fixed error "Failed to get convolution algorithm" on some systems

fixed error "dll load failed" on some systems
Expanded eyebrows line of face masks. It does not affect mask of FAN-x converter mode.
This commit is contained in:
iperov 2019-08-11 11:17:22 +04:00
parent 582c974851
commit b72d5a3f9a
15 changed files with 367 additions and 222 deletions

View file

@ -21,7 +21,8 @@ class ConverterAvatar(Converter):
#dummy predict and sleep, tensorflow caching kernels. If remove it, conversion speed will be x2 slower
predictor_func ( np.zeros ( (predictor_input_size,predictor_input_size,3), dtype=np.float32 ),
np.zeros ( (predictor_input_size,predictor_input_size,1), dtype=np.float32 ) )
np.zeros ( (predictor_input_size,predictor_input_size,3), dtype=np.float32 ),
np.zeros ( (predictor_input_size,predictor_input_size,3), dtype=np.float32 ) )
time.sleep(2)
predictor_func_host, predictor_func = SubprocessFunctionCaller.make_pair(predictor_func)
@ -33,38 +34,28 @@ class ConverterAvatar(Converter):
self.predictor_func_host.obj.process_messages()
#override
def cli_convert_face (self, img_bgr, img_face_landmarks, debug, avaperator_face_bgr=None, **kwargs):
def cli_convert_face (self, f0, f0_lmrk, f1, f1_lmrk, f2, f2_lmrk, debug, **kwargs):
if debug:
debugs = [img_bgr.copy()]
debugs = []
img_size = img_bgr.shape[1], img_bgr.shape[0]
inp_size = self.predictor_input_size
img_face_mask_a = LandmarksProcessor.get_image_hull_mask (img_bgr.shape, img_face_landmarks)
img_face_mask_aaa = np.repeat(img_face_mask_a, 3, -1)
f0_mat = LandmarksProcessor.get_transform_mat (f0_lmrk, inp_size, face_type=FaceType.FULL_NO_ALIGN)
f1_mat = LandmarksProcessor.get_transform_mat (f1_lmrk, inp_size, face_type=FaceType.FULL_NO_ALIGN)
f2_mat = LandmarksProcessor.get_transform_mat (f2_lmrk, inp_size, face_type=FaceType.FULL_NO_ALIGN)
output_size = self.predictor_input_size
face_mat = LandmarksProcessor.get_transform_mat (img_face_landmarks, output_size, face_type=FaceType.FULL)
inp_f0 = cv2.warpAffine( f0, f0_mat, (inp_size, inp_size), flags=cv2.INTER_CUBIC )
inp_f1 = cv2.warpAffine( f1, f1_mat, (inp_size, inp_size), flags=cv2.INTER_CUBIC )
inp_f2 = cv2.warpAffine( f2, f2_mat, (inp_size, inp_size), flags=cv2.INTER_CUBIC )
dst_face_mask_a_0 = cv2.warpAffine( img_face_mask_a, face_mat, (output_size, output_size), flags=cv2.INTER_CUBIC )
prd_f = self.predictor_func ( inp_f0, inp_f1, inp_f2 )
predictor_input_dst_face_mask_a_0 = cv2.resize (dst_face_mask_a_0, (self.predictor_input_size,self.predictor_input_size), cv2.INTER_CUBIC )
prd_inp_dst_face_mask_a = predictor_input_dst_face_mask_a_0[...,np.newaxis]
out_img = np.clip(prd_f, 0.0, 1.0)
prd_inp_avaperator_face_bgr = cv2.resize (avaperator_face_bgr, (self.predictor_input_size,self.predictor_input_size), cv2.INTER_CUBIC )
prd_face_bgr = self.predictor_func ( prd_inp_avaperator_face_bgr, prd_inp_dst_face_mask_a )
out_img = img_bgr.copy()
out_img = cv2.warpAffine( prd_face_bgr, face_mat, img_size, out_img, cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4, cv2.BORDER_TRANSPARENT )
out_img = np.clip(out_img, 0.0, 1.0)
out_img = np.concatenate ( [cv2.resize ( inp_f1, (prd_f.shape[1], prd_f.shape[0]) ),
out_img], axis=1 )
if debug:
debugs += [out_img.copy()]
out_img = np.clip( img_bgr*(1-img_face_mask_aaa) + (out_img*img_face_mask_aaa) , 0, 1.0 )
if debug:
debugs += [out_img.copy()]
return debugs if debug else out_img

View file

@ -4,9 +4,9 @@ class FaceType(IntEnum):
HALF = 0,
FULL = 1,
HEAD = 2,
AVATAR = 3, #centered nose only
MARK_ONLY = 4, #no align at all, just embedded faceinfo
QTY = 5
FULL_NO_ALIGN = 5,
MARK_ONLY = 10, #no align at all, just embedded faceinfo
@staticmethod
def fromString (s):
@ -17,17 +17,17 @@ class FaceType(IntEnum):
@staticmethod
def toString (face_type):
return to_string_list[face_type]
return to_string_dict[face_type]
from_string_dict = {'half_face': FaceType.HALF,
'full_face': FaceType.FULL,
'head' : FaceType.HEAD,
'avatar' : FaceType.AVATAR,
'mark_only' : FaceType.MARK_ONLY,
'full_face_no_align' : FaceType.FULL_NO_ALIGN,
}
to_string_dict = { FaceType.HALF : 'half_face',
FaceType.FULL : 'full_face',
FaceType.HEAD : 'head',
FaceType.MARK_ONLY :'mark_only',
FaceType.FULL_NO_ALIGN : 'full_face_no_align'
}
to_string_list = [ 'half_face',
'full_face',
'head',
'avatar',
'mark_only'
]

View file

@ -109,10 +109,19 @@ landmarks_68_3D = np.array( [
[0.205322 , 31.408738 , -21.903670 ],
[-7.198266 , 30.844876 , -20.328022 ] ], dtype=np.float32)
def transform_points(points, mat, invert=False):
if invert:
mat = cv2.invertAffineTransform (mat)
points = np.expand_dims(points, axis=1)
points = cv2.transform(points, mat, points.shape)
points = np.squeeze(points)
return points
def get_transform_mat (image_landmarks, output_size, face_type, scale=1.0):
if not isinstance(image_landmarks, np.ndarray):
image_landmarks = np.array (image_landmarks)
"""
if face_type == FaceType.AVATAR:
centroid = np.mean (image_landmarks, axis=0)
@ -128,6 +137,12 @@ def get_transform_mat (image_landmarks, output_size, face_type, scale=1.0):
mat = mat * scale * (output_size / 3)
mat[:,2] += output_size / 2
else:
"""
remove_align = False
if face_type == FaceType.FULL_NO_ALIGN:
face_type = FaceType.FULL
remove_align = True
if face_type == FaceType.HALF:
padding = 0
elif face_type == FaceType.FULL:
@ -143,61 +158,58 @@ def get_transform_mat (image_landmarks, output_size, face_type, scale=1.0):
mat *= (1 / scale)
mat[:,2] += -output_size*( ( (1 / scale) - 1.0 ) / 2 )
if remove_align:
bbox = transform_points ( [ (0,0), (0,output_size-1), (output_size-1, output_size-1), (output_size-1,0) ], mat, True)
area = mathlib.polygon_area(bbox[:,0], bbox[:,1] )
side = math.sqrt(area) / 2
center = transform_points ( [(output_size/2,output_size/2)], mat, True)
pts1 = np.float32([ center+[-side,-side], center+[side,-side], center+[-side,side] ])
pts2 = np.float32([[0,0],[output_size-1,0],[0,output_size-1]])
mat = cv2.getAffineTransform(pts1,pts2)
return mat
def transform_points(points, mat, invert=False):
if invert:
mat = cv2.invertAffineTransform (mat)
points = np.expand_dims(points, axis=1)
points = cv2.transform(points, mat, points.shape)
points = np.squeeze(points)
return points
def get_image_hull_mask (image_shape, image_landmarks, ie_polys=None):
if len(image_landmarks) != 68:
raise Exception('get_image_hull_mask works only with 68 landmarks')
int_lmrks = np.array(image_landmarks, dtype=np.int)
int_lmrks = np.array(image_landmarks.copy(), dtype=np.int)
hull_mask = np.zeros(image_shape[0:2]+(1,),dtype=np.float32)
cv2.fillConvexPoly( hull_mask, cv2.convexHull(
np.concatenate ( (int_lmrks[0:9],
int_lmrks[17:18]))) , (1,) )
# #nose
ml_pnt = (int_lmrks[36] + int_lmrks[0]) // 2
mr_pnt = (int_lmrks[16] + int_lmrks[45]) // 2
cv2.fillConvexPoly( hull_mask, cv2.convexHull(
np.concatenate ( (int_lmrks[8:17],
int_lmrks[26:27]))) , (1,) )
# mid points between the mid points and eye
ql_pnt = (int_lmrks[36] + ml_pnt) // 2
qr_pnt = (int_lmrks[45] + mr_pnt) // 2
cv2.fillConvexPoly( hull_mask, cv2.convexHull(
np.concatenate ( (int_lmrks[17:20],
int_lmrks[8:9]))) , (1,) )
# Top of the eye arrays
bot_l = np.array((ql_pnt, int_lmrks[36], int_lmrks[37], int_lmrks[38], int_lmrks[39]))
bot_r = np.array((int_lmrks[42], int_lmrks[43], int_lmrks[44], int_lmrks[45], qr_pnt))
cv2.fillConvexPoly( hull_mask, cv2.convexHull(
np.concatenate ( (int_lmrks[24:27],
int_lmrks[8:9]))) , (1,) )
# Eyebrow arrays
top_l = int_lmrks[17:22]
top_r = int_lmrks[22:27]
cv2.fillConvexPoly( hull_mask, cv2.convexHull(
np.concatenate ( (int_lmrks[19:25],
int_lmrks[8:9],
))) , (1,) )
# Adjust eyebrow arrays
int_lmrks[17:22] = top_l + ((top_l - bot_l) // 2)
int_lmrks[22:27] = top_r + ((top_r - bot_r) // 2)
cv2.fillConvexPoly( hull_mask, cv2.convexHull(
np.concatenate ( (int_lmrks[17:22],
int_lmrks[27:28],
int_lmrks[31:36],
int_lmrks[8:9]
))) , (1,) )
r_jaw = (int_lmrks[0:9], int_lmrks[17:18])
l_jaw = (int_lmrks[8:17], int_lmrks[26:27])
r_cheek = (int_lmrks[17:20], int_lmrks[8:9])
l_cheek = (int_lmrks[24:27], int_lmrks[8:9])
nose_ridge = (int_lmrks[19:25], int_lmrks[8:9],)
r_eye = (int_lmrks[17:22], int_lmrks[27:28], int_lmrks[31:36], int_lmrks[8:9])
l_eye = (int_lmrks[22:27], int_lmrks[27:28], int_lmrks[31:36], int_lmrks[8:9])
nose = (int_lmrks[27:31], int_lmrks[31:36])
parts = [r_jaw, l_jaw, r_cheek, l_cheek, nose_ridge, r_eye, l_eye, nose]
cv2.fillConvexPoly( hull_mask, cv2.convexHull(
np.concatenate ( (int_lmrks[22:27],
int_lmrks[27:28],
int_lmrks[31:36],
int_lmrks[8:9]
))) , (1,) )
#nose
cv2.fillConvexPoly( hull_mask, cv2.convexHull(int_lmrks[27:36]), (1,) )
for item in parts:
merged = np.concatenate(item)
cv2.fillConvexPoly(hull_mask, cv2.convexHull(merged), 1)
if ie_polys is not None:
ie_polys.overlay_mask(hull_mask)

View file

@ -40,7 +40,7 @@ if __name__ == "__main__":
p.add_argument('--input-dir', required=True, action=fixPathAction, dest="input_dir", help="Input directory. A directory containing the files you wish to process.")
p.add_argument('--output-dir', required=True, action=fixPathAction, dest="output_dir", help="Output directory. This is where the extracted files will be stored.")
p.add_argument('--debug-dir', action=fixPathAction, dest="debug_dir", help="Writes debug images to this directory.")
p.add_argument('--face-type', dest="face_type", choices=['half_face', 'full_face', 'head', 'avatar', 'mark_only'], default='full_face', help="Default 'full_face'. Don't change this option, currently all models uses 'full_face'")
p.add_argument('--face-type', dest="face_type", choices=['half_face', 'full_face', 'head', 'full_face_no_align', 'mark_only'], default='full_face', help="Default 'full_face'. Don't change this option, currently all models uses 'full_face'")
p.add_argument('--detector', dest="detector", choices=['dlib','mt','s3fd','manual'], default='dlib', help="Type of detector. Default 'dlib'. 'mt' (MTCNNv1) - faster, better, almost no jitter, perfect for gathering thousands faces for src-set. It is also good for dst-set, but can generate false faces in frames where main face not recognized! In this case for dst-set use either 'dlib' with '--manual-fix' or '--detector manual'. Manual detector suitable only for dst-set.")
p.add_argument('--multi-gpu', action="store_true", dest="multi_gpu", default=False, help="Enables multi GPU.")
p.add_argument('--manual-fix', action="store_true", dest="manual_fix", default=False, help="Enables manual extract only frames where faces were not recognized.")
@ -151,7 +151,6 @@ if __name__ == "__main__":
args = {'input_dir' : arguments.input_dir,
'output_dir' : arguments.output_dir,
'aligned_dir' : arguments.aligned_dir,
'avaperator_aligned_dir' : arguments.avaperator_aligned_dir,
'model_dir' : arguments.model_dir,
'model_name' : arguments.model_name,
'debug' : arguments.debug,
@ -166,7 +165,6 @@ if __name__ == "__main__":
p.add_argument('--input-dir', required=True, action=fixPathAction, dest="input_dir", help="Input directory. A directory containing the files you wish to process.")
p.add_argument('--output-dir', required=True, action=fixPathAction, dest="output_dir", help="Output directory. This is where the converted files will be stored.")
p.add_argument('--aligned-dir', action=fixPathAction, dest="aligned_dir", help="Aligned directory. This is where the extracted of dst faces stored.")
p.add_argument('--avaperator-aligned-dir', action=fixPathAction, dest="avaperator_aligned_dir", help="Only for AVATAR model. Directory of aligned avatar operator faces.")
p.add_argument('--model-dir', required=True, action=fixPathAction, dest="model_dir", help="Model dir.")
p.add_argument('--model', required=True, dest="model_name", choices=Path_utils.get_all_dir_names_startswith ( Path(__file__).parent / 'models' , 'Model_'), help="Type of model")
p.add_argument('--debug', action="store_true", dest="debug", default=False, help="Debug converter.")

View file

@ -28,9 +28,9 @@ class ConvertSubprocessor(Subprocessor):
self.device_idx = client_dict['device_idx']
self.device_name = client_dict['device_name']
self.converter = client_dict['converter']
self.input_data = client_dict['input_data']
self.output_path = Path(client_dict['output_dir']) if 'output_dir' in client_dict.keys() else None
self.alignments = client_dict['alignments']
self.avatar_image_paths = client_dict['avatar_image_paths']
self.debug = client_dict['debug']
#transfer and set stdin in order to work code.interact in debug subprocess
@ -50,15 +50,18 @@ class ConvertSubprocessor(Subprocessor):
#override
def process_data(self, data):
idx, filename = data
filename_path = Path(filename)
files_processed = 1
faces_processed = 0
output_filename_path = self.output_path / (filename_path.stem + '.png')
idx, = data
filename = self.input_data[idx][0]
filename_path = Path(filename)
if (self.converter.type == Converter.TYPE_FACE or self.converter.type == Converter.TYPE_FACE_AVATAR ) \
and filename_path.stem not in self.alignments.keys():
output_filename_path = self.output_path / (filename_path.stem + '.png')
image = None
if self.converter.type == Converter.TYPE_FACE:
if filename_path.stem not in self.alignments.keys():
if not self.debug:
self.log_info ( 'no faces found for %s, copying without faces' % (filename_path.name) )
@ -71,44 +74,6 @@ class ConvertSubprocessor(Subprocessor):
image = (cv2_imread(str(filename_path)) / 255.0).astype(np.float32)
image = normalize_channels (image, 3)
if self.converter.type == Converter.TYPE_IMAGE:
image = self.converter.cli_convert_image(image, None, self.debug)
if self.debug:
return (1, image)
faces_processed = 1
elif self.converter.type == Converter.TYPE_IMAGE_WITH_LANDMARKS:
#currently unused
if filename_path.suffix == '.png':
dflimg = DFLPNG.load( str(filename_path) )
elif filename_path.suffix == '.jpg':
dflimg = DFLJPG.load ( str(filename_path) )
else:
dflimg = None
if dflimg is not None:
image_landmarks = dflimg.get_landmarks()
image = self.converter.convert_image(image, image_landmarks, self.debug)
if self.debug:
raise NotImplementedError
#for img in image:
# io.show_image ('Debug convert', img )
# cv2.waitKey(0)
faces_processed = 1
else:
self.log_err ("%s is not a dfl image file" % (filename_path.name) )
elif self.converter.type == Converter.TYPE_FACE or self.converter.type == Converter.TYPE_FACE_AVATAR:
ava_face = None
if self.converter.type == Converter.TYPE_FACE_AVATAR:
ava_filename_path = self.avatar_image_paths[idx]
ava_face = (cv2_imread(str(ava_filename_path)) / 255.0).astype(np.float32)
ava_face = normalize_channels (ava_face, 3)
faces = self.alignments[filename_path.stem]
if self.debug:
@ -120,9 +85,9 @@ class ConvertSubprocessor(Subprocessor):
self.log_info ( '\nConverting face_num [%d] in file [%s]' % (face_num, filename_path) )
if self.debug:
debug_images += self.converter.cli_convert_face(image, image_landmarks, self.debug, avaperator_face_bgr=ava_face)
debug_images += self.converter.cli_convert_face(image, image_landmarks, self.debug)
else:
image = self.converter.cli_convert_face(image, image_landmarks, self.debug, avaperator_face_bgr=ava_face)
image = self.converter.cli_convert_face(image, image_landmarks, self.debug)
except Exception as e:
e_str = traceback.format_exc()
@ -135,29 +100,60 @@ class ConvertSubprocessor(Subprocessor):
return (1, debug_images)
faces_processed = len(faces)
elif self.converter.type == Converter.TYPE_IMAGE:
image = (cv2_imread(str(filename_path)) / 255.0).astype(np.float32)
image = normalize_channels (image, 3)
image = self.converter.cli_convert_image(image, None, self.debug)
if not self.debug:
if self.debug:
return (1, image)
faces_processed = 1
elif self.converter.type == Converter.TYPE_FACE_AVATAR:
max_idx = len(self.input_data)-1
i0 = max (idx-1, 0)
i1 = idx
i2 = min (max_idx, idx+1)
f0 = (cv2_imread( self.input_data[i0][0] ) / 255.0).astype(np.float32)
f0_lmrk = self.input_data[i0][1]
f1 = (cv2_imread( self.input_data[i1][0] ) / 255.0).astype(np.float32)
f1_lmrk = self.input_data[i1][1]
f2 = (cv2_imread( self.input_data[i2][0] ) / 255.0).astype(np.float32)
f2_lmrk = self.input_data[i2][1]
f0, f1, f2 = [ normalize_channels (f, 3) for f in [f0,f1,f2] ]
image = self.converter.cli_convert_face(f0, f0_lmrk, f1, f1_lmrk, f2, f2_lmrk, self.debug)
output_filename_path = self.output_path / self.input_data[idx][2]
if self.debug:
return (1, image)
faces_processed = 1
if image is not None and not self.debug:
cv2_imwrite (str(output_filename_path), (image*255).astype(np.uint8) )
return (0, files_processed, faces_processed)
#overridable
def get_data_name (self, data):
#return string identificator of your data
idx, filename = data
return filename
idx, = data
return self.input_data[idx][0]
#override
def __init__(self, converter, input_path_image_paths, output_path, alignments, avatar_image_paths=None, debug = False):
def __init__(self, converter, input_data, output_path, alignments, debug = False):
super().__init__('Converter', ConvertSubprocessor.Cli, 86400 if debug == True else 60)
self.converter = converter
self.input_data = self.input_path_image_paths = input_path_image_paths
self.input_data = input_data
self.input_data_idxs = [ *range(len(self.input_data)) ]
self.output_path = output_path
self.alignments = alignments
self.avatar_image_paths = avatar_image_paths
self.debug = debug
self.files_processed = 0
@ -171,9 +167,9 @@ class ConvertSubprocessor(Subprocessor):
yield 'CPU%d' % (i), {}, {'device_idx': i,
'device_name': 'CPU%d' % (i),
'converter' : self.converter,
'input_data' : self.input_data,
'output_dir' : str(self.output_path),
'alignments' : self.alignments,
'avatar_image_paths' : self.avatar_image_paths,
'debug': self.debug,
'stdin_fd': sys.stdin.fileno() if self.debug else None
}
@ -196,12 +192,12 @@ class ConvertSubprocessor(Subprocessor):
def get_data(self, host_dict):
if len (self.input_data_idxs) > 0:
idx = self.input_data_idxs.pop(0)
return (idx, self.input_data[idx])
return (idx, )
return None
#override
def on_data_return (self, host_dict, data):
idx, filename = data
idx, = data
self.input_data_idxs.insert(0, idx)
#override
@ -253,9 +249,9 @@ def main (args, device_args):
converter = model.get_converter()
input_path_image_paths = Path_utils.get_image_paths(input_path)
alignments = None
avatar_image_paths = None
if converter.type == Converter.TYPE_FACE or converter.type == Converter.TYPE_FACE_AVATAR:
if converter.type == Converter.TYPE_FACE:
if aligned_dir is None:
io.log_err('Aligned directory not found. Please ensure it exists.')
return
@ -287,21 +283,15 @@ def main (args, device_args):
alignments[ source_filename_stem ] = []
alignments[ source_filename_stem ].append (dflimg.get_source_landmarks())
#avatar_alignments += [ ( str(filepath), dflimg.get_source_landmarks(), dflimg.get_source_filename() ) ]
input_data = [ (p,) for p in input_path_image_paths ]
elif converter.type == Converter.TYPE_FACE_AVATAR:
if converter.type == Converter.TYPE_FACE_AVATAR:
if avaperator_aligned_dir is None:
io.log_err('Avatar operator aligned directory not found. Please ensure it exists.')
return
input_data = []
for filepath in io.progress_bar_generator(input_path_image_paths, "Collecting info"):
filepath = Path(filepath)
avaperator_aligned_path = Path(avaperator_aligned_dir)
if not avaperator_aligned_path.exists():
io.log_err('Avatar operator aligned directory not found. Please ensure it exists.')
return
avatar_image_paths = []
for filename in io.progress_bar_generator( Path_utils.get_image_paths(avaperator_aligned_path) , "Sorting avaperator faces"):
filepath = Path(filename)
if filepath.suffix == '.png':
dflimg = DFLPNG.load( str(filepath) )
elif filepath.suffix == '.jpg':
@ -310,22 +300,19 @@ def main (args, device_args):
dflimg = None
if dflimg is None:
io.log_err ("Fatal error: %s is not a dfl image file" % (filepath.name) )
return
io.log_err ("%s is not a dfl image file" % (filepath.name) )
continue
input_data += [ ( str(filepath), dflimg.get_landmarks(), dflimg.get_source_filename() ) ]
avatar_image_paths += [ (filename, dflimg.get_source_filename() ) ]
avatar_image_paths = [ p[0] for p in sorted(avatar_image_paths, key=operator.itemgetter(1)) ]
if len(input_path_image_paths) < len(avatar_image_paths):
io.log_err("Input faces count must be >= avatar operator faces count.")
return
input_data = sorted(input_data, key=operator.itemgetter(2))
else:
input_data = [ (p,) for p in input_path_image_paths ]
files_processed, faces_processed = ConvertSubprocessor (
converter = converter,
input_path_image_paths = input_path_image_paths,
input_data = input_data,
output_path = output_path,
alignments = alignments,
avatar_image_paths = avatar_image_paths,
debug = args.get('debug',False)
).run()
@ -389,3 +376,29 @@ if model_name == 'AVATAR':
# new_points = np.concatenate( [np.expand_dims(p1,-1),np.expand_dims(p2,-1)], -1 )
#
# alignments[ a[i] ][0] = LandmarksProcessor.transform_points (new_points, m0, True).astype(np.int32)
"""
elif self.converter.type == Converter.TYPE_IMAGE_WITH_LANDMARKS:
#currently unused
if filename_path.suffix == '.png':
dflimg = DFLPNG.load( str(filename_path) )
elif filename_path.suffix == '.jpg':
dflimg = DFLJPG.load ( str(filename_path) )
else:
dflimg = None
if dflimg is not None:
image_landmarks = dflimg.get_landmarks()
image = self.converter.convert_image(image, image_landmarks, self.debug)
if self.debug:
raise NotImplementedError
#for img in image:
# io.show_image ('Debug convert', img )
# cv2.waitKey(0)
faces_processed = 1
else:
self.log_err ("%s is not a dfl image file" % (filename_path.name) )
"""

View file

@ -6,6 +6,7 @@ import multiprocessing
import shutil
from pathlib import Path
import numpy as np
import math
import mathlib
import imagelib
import cv2
@ -21,6 +22,8 @@ from nnlib import nnlib
from joblib import Subprocessor
from interact import interact as io
DEBUG = False
class ExtractSubprocessor(Subprocessor):
class Data(object):
def __init__(self, filename=None, rects=None, landmarks = None, landmarks_accurate=True, pitch_yaw_roll=None, final_output_files = None):
@ -45,6 +48,11 @@ class ExtractSubprocessor(Subprocessor):
self.final_output_path = Path(client_dict['final_output_dir']) if 'final_output_dir' in client_dict.keys() else None
self.debug_dir = client_dict['debug_dir']
#transfer and set stdin in order to work code.interact in debug subprocess
stdin_fd = client_dict['stdin_fd']
if stdin_fd is not None and DEBUG:
sys.stdin = os.fdopen(stdin_fd)
self.cached_image = (None, None)
self.e = None
@ -224,10 +232,12 @@ class ExtractSubprocessor(Subprocessor):
rect = np.array(rect)
if self.face_type == FaceType.MARK_ONLY:
image_to_face_mat = None
face_image = image
face_image_landmarks = image_landmarks
else:
image_to_face_mat = LandmarksProcessor.get_transform_mat (image_landmarks, self.image_size, self.face_type)
face_image = cv2.warpAffine(image, image_to_face_mat, (self.image_size, self.image_size), cv2.INTER_LANCZOS4)
face_image_landmarks = LandmarksProcessor.transform_points (image_landmarks, image_to_face_mat)
@ -296,7 +306,7 @@ class ExtractSubprocessor(Subprocessor):
self.devices = ExtractSubprocessor.get_devices_for_config(self.manual, self.type, multi_gpu, cpu_only)
no_response_time_sec = 60 if not self.manual else 999999
no_response_time_sec = 60 if not self.manual and not DEBUG else 999999
super().__init__('Extractor', ExtractSubprocessor.Cli, no_response_time_sec)
#override
@ -342,7 +352,8 @@ class ExtractSubprocessor(Subprocessor):
'image_size': self.image_size,
'face_type': self.face_type,
'debug_dir': self.debug_dir,
'final_output_dir': str(self.final_output_path)}
'final_output_dir': str(self.final_output_path),
'stdin_fd': sys.stdin.fileno() }
for (device_idx, device_type, device_name, device_total_vram_gb) in self.devices:
@ -620,7 +631,7 @@ class ExtractSubprocessor(Subprocessor):
return [ (i, 'CPU', 'CPU%d' % (i), 0 ) for i in range( min(8, multiprocessing.cpu_count() // 2) ) ]
elif type == 'final':
return [ (i, 'CPU', 'CPU%d' % (i), 0 ) for i in range(min(8, multiprocessing.cpu_count())) ]
return [ (i, 'CPU', 'CPU%d' % (i), 0 ) for i in (range(min(8, multiprocessing.cpu_count())) if not DEBUG else [0]) ]
class DeletedFilesSearcherSubprocessor(Subprocessor):
class Cli(Subprocessor.Cli):

View file

@ -423,12 +423,9 @@ def sort_by_hist_dissim(input_path):
else:
dflimg = None
if dflimg is None:
io.log_err ("%s is not a dfl image file" % (filepath.name) )
trash_img_list.append ([str(filepath)])
continue
image = cv2_imread(str(filepath))
if dflimg is not None:
face_mask = LandmarksProcessor.get_image_hull_mask (image.shape, dflimg.get_landmarks())
image = (image*face_mask).astype(np.uint8)

View file

@ -466,7 +466,7 @@ class ModelBase(object):
return imagelib.equalize_and_stack_square (images)
def generate_next_sample(self):
return [next(generator) for generator in self.generator_list]
return [ generator.generate_next() for generator in self.generator_list]
def train_one_iter(self):
sample = self.generate_next_sample()

View file

@ -378,7 +378,6 @@ class RecycleGANModel(ModelBase):
return x
return func
nnlib.UNet = UNet
@staticmethod
def UNetTemporalPredictor(output_nc, use_batch_norm, ngf=64, use_dropout=False):

View file

@ -546,6 +546,12 @@ class SAEModel(ModelBase):
return func
SAEModel.downscale = downscale
#def downscale (dim, padding='zero', norm='', act='', **kwargs):
# def func(x):
# return BlurPool()( Norm(norm)( Act(act) (Conv2D(dim, kernel_size=5, strides=1, padding=padding)(x)) ) )
# return func
#SAEModel.downscale = downscale
def upscale (dim, padding='zero', norm='', act='', **kwargs):
def func(x):
return SubpixelUpscaler()(Norm(norm)(Act(act)(Conv2D(dim * 4, kernel_size=3, strides=1, padding=padding)(x))))

View file

@ -89,6 +89,8 @@ dssim = nnlib.dssim
PixelShuffler = nnlib.PixelShuffler
SubpixelUpscaler = nnlib.SubpixelUpscaler
Scale = nnlib.Scale
BlurPool = nnlib.BlurPool
SelfAttention = nnlib.SelfAttention
CAInitializerMP = nnlib.CAInitializerMP
@ -456,6 +458,51 @@ NLayerDiscriminator = nnlib.NLayerDiscriminator
nnlib.PixelShuffler = PixelShuffler
nnlib.SubpixelUpscaler = PixelShuffler
class BlurPool(KL.Layer):
"""
https://arxiv.org/abs/1904.11486 https://github.com/adobe/antialiased-cnns
"""
def __init__(self, filt_size=3, stride=2, **kwargs):
self.strides = (stride,stride)
self.filt_size = filt_size
self.padding = ( (int(1.*(filt_size-1)/2), int(np.ceil(1.*(filt_size-1)/2)) ), (int(1.*(filt_size-1)/2), int(np.ceil(1.*(filt_size-1)/2)) ) )
if(self.filt_size==1):
self.a = np.array([1.,])
elif(self.filt_size==2):
self.a = np.array([1., 1.])
elif(self.filt_size==3):
self.a = np.array([1., 2., 1.])
elif(self.filt_size==4):
self.a = np.array([1., 3., 3., 1.])
elif(self.filt_size==5):
self.a = np.array([1., 4., 6., 4., 1.])
elif(self.filt_size==6):
self.a = np.array([1., 5., 10., 10., 5., 1.])
elif(self.filt_size==7):
self.a = np.array([1., 6., 15., 20., 15., 6., 1.])
super(BlurPool, self).__init__(**kwargs)
def compute_output_shape(self, input_shape):
height = input_shape[1] // self.strides[0]
width = input_shape[2] // self.strides[1]
channels = input_shape[3]
return (input_shape[0], height, width, channels)
def call(self, x):
k = self.a
k = k[:,None]*k[None,:]
k = k / np.sum(k)
k = np.tile (k[:,:,None,None], (1,1,K.int_shape(x)[-1],1) )
k = K.constant (k, dtype=K.floatx() )
x = K.spatial_2d_padding(x, padding=self.padding)
x = K.depthwise_conv2d(x, k, strides=self.strides, padding='valid')
return x
nnlib.BlurPool = BlurPool
class Scale(KL.Layer):
"""
GAN Custom Scal Layer
@ -487,6 +534,43 @@ NLayerDiscriminator = nnlib.NLayerDiscriminator
return dict(list(base_config.items()) + list(config.items()))
nnlib.Scale = Scale
class SelfAttention(KL.Layer):
def __init__(self, nc, squeeze_factor=8, **kwargs):
assert nc//squeeze_factor > 0, f"Input channels must be >= {squeeze_factor}, recieved nc={nc}"
self.nc = nc
self.squeeze_factor = squeeze_factor
super(SelfAttention, self).__init__(**kwargs)
def compute_output_shape(self, input_shape):
return (input_shape[0], input_shape[1], input_shape[2], self.nc)
def call(self, inp):
x = inp
shape_x = x.get_shape().as_list()
f = Conv2D(self.nc//self.squeeze_factor, 1, kernel_regularizer=keras.regularizers.l2(1e-4))(x)
g = Conv2D(self.nc//self.squeeze_factor, 1, kernel_regularizer=keras.regularizers.l2(1e-4))(x)
h = Conv2D(self.nc, 1, kernel_regularizer=keras.regularizers.l2(1e-4))(x)
shape_f = f.get_shape().as_list()
shape_g = g.get_shape().as_list()
shape_h = h.get_shape().as_list()
flat_f = Reshape( (-1, shape_f[-1]) )(f)
flat_g = Reshape( (-1, shape_g[-1]) )(g)
flat_h = Reshape( (-1, shape_h[-1]) )(h)
s = Lambda(lambda x: K.batch_dot(x[0], keras.layers.Permute((2,1))(x[1]) ))([flat_g, flat_f])
beta = keras.layers.Softmax(axis=-1)(s)
o = Lambda(lambda x: K.batch_dot(x[0], x[1]))([beta, flat_h])
o = Reshape(shape_x[1:])(o)
o = Scale()(o)
out = Add()([o, inp])
return out
nnlib.SelfAttention = SelfAttention
class Adam(keras.optimizers.Optimizer):
"""Adam optimizer.

View file

@ -13,6 +13,17 @@ class SampleGeneratorBase(object):
self.samples_path = Path(samples_path)
self.debug = debug
self.batch_size = 1 if self.debug else batch_size
self.last_generation = None
self.active = True
def set_active(self, is_active):
self.active = is_active
def generate_next(self):
if not self.active and self.last_generation is not None:
return self.last_generation
self.last_generation = next(self)
return self.last_generation
#overridable
def __iter__(self):

View file

@ -8,7 +8,7 @@ from samplelib import SampleType, SampleProcessor, SampleLoader, SampleGenerator
'''
output_sample_types = [
[SampleProcessor.TypeFlags, size, (optional)random_sub_size] ,
[SampleProcessor.TypeFlags, size, (optional) {} opts ] ,
...
]
'''
@ -46,9 +46,9 @@ class SampleGeneratorFaceTemporal(SampleGeneratorBase):
raise ValueError('No training data provided.')
mult_max = 1
l = samples_len - (self.temporal_image_count-1)*mult_max + 1
l = samples_len - ( (self.temporal_image_count)*mult_max - (mult_max-1) )
samples_idxs = [ *range(l) ] [generator_id::self.generators_count]
samples_idxs = [ *range(l+1) ] [generator_id::self.generators_count]
if len(samples_idxs) - self.temporal_image_count < 0:
raise ValueError('Not enough samples to fit temporal line.')
@ -67,7 +67,7 @@ class SampleGeneratorFaceTemporal(SampleGeneratorBase):
idx = shuffle_idxs.pop()
temporal_samples = []
mult = np.random.randint(mult_max)
mult = np.random.randint(mult_max)+1
for i in range( self.temporal_image_count ):
sample = samples[ idx+i*mult ]
try:

View file

@ -43,7 +43,8 @@ class SampleGeneratorImageTemporal(SampleGeneratorBase):
raise ValueError('No training data provided.')
mult_max = 4
samples_sub_len = samples_len - (self.temporal_image_count-1)*mult_max
samples_sub_len = samples_len - ( (self.temporal_image_count)*mult_max - (mult_max-1) )
if samples_sub_len <= 0:
raise ValueError('Not enough samples to fit temporal line.')
@ -61,7 +62,7 @@ class SampleGeneratorImageTemporal(SampleGeneratorBase):
idx = shuffle_idxs.pop()
temporal_samples = []
mult = np.random.randint(mult_max)
mult = np.random.randint(mult_max)+1
for i in range( self.temporal_image_count ):
sample = samples[ idx+i*mult ]
try:

View file

@ -61,6 +61,7 @@ class SampleProcessor(object):
FACE_TYPE_FULL = 11
FACE_TYPE_HEAD = 12 #currently unused
FACE_TYPE_AVATAR = 13 #currently unused
FACE_TYPE_FULL_NO_ALIGN = 14
FACE_TYPE_END = 20
MODE_BEGIN = 40
@ -103,7 +104,7 @@ class SampleProcessor(object):
SPTF_FACETYPE_TO_FACETYPE = { SPTF.FACE_TYPE_HALF : FaceType.HALF,
SPTF.FACE_TYPE_FULL : FaceType.FULL,
SPTF.FACE_TYPE_HEAD : FaceType.HEAD,
SPTF.FACE_TYPE_AVATAR : FaceType.AVATAR }
SPTF.FACE_TYPE_FULL_NO_ALIGN : FaceType.FULL_NO_ALIGN }
outputs = []
for opts in output_sample_types:
@ -157,6 +158,20 @@ class SampleProcessor(object):
if mode_type == SPTF.NONE:
raise ValueError ('expected MODE_ type')
def do_transform(img, mask):
warp = (img_type==SPTF.IMG_WARPED or img_type==SPTF.IMG_WARPED_TRANSFORMED)
transform = (img_type==SPTF.IMG_WARPED_TRANSFORMED or img_type==SPTF.IMG_TRANSFORMED)
flip = img_type != SPTF.IMG_WARPED
img = imagelib.warp_by_params (params, img, warp, transform, flip, True)
if mask is not None:
mask = imagelib.warp_by_params (params, mask, warp, transform, flip, False)
if len(mask.shape) == 2:
mask = mask[...,np.newaxis]
img = np.concatenate( (img, mask ), -1 )
return img
img = cached_images.get(img_type, None)
if img is None:
@ -182,14 +197,11 @@ class SampleProcessor(object):
if cur_sample.ie_polys is not None:
cur_sample.ie_polys.overlay_mask(mask)
warp = (img_type==SPTF.IMG_WARPED or img_type==SPTF.IMG_WARPED_TRANSFORMED)
transform = (img_type==SPTF.IMG_WARPED_TRANSFORMED or img_type==SPTF.IMG_TRANSFORMED)
flip = img_type != SPTF.IMG_WARPED
img = imagelib.warp_by_params (params, img, warp, transform, flip, True)
if sample.face_type == FaceType.MARK_ONLY:
if mask is not None:
mask = imagelib.warp_by_params (params, mask, warp, transform, flip, False)[...,np.newaxis]
img = np.concatenate( (img, mask), -1 )
else:
img = do_transform (img, mask)
cached_images[img_type] = img
@ -197,7 +209,17 @@ class SampleProcessor(object):
ft = SPTF_FACETYPE_TO_FACETYPE[target_face_type]
if ft > sample.face_type:
raise Exception ('sample %s type %s does not match model requirement %s. Consider extract necessary type of faces.' % (sample.filename, sample.face_type, ft) )
if sample.face_type == FaceType.MARK_ONLY:
img = cv2.warpAffine( img, LandmarksProcessor.get_transform_mat (sample.landmarks, sample.shape[0], ft), (sample.shape[0],sample.shape[0]), flags=cv2.INTER_CUBIC )
mask = img[...,3:4] if img.shape[2] > 3 else None
img = img[...,0:3]
img = do_transform (img, mask)
img = cv2.resize( img, (resolution,resolution), cv2.INTER_CUBIC )
else:
img = cv2.warpAffine( img, LandmarksProcessor.get_transform_mat (sample.landmarks, resolution, ft), (resolution,resolution), flags=cv2.INTER_CUBIC )
else:
img = cv2.resize( img, (resolution,resolution), cv2.INTER_CUBIC )