corresponding real CSN if (chip_state == ACTIVATED || chip_state == SELECTED) { if (!memcmp(receivedCmd+1, anticoll_data, 8)) { modulated_response = resp_csn; modulated_response_size = resp_csn_len; trace_data = csn_data; trace_data_size = sizeof(csn_data); chip_state = SELECTED; } else { chip_state = IDLE; } } else if (chip_state == HALTED) { // RESELECT with CSN if (!memcmp(receivedCmd+1, csn_data, 8)) { modulated_response = resp_csn; modulated_response_size = resp_csn_len; trace_data = csn_data; trace_data_size = sizeof(csn_data); chip_state = SELECTED; } } } else if (receivedCmd[0] == ICLASS_CMD_READ_OR_IDENTIFY && len == 4) { // read block uint16_t blockNo = receivedCmd[1]; if (chip_state == SELECTED) { if (simulationMode == ICLASS_SIM_MODE_EXIT_AFTER_MAC) { // provide defaults for blocks 0 ... 5 switch (blockNo) { case 0: // csn (block 00) modulated_response = resp_csn; modulated_response_size = resp_csn_len; trace_data = csn_data; trace_data_size = sizeof(csn_data); break; case 1: // configuration (block 01) modulated_response = resp_conf; modulated_response_size = resp_conf_len; trace_data = conf_block; trace_data_size = sizeof(conf_block); break; case 2: // e-purse (block 02) modulated_response = resp_cc; modulated_response_size = resp_cc_len; trace_data = card_challenge_data; trace_data_size = sizeof(card_challenge_data); // set epurse of sim2,4 attack if (reader_mac_buf != NULL) { memcpy(reader_mac_buf, card_challenge_data, 8); } break; case 3: case 4: // Kd, Kc, always respond with 0xff bytes modulated_response = resp_ff; modulated_response_size = resp_ff_len; trace_data = ff_data; trace_data_size = sizeof(ff_data); break; case 5: // Application Issuer Area (block 05) modulated_response = resp_aia; modulated_response_size = resp_aia_len; trace_data = aia_data; trace_data_size = sizeof(aia_data); break; // default: don't respond } } else if (simulationMode == ICLASS_SIM_MODE_FULL) { if (blockNo == 3 || blockNo == 4) { // Kd, Kc, always respond with 0xff bytes modulated_response = resp_ff; modulated_response_size = resp_ff_len; trace_data = ff_data; trace_data_size = sizeof(ff_data); } else { // use data from emulator memory memcpy(data_generic_trace, emulator + current_page*page_size + 8*blockNo, 8); AppendCrc(data_generic_trace, 8); trace_data = data_generic_trace; trace_data_size = 10; CodeIso15693AsTag(trace_data, trace_data_size); memcpy(data_response, ToSend, ToSendMax); modulated_response = data_response; modulated_response_size = ToSendMax; } } } } else if ((receivedCmd[0] == ICLASS_CMD_READCHECK_KD || receivedCmd[0] == ICLASS_CMD_READCHECK_KC) && receivedCmd[1] == 0x02 && len == 2) { // Read e-purse (88 02 || 18 02) if (chip_state == SELECTED) { if(receivedCmd[0] == ICLASS_CMD_READCHECK_KD){ cipher_state = &cipher_state_KD[current_page]; diversified_key = diversified_key_d; } else { cipher_state = &cipher_state_KC[current_page]; diversified_key = diversified_key_c; } modulated_response = resp_cc; modulated_response_size = resp_cc_len; trace_data = card_challenge_data; trace_data_size = sizeof(card_challenge_data); } } else if ((receivedCmd[0] == ICLASS_CMD_CHECK_KC || receivedCmd[0] == ICLASS_CMD_CHECK_KD) && len == 9) { // Reader random and reader MAC!!! if (chip_state == SELECTED) { if (simulationMode == ICLASS_SIM_MODE_FULL) { //NR, from reader, is in receivedCmd+1 opt_doTagMAC_2(*cipher_state, receivedCmd+1, data_generic_trace, diversified_key); trace_data = data_generic_trace; trace_data_size = 4; CodeIso15693AsTag(trace_data, trace_data_size); memcpy(data_response, ToSend, ToSendMax); modulated_response = data_response; modulated_response_size = ToSendMax; //exitLoop = true; } else { // Not fullsim, we don't respond // We do not know what to answer, so lets keep quiet if (simulationMode == ICLASS_SIM_MODE_EXIT_AFTER_MAC) { if (reader_mac_buf != NULL) { // save NR and MAC for sim 2,4 memcpy(reader_mac_buf + 8, receivedCmd + 1, 8); } exitLoop = true; } } } } else if (receivedCmd[0] == ICLASS_CMD_HALT && len == 1) { if (chip_state == SELECTED) { // Reader ends the session modulated_response = resp_sof; modulated_response_size = resp_sof_Len; chip_state = HALTED; } } else if (simulationMode == ICLASS_SIM_MODE_FULL && receivedCmd[0] == ICLASS_CMD_READ4 && len == 4) { // 0x06 //Read 4 blocks if (chip_state == SELECTED) { uint8_t blockNo = receivedCmd[1]; memcpy(data_generic_trace, emulator + current_page*page_size + blockNo*8, 8 * 4); AppendCrc(data_generic_trace, 8 * 4); trace_data = data_generic_trace; trace_data_size = 8 * 4 + 2; CodeIso15693AsTag(trace_data, trace_data_size); memcpy(data_response, ToSend, ToSendMax); modulated_response = data_response; modulated_response_size = ToSendMax; } } else if (receivedCmd[0] == ICLASS_CMD_UPDATE && (len == 12 || len == 14)) { // We're expected to respond with the data+crc, exactly what's already in the receivedCmd // receivedCmd is now UPDATE 1b | ADDRESS 1b | DATA 8b | Signature 4b or CRC 2b if (chip_state == SELECTED) { uint8_t blockNo = receivedCmd[1]; if (blockNo == 2) { // update e-purse memcpy(card_challenge_data, receivedCmd+2, 8); CodeIso15693AsTag(card_challenge_data, sizeof(card_challenge_data)); memcpy(resp_cc, ToSend, ToSendMax); resp_cc_len = ToSendMax; cipher_state_KD[current_page] = opt_doTagMAC_1(card_challenge_data, diversified_key_d); cipher_state_KC[current_page] = opt_doTagMAC_1(card_challenge_data, diversified_key_c); if (simulationMode == ICLASS_SIM_MODE_FULL) { memcpy(emulator + current_page*page_size + 8*2, card_challenge_data, 8); } } else if (blockNo == 3) { // update Kd for (int i = 0; i < 8; i++) { if (personalization_mode) { diversified_key_d[i] = receivedCmd[2 + i]; } else { diversified_key_d[i] ^= receivedCmd[2 + i]; } } cipher_state_KD[current_page] = opt_doTagMAC_1(card_challenge_data, diversified_key_d); if (simulationMode == ICLASS_SIM_MODE_FULL) { memcpy(emulator + current_page*page_size + 8*3, diversified_key_d, 8); } } else if (blockNo == 4) { // update Kc for (int i = 0; i < 8; i++) { if (personalization_mode) { diversified_key_c[i] = receivedCmd[2 + i]; } else { diversified_key_c[i] ^= receivedCmd[2 + i]; } } cipher_state_KC[current_page] = opt_doTagMAC_1(card_challenge_data, diversified_key_c); if (simulationMode == ICLASS_SIM_MODE_FULL) { memcpy(emulator + current_page*page_size + 8*4, diversified_key_c, 8); } } else if (simulationMode == ICLASS_SIM_MODE_FULL) { // update any other data block memcpy(emulator + current_page*page_size + 8*blockNo, receivedCmd+2, 8); } memcpy(data_generic_trace, receivedCmd + 2, 8); AppendCrc(data_generic_trace, 8); trace_data = data_generic_trace; trace_data_size = 10; CodeIso15693AsTag(trace_data, trace_data_size); memcpy(data_response, ToSend, ToSendMax); modulated_response = data_response; modulated_response_size = ToSendMax; } } else if (receivedCmd[0] == ICLASS_CMD_PAGESEL && len == 4) { // Pagesel // Chips with a single page will not answer to this command // Otherwise, we should answer 8bytes (conf block 1) + 2bytes CRC if (chip_state == SELECTED) { if (simulationMode == ICLASS_SIM_MODE_FULL && max_page > 0) { current_page = receivedCmd[1]; memcpy(data_generic_trace, emulator + current_page*page_size + 8*1, 8); memcpy(diversified_key_d, emulator + current_page*page_size + 8*3, 8); memcpy(diversified_key_c, emulator + current_page*page_size + 8*4, 8); cipher_state = &cipher_state_KD[current_page]; personalization_mode = data_generic_trace[7] & 0x80; AppendCrc(data_generic_trace, 8); trace_data = data_generic_trace; trace_data_size = 10; CodeIso15693AsTag(trace_data, trace_data_size); memcpy(data_response, ToSend, ToSendMax); modulated_response = data_response; modulated_response_size = ToSendMax; } } } else if (receivedCmd[0] == 0x26 && len == 5) { // standard ISO15693 INVENTORY command. Ignore. } else { // don't know how to handle this command char debug_message[250]; // should be enough sprintf(debug_message, "Unhandled command (len = %d) received from reader:", len); for (int i = 0; i < len && strlen(debug_message) < sizeof(debug_message) - 3 - 1; i++) { sprintf(debug_message + strlen(debug_message), " %02x", receivedCmd[i]); } Dbprintf("%s", debug_message); // Do not respond } /** A legit tag has about 273,4us delay between reader EOT and tag SOF. **/ if (modulated_response_size > 0) { uint32_t response_time = reader_eof_time + DELAY_ICLASS_VCD_TO_VICC_SIM; TransmitTo15693Reader(modulated_response, modulated_response_size, &response_time, 0, false); LogTrace_ISO15693(trace_data, trace_data_size, response_time*32, response_time*32 + modulated_response_size/2, NULL, false); } } if (buttonPressed) { DbpString("Button pressed"); } return buttonPressed; } /** * @brief SimulateIClass simulates an iClass card. * @param arg0 type of simulation * - 0 uses the first 8 bytes in usb data as CSN * - 2 "dismantling iclass"-attack. This mode iterates through all CSN's specified * in the usb data. This mode collects MAC from the reader, in order to do an offline * attack on the keys. For more info, see "dismantling iclass" and proxclone.com. * - Other : Uses the default CSN (031fec8af7ff12e0) * @param arg1 - number of CSN's contained in datain (applicable for mode 2 only) * @param arg2 * @param datain */ void SimulateIClass(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datain) { LED_A_ON(); uint32_t simType = arg0; uint32_t numberOfCSNS = arg1; // setup hardware for simulation: FpgaDownloadAndGo(FPGA_BITSTREAM_HF); SetAdcMuxFor(GPIO_MUXSEL_HIPKD); FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_NO_MODULATION); LED_D_OFF(); FpgaSetupSsc(FPGA_MAJOR_MODE_HF_SIMULATOR); StartCountSspClk(); // Enable and clear the trace set_tracing(true); clear_trace(); //Use the emulator memory for SIM uint8_t *emulator = BigBuf_get_EM_addr(); if (simType == ICLASS_SIM_MODE_CSN) { // Use the CSN from commandline memcpy(emulator, datain, 8); doIClassSimulation(ICLASS_SIM_MODE_CSN, NULL); } else if (simType == ICLASS_SIM_MODE_CSN_DEFAULT) { //Default CSN uint8_t csn_crc[] = { 0x03, 0x1f, 0xec, 0x8a, 0xf7, 0xff, 0x12, 0xe0, 0x00, 0x00 }; // Use the CSN from commandline memcpy(emulator, csn_crc, 8); doIClassSimulation(ICLASS_SIM_MODE_CSN, NULL); } else if (simType == ICLASS_SIM_MODE_READER_ATTACK) { uint8_t mac_responses[USB_CMD_DATA_SIZE] = { 0 }; Dbprintf("Going into attack mode, %d CSNS sent", numberOfCSNS); // In this mode, a number of csns are within datain. We'll simulate each one, one at a time // in order to collect MAC's from the reader. This can later be used in an offline-attack // in order to obtain the keys, as in the "dismantling iclass"-paper. int i; for (i = 0; i < numberOfCSNS && i*16+16 <= USB_CMD_DATA_SIZE; i++) { // The usb data is 512 bytes, fitting 32 responses (8 byte CC + 4 Byte NR + 4 Byte MAC = 16 Byte response). memcpy(emulator, datain+(i*8), 8); if (doIClassSimulation(ICLASS_SIM_MODE_EXIT_AFTER_MAC, mac_responses+i*16)) { // Button pressed break; } Dbprintf("CSN: %02x %02x %02x %02x %02x %02x %02x %02x", datain[i*8+0], datain[i*8+1], datain[i*8+2], datain[i*8+3], datain[i*8+4], datain[i*8+5], datain[i*8+6], datain[i*8+7]); Dbprintf("NR,MAC: %02x %02x %02x %02x %02x %02x %02x %02x", mac_responses[i*16+ 8], mac_responses[i*16+ 9], mac_responses[i*16+10], mac_responses[i*16+11], mac_responses[i*16+12], mac_responses[i*16+13], mac_responses[i*16+14], mac_responses[i*16+15]); SpinDelay(100); // give the reader some time to prepare for next CSN } cmd_send(CMD_ACK, CMD_SIMULATE_TAG_ICLASS, i, 0, mac_responses, i*16); } else if (simType == ICLASS_SIM_MODE_FULL) { //This is 'full sim' mode, where we use the emulator storage for data. doIClassSimulation(ICLASS_SIM_MODE_FULL, NULL); } else { // We may want a mode here where we hardcode the csns to use (from proxclone). // That will speed things up a little, but not required just yet. Dbprintf("The mode is not implemented, reserved for future use"); } Dbprintf("Done..."); LED_A_OFF(); } /// THE READER CODE static void ReaderTransmitIClass(uint8_t *frame, int len, uint32_t *start_time) { CodeIso15693AsReader(frame, len); TransmitTo15693Tag(ToSend, ToSendMax, start_time); uint32_t end_time = *start_time + 32*(8*ToSendMax-4); // substract the 4 padding bits after EOF LogTrace_ISO15693(frame, len, *start_time*4, end_time*4, NULL, true); } static bool sendCmdGetResponseWithRetries(uint8_t* command, size_t cmdsize, uint8_t* resp, size_t max_resp_size, uint8_t expected_size, uint8_t retries, uint32_t start_time, uint32_t *eof_time) { while (retries-- > 0) { ReaderTransmitIClass(command, cmdsize, &start_time); if (expected_size == GetIso15693AnswerFromTag(resp, max_resp_size, ICLASS_READER_TIMEOUT_OTHERS, eof_time)) { return true; } } return false;//Error } /** * @brief Talks to an iclass tag, sends the commands to get CSN and CC. * @param card_data where the CSN and CC are stored for return * @return 0 = fail * 1 = Got CSN * 2 = Got CSN and CC */ static uint8_t handshakeIclassTag_ext(uint8_t *card_data, bool use_credit_key, uint32_t *eof_time) { uint8_t act_all[] = { 0x0a }; uint8_t identify[] = { 0x0c }; uint8_t select[] = { 0x81, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; uint8_t readcheck_cc[] = { 0x88, 0x02 }; if (use_credit_key) readcheck_cc[0] = 0x18; else readcheck_cc[0] = 0x88; uint8_t resp[ICLASS_BUFFER_SIZE]; uint8_t read_status = 0; uint32_t start_time = GetCountSspClk(); // Send act_all ReaderTransmitIClass(act_all, 1, &start_time); // Card present? if (GetIso15693AnswerFromTag(resp, sizeof(resp), ICLASS_READER_TIMEOUT_ACTALL, eof_time) < 0) return read_status;//Fail //Send Identify start_time = *eof_time + DELAY_ICLASS_VICC_TO_VCD_READER; ReaderTransmitIClass(identify, 1, &start_time); // FpgaDisableTracing(); // DEBUGGING //We expect a 10-byte response here, 8 byte anticollision-CSN and 2 byte CRC uint8_t len = GetIso15693AnswerFromTag(resp, sizeof(resp), ICLASS_READER_TIMEOUT_OTHERS, eof_time); if (len != 10) return read_status;//Fail //Copy the Anti-collision CSN to our select-packet memcpy(&select[1], resp, 8); //Select the card start_time = *eof_time + DELAY_ICLASS_VICC_TO_VCD_READER; ReaderTransmitIClass(select, sizeof(select), &start_time); //We expect a 10-byte response here, 8 byte CSN and 2 byte CRC len = GetIso15693AnswerFromTag(resp, sizeof(resp), ICLASS_READER_TIMEOUT_OTHERS, eof_time); if (len != 10) return read_status;//Fail //Success - level 1, we got CSN //Save CSN in response data memcpy(card_data, resp, 8); //Flag that we got to at least stage 1, read CSN read_status = 1; // Card selected, now read e-purse (cc) (only 8 bytes no CRC) start_time = *eof_time + DELAY_ICLASS_VICC_TO_VCD_READER; ReaderTransmitIClass(readcheck_cc, sizeof(readcheck_cc), &start_time); if (GetIso15693AnswerFromTag(resp, sizeof(resp), ICLASS_READER_TIMEOUT_OTHERS, eof_time) == 8) { //Save CC (e-purse) in response data memcpy(card_data+8, resp, 8); read_status++; } return read_status; } static uint8_t handshakeIclassTag(uint8_t *card_data, uint32_t *eof_time) { return handshakeIclassTag_ext(card_data, false, eof_time); } // Reader iClass Anticollission void ReaderIClass(uint8_t arg0) { uint8_t card_data[6 * 8] = {0}; memset(card_data, 0xFF, sizeof(card_data)); uint8_t last_csn[8] = {0,0,0,0,0,0,0,0}; uint8_t resp[ICLASS_BUFFER_SIZE]; memset(resp, 0xFF, sizeof(resp)); //Read conf block CRC(0x01) => 0xfa 0x22 uint8_t readConf[] = { ICLASS_CMD_READ_OR_IDENTIFY, 0x01, 0xfa, 0x22}; //Read App Issuer Area block CRC(0x05) => 0xde 0x64 uint8_t readAA[] = { ICLASS_CMD_READ_OR_IDENTIFY, 0x05, 0xde, 0x64}; int read_status= 0; uint8_t result_status = 0; // flag to read until one tag is found successfully bool abort_after_read = arg0 & FLAG_ICLASS_READER_ONLY_ONCE; // flag to only try 5 times to find one tag then return bool try_once = arg0 & FLAG_ICLASS_READER_ONE_TRY; // if neither abort_after_read nor try_once then continue reading until button pressed. bool use_credit_key = arg0 & FLAG_ICLASS_READER_CEDITKEY; // test flags for what blocks to be sure to read uint8_t flagReadConfig = arg0 & FLAG_ICLASS_READER_CONF; uint8_t flagReadCC = arg0 & FLAG_ICLASS_READER_CC; uint8_t flagReadAA = arg0 & FLAG_ICLASS_READER_AA; set_tracing(true); clear_trace(); Iso15693InitReader(); StartCountSspClk(); uint32_t start_time = 0; uint32_t eof_time = 0; uint16_t tryCnt = 0; bool userCancelled = BUTTON_PRESS() || usb_poll_validate_length(); while (!userCancelled) { // if only looking for one card try 2 times if we missed it the first time if (try_once && tryCnt > 2) { break; } tryCnt++; if (!get_tracing()) { DbpString("Trace full"); break; } WDT_HIT(); read_status = handshakeIclassTag_ext(card_data, use_credit_key, &eof_time); if (read_status == 0) continue; if (read_status == 1) result_status = FLAG_ICLASS_READER_CSN; if (read_status == 2) result_status = FLAG_ICLASS_READER_CSN | FLAG_ICLASS_READER_CC; start_time = eof_time + DELAY_ICLASS_VICC_TO_VCD_READER; // handshakeIclass returns CSN|CC, but the actual block // layout is CSN|CONFIG|CC, so here we reorder the data, // moving CC forward 8 bytes memcpy(card_data+16, card_data+8, 8); //Read block 1, config if (flagReadConfig) { if (sendCmdGetResponseWithRetries(readConf, sizeof(readConf), resp, sizeof(resp), 10, 10, start_time, &eof_time)) { result_status |= FLAG_ICLASS_READER_CONF; memcpy(card_data+8, resp, 8); } else { Dbprintf("Failed to dump config block"); } start_time = eof_time + DELAY_ICLASS_VICC_TO_VCD_READER; } //Read block 5, AA if (flagReadAA) { if (sendCmdGetResponseWithRetries(readAA, sizeof(readAA), resp, sizeof(resp), 10, 10, start_time, &eof_time)) { result_status |= FLAG_ICLASS_READER_AA; memcpy(card_data + (8*5), resp, 8); } else { //Dbprintf("Failed to dump AA block"); } } // 0 : CSN // 1 : Configuration // 2 : e-purse // 3 : kd / debit / aa2 (write-only) // 4 : kc / credit / aa1 (write-only) // 5 : AIA, Application issuer area //Then we can 'ship' back the 6 * 8 bytes of data, // with 0xFF:s in block 3 and 4. LED_B_ON(); //Send back to client, but don't bother if we already sent this - // only useful if looping in arm (not try_once && not abort_after_read) if (memcmp(last_csn, card_data, 8) != 0) { // If caller requires that we get Conf, CC, AA, continue until we got it if ( (result_status ^ FLAG_ICLASS_READER_CSN ^ flagReadConfig ^ flagReadCC ^ flagReadAA) == 0) { cmd_send(CMD_ACK, result_status, 0, 0, card_data, sizeof(card_data)); if (abort_after_read) { FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); LED_A_OFF(); LED_B_OFF(); return; } //Save that we already sent this.... memcpy(last_csn, card_data, 8); } } LED_B_OFF(); userCancelled = BUTTON_PRESS() || usb_poll_validate_length(); } if (userCancelled) { cmd_send(CMD_ACK, 0xFF, 0, 0, card_data, 0); } else { cmd_send(CMD_ACK, 0, 0, 0, card_data, 0); } LED_A_OFF(); } void ReaderIClass_Replay(uint8_t arg0, uint8_t *MAC) { uint8_t card_data[USB_CMD_DATA_SIZE]={0}; uint16_t block_crc_LUT[255] = {0}; //Generate a lookup table for block crc for (int block = 0; block < 255; block++){ char bl = block; block_crc_LUT[block] = iclass_crc16(&bl ,1); } //Dbprintf("Lookup table: %02x %02x %02x" ,block_crc_LUT[0],block_crc_LUT[1],block_crc_LUT[2]); uint8_t check[] = { 0x05, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; uint8_t read[] = { 0x0c, 0x00, 0x00, 0x00 }; uint16_t crc = 0; uint8_t cardsize = 0; uint8_t mem = 0; static struct memory_t { int k16; int book; int k2; int lockauth; int keyaccess; } memory; uint8_t resp[ICLASS_BUFFER_SIZE]; set_tracing(true); clear_trace(); Iso15693InitReader(); StartCountSspClk(); uint32_t start_time = 0; uint32_t eof_time = 0; while (!BUTTON_PRESS()) { WDT_HIT(); if (!get_tracing()) { DbpString("Trace full"); break; } uint8_t read_status = handshakeIclassTag(card_data, &eof_time); start_time = eof_time + DELAY_ICLASS_VICC_TO_VCD_READER; if (read_status < 2) continue; //for now replay captured auth (as cc not updated) memcpy(check+5, MAC, 4); if (!sendCmdGetResponseWithRetries(check, sizeof(check), resp, sizeof(resp), 4, 5, start_time, &eof_time)) { start_time = eof_time + DELAY_ICLASS_VICC_TO_VCD_READER; Dbprintf("Error: Authentication Fail!"); continue; } start_time = eof_time + DELAY_ICLASS_VICC_TO_VCD_READER; //first get configuration block (block 1) crc = block_crc_LUT[1]; read[1] = 1; read[2] = crc >> 8; read[3] = crc & 0xff; if (!sendCmdGetResponseWithRetries(read, sizeof(read), resp, sizeof(resp), 10, 10, start_time, &eof_time)) { start_time = eof_time + DELAY_ICLASS_VICC_TO_VCD_READER; Dbprintf("Dump config (block 1) failed"); continue; } start_time = eof_time + DELAY_ICLASS_VICC_TO_VCD_READER; mem = resp[5]; memory.k16 = (mem & 0x80); memory.book = (mem & 0x20); memory.k2 = (mem & 0x8); memory.lockauth = (mem & 0x2); memory.keyaccess = (mem & 0x1); cardsize = memory.k16 ? 255 : 32; WDT_HIT(); //Set card_data to all zeroes, we'll fill it with data memset(card_data, 0x0, USB_CMD_DATA_SIZE); uint8_t failedRead = 0; uint32_t stored_data_length = 0; //then loop around remaining blocks for (int block = 0; block < cardsize; block++) { read[1] = block; crc = block_crc_LUT[block]; read[2] = crc >> 8; read[3] = crc & 0xff; if (sendCmdGetResponseWithRetries(read, sizeof(read), resp, sizeof(resp), 10, 10, start_time, &eof_time)) { start_time = eof_time + DELAY_ICLASS_VICC_TO_VCD_READER; Dbprintf(" %02x: %02x %02x %02x %02x %02x %02x %02x %02x", block, resp[0], resp[1], resp[2], resp[3], resp[4], resp[5], resp[6], resp[7]); //Fill up the buffer memcpy(card_data+stored_data_length, resp, 8); stored_data_length += 8; if (stored_data_length +8 > USB_CMD_DATA_SIZE) { //Time to send this off and start afresh cmd_send(CMD_ACK, stored_data_length,//data length failedRead,//Failed blocks? 0,//Not used ATM card_data, stored_data_length); //reset stored_data_length = 0; failedRead = 0; } } else { failedRead = 1; stored_data_length += 8;//Otherwise, data becomes misaligned Dbprintf("Failed to dump block %d", block); } } //Send off any remaining data if (stored_data_length > 0) { cmd_send(CMD_ACK, stored_data_length,//data length failedRead,//Failed blocks? 0,//Not used ATM card_data, stored_data_length); } //If we got here, let's break break; } //Signal end of transmission cmd_send(CMD_ACK, 0,//data length 0,//Failed blocks? 0,//Not used ATM card_data, 0); FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); LED_A_OFF(); } void iClass_Authentication(uint8_t *MAC) { uint8_t check[] = { ICLASS_CMD_CHECK_KD, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; uint8_t resp[ICLASS_BUFFER_SIZE]; memcpy(check+5, MAC, 4); bool isOK; uint32_t eof_time; isOK = sendCmdGetResponseWithRetries(check, sizeof(check), resp, sizeof(resp), 4, 6, 0, &eof_time); cmd_send(CMD_ACK,isOK, 0, 0, 0, 0); } static bool iClass_ReadBlock(uint8_t blockNo, uint8_t *readdata) { uint8_t readcmd[] = {ICLASS_CMD_READ_OR_IDENTIFY, blockNo, 0x00, 0x00}; //0x88, 0x00 // can i use 0C? char bl = blockNo; uint16_t rdCrc = iclass_crc16(&bl, 1); readcmd[2] = rdCrc >> 8; readcmd[3] = rdCrc & 0xff; uint8_t resp[10]; bool isOK = false; uint32_t eof_time; //readcmd[1] = blockNo; isOK = sendCmdGetResponseWithRetries(readcmd, sizeof(readcmd), resp, sizeof(resp), 10, 10, 0, &eof_time); memcpy(readdata, resp, sizeof(resp)); return isOK; } void iClass_ReadBlk(uint8_t blockno) { uint8_t readblockdata[] = {0,0,0,0,0,0,0,0,0,0}; bool isOK = false; isOK = iClass_ReadBlock(blockno, readblockdata); cmd_send(CMD_ACK, isOK, 0, 0, readblockdata, 8); FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); } void iClass_Dump(uint8_t blockno, uint8_t numblks) { uint8_t readblockdata[] = {0,0,0,0,0,0,0,0,0,0}; bool isOK = false; uint8_t blkCnt = 0; BigBuf_free(); uint8_t *dataout = BigBuf_malloc(255*8); if (dataout == NULL) { Dbprintf("out of memory"); FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); LED_D_OFF(); cmd_send(CMD_ACK, 0, 1, 0, 0, 0); LED_A_OFF(); return; } memset(dataout, 0xFF, 255*8); for ( ; blkCnt < numblks; blkCnt++) { isOK = iClass_ReadBlock(blockno+blkCnt, readblockdata); if (!isOK || (readblockdata[0] == 0xBB || readblockdata[7] == 0xBB || readblockdata[2] == 0xBB)) { //try again isOK = iClass_ReadBlock(blockno+blkCnt, readblockdata); if (!isOK) { Dbprintf("Block %02X failed to read", blkCnt+blockno); break; } } memcpy(dataout + (blkCnt*8), readblockdata, 8); } //return pointer to dump memory in arg3 cmd_send(CMD_ACK, isOK, blkCnt, BigBuf_max_traceLen(), 0, 0); FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); LEDsoff(); BigBuf_free(); } static bool iClass_WriteBlock_ext(uint8_t blockNo, uint8_t *data) { uint8_t write[] = { ICLASS_CMD_UPDATE, blockNo, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; //uint8_t readblockdata[10]; //write[1] = blockNo; memcpy(write+2, data, 12); // data + mac char *wrCmd = (char *)(write+1); uint16_t wrCrc = iclass_crc16(wrCmd, 13); write[14] = wrCrc >> 8; write[15] = wrCrc & 0xff; uint8_t resp[10]; bool isOK = false; uint32_t eof_time = 0; isOK = sendCmdGetResponseWithRetries(write, sizeof(write), resp, sizeof(resp), 10, 10, 0, &eof_time); uint32_t start_time = eof_time + DELAY_ICLASS_VICC_TO_VCD_READER; if (isOK) { //if reader responded correctly //Dbprintf("WriteResp: %02X%02X%02X%02X%02X%02X%02X%02X%02X%02X",resp[0],resp[1],resp[2],resp[3],resp[4],resp[5],resp[6],resp[7],resp[8],resp[9]); if (memcmp(write+2, resp, 8)) { //if response is not equal to write values if (blockNo != 3 && blockNo != 4) { //if not programming key areas (note key blocks don't get programmed with actual key data it is xor data) //error try again isOK = sendCmdGetResponseWithRetries(write, sizeof(write), resp, sizeof(resp), 10, 10, start_time, &eof_time); } } } return isOK; } void iClass_WriteBlock(uint8_t blockNo, uint8_t *data) { bool isOK = iClass_WriteBlock_ext(blockNo, data); if (isOK){ Dbprintf("Write block [%02x] successful", blockNo); } else { Dbprintf("Write block [%02x] failed", blockNo); } cmd_send(CMD_ACK, isOK, 0, 0, 0, 0); FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); } void iClass_Clone(uint8_t startblock, uint8_t endblock, uint8_t *data) { int i; int written = 0; int total_block = (endblock - startblock) + 1; for (i = 0; i < total_block; i++) { // block number if (iClass_WriteBlock_ext(i+startblock, data + (i*12))){ Dbprintf("Write block [%02x] successful", i + startblock); written++; } else { if (iClass_WriteBlock_ext(i+startblock, data + (i*12))){ Dbprintf("Write block [%02x] successful", i + startblock); written++; } else { Dbprintf("Write block [%02x] failed", i + startblock); } } } if (written == total_block) Dbprintf("Clone complete"); else Dbprintf("Clone incomplete"); cmd_send(CMD_ACK, 1, 0, 0, 0, 0); FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); LEDsoff(); }