DeepFaceLab/mainscripts/Sorter.py
iperov b72d5a3f9a fixed error "Failed to get convolution algorithm" on some systems
fixed error "dll load failed" on some systems
Expanded eyebrows line of face masks. It does not affect mask of FAN-x converter mode.
2019-08-11 11:17:22 +04:00

800 lines
28 KiB
Python

import os
import sys
import operator
import numpy as np
import cv2
from shutil import copyfile
from pathlib import Path
from utils import Path_utils
from utils.DFLPNG import DFLPNG
from utils.DFLJPG import DFLJPG
from utils.cv2_utils import *
from facelib import LandmarksProcessor
from joblib import Subprocessor
import multiprocessing
from interact import interact as io
from imagelib import estimate_sharpness
class BlurEstimatorSubprocessor(Subprocessor):
class Cli(Subprocessor.Cli):
#override
def on_initialize(self, client_dict):
self.log_info('Running on %s.' % (client_dict['device_name']) )
#override
def process_data(self, data):
filepath = Path( data[0] )
if filepath.suffix == '.png':
dflimg = DFLPNG.load( str(filepath) )
elif filepath.suffix == '.jpg':
dflimg = DFLJPG.load ( str(filepath) )
else:
dflimg = None
if dflimg is not None:
image = cv2_imread( str(filepath) )
return [ str(filepath), estimate_sharpness(image) ]
else:
self.log_err ("%s is not a dfl image file" % (filepath.name) )
return [ str(filepath), 0 ]
#override
def get_data_name (self, data):
#return string identificator of your data
return data[0]
#override
def __init__(self, input_data ):
self.input_data = input_data
self.img_list = []
self.trash_img_list = []
super().__init__('BlurEstimator', BlurEstimatorSubprocessor.Cli, 60)
#override
def on_clients_initialized(self):
io.progress_bar ("", len (self.input_data))
#override
def on_clients_finalized(self):
io.progress_bar_close ()
#override
def process_info_generator(self):
for i in range(0, multiprocessing.cpu_count() ):
yield 'CPU%d' % (i), {}, {'device_idx': i,
'device_name': 'CPU%d' % (i),
}
#override
def get_data(self, host_dict):
if len (self.input_data) > 0:
return self.input_data.pop(0)
return None
#override
def on_data_return (self, host_dict, data):
self.input_data.insert(0, data)
#override
def on_result (self, host_dict, data, result):
if result[1] == 0:
self.trash_img_list.append ( result )
else:
self.img_list.append ( result )
io.progress_bar_inc(1)
#override
def get_result(self):
return self.img_list, self.trash_img_list
def sort_by_blur(input_path):
io.log_info ("Sorting by blur...")
img_list = [ (filename,[]) for filename in Path_utils.get_image_paths(input_path) ]
img_list, trash_img_list = BlurEstimatorSubprocessor (img_list).run()
io.log_info ("Sorting...")
img_list = sorted(img_list, key=operator.itemgetter(1), reverse=True)
return img_list, trash_img_list
def sort_by_face(input_path):
io.log_info ("Sorting by face similarity...")
img_list = []
trash_img_list = []
for filepath in io.progress_bar_generator( Path_utils.get_image_paths(input_path), "Loading"):
filepath = Path(filepath)
if filepath.suffix == '.png':
dflimg = DFLPNG.load( str(filepath) )
elif filepath.suffix == '.jpg':
dflimg = DFLJPG.load ( str(filepath) )
else:
dflimg = None
if dflimg is None:
io.log_err ("%s is not a dfl image file" % (filepath.name) )
trash_img_list.append ( [str(filepath)] )
continue
img_list.append( [str(filepath), dflimg.get_landmarks()] )
img_list_len = len(img_list)
for i in io.progress_bar_generator ( range(0, img_list_len-1), "Sorting"):
min_score = float("inf")
j_min_score = i+1
for j in range(i+1,len(img_list)):
fl1 = img_list[i][1]
fl2 = img_list[j][1]
score = np.sum ( np.absolute ( (fl2 - fl1).flatten() ) )
if score < min_score:
min_score = score
j_min_score = j
img_list[i+1], img_list[j_min_score] = img_list[j_min_score], img_list[i+1]
return img_list, trash_img_list
def sort_by_face_dissim(input_path):
io.log_info ("Sorting by face dissimilarity...")
img_list = []
trash_img_list = []
for filepath in io.progress_bar_generator( Path_utils.get_image_paths(input_path), "Loading"):
filepath = Path(filepath)
if filepath.suffix == '.png':
dflimg = DFLPNG.load( str(filepath) )
elif filepath.suffix == '.jpg':
dflimg = DFLJPG.load ( str(filepath) )
else:
dflimg = None
if dflimg is None:
io.log_err ("%s is not a dfl image file" % (filepath.name) )
trash_img_list.append ( [str(filepath)] )
continue
img_list.append( [str(filepath), dflimg.get_landmarks(), 0 ] )
img_list_len = len(img_list)
for i in io.progress_bar_generator( range(img_list_len-1), "Sorting"):
score_total = 0
for j in range(i+1,len(img_list)):
if i == j:
continue
fl1 = img_list[i][1]
fl2 = img_list[j][1]
score_total += np.sum ( np.absolute ( (fl2 - fl1).flatten() ) )
img_list[i][2] = score_total
io.log_info ("Sorting...")
img_list = sorted(img_list, key=operator.itemgetter(2), reverse=True)
return img_list, trash_img_list
def sort_by_face_yaw(input_path):
io.log_info ("Sorting by face yaw...")
img_list = []
trash_img_list = []
for filepath in io.progress_bar_generator( Path_utils.get_image_paths(input_path), "Loading"):
filepath = Path(filepath)
if filepath.suffix == '.png':
dflimg = DFLPNG.load( str(filepath) )
elif filepath.suffix == '.jpg':
dflimg = DFLJPG.load ( str(filepath) )
else:
dflimg = None
if dflimg is None:
io.log_err ("%s is not a dfl image file" % (filepath.name) )
trash_img_list.append ( [str(filepath)] )
continue
pitch_yaw_roll = dflimg.get_pitch_yaw_roll()
if pitch_yaw_roll is not None:
pitch, yaw, roll = pitch_yaw_roll
else:
pitch, yaw, roll = LandmarksProcessor.estimate_pitch_yaw_roll ( dflimg.get_landmarks() )
img_list.append( [str(filepath), yaw ] )
io.log_info ("Sorting...")
img_list = sorted(img_list, key=operator.itemgetter(1), reverse=True)
return img_list, trash_img_list
def sort_by_face_pitch(input_path):
io.log_info ("Sorting by face pitch...")
img_list = []
trash_img_list = []
for filepath in io.progress_bar_generator( Path_utils.get_image_paths(input_path), "Loading"):
filepath = Path(filepath)
if filepath.suffix == '.png':
dflimg = DFLPNG.load( str(filepath) )
elif filepath.suffix == '.jpg':
dflimg = DFLJPG.load ( str(filepath) )
else:
dflimg = None
if dflimg is None:
io.log_err ("%s is not a dfl image file" % (filepath.name) )
trash_img_list.append ( [str(filepath)] )
continue
pitch_yaw_roll = dflimg.get_pitch_yaw_roll()
if pitch_yaw_roll is not None:
pitch, yaw, roll = pitch_yaw_roll
else:
pitch, yaw, roll = LandmarksProcessor.estimate_pitch_yaw_roll ( dflimg.get_landmarks() )
img_list.append( [str(filepath), pitch ] )
io.log_info ("Sorting...")
img_list = sorted(img_list, key=operator.itemgetter(1), reverse=True)
return img_list, trash_img_list
class HistSsimSubprocessor(Subprocessor):
class Cli(Subprocessor.Cli):
#override
def on_initialize(self, client_dict):
self.log_info ('Running on %s.' % (client_dict['device_name']) )
#override
def process_data(self, data):
img_list = []
for x in data:
img = cv2_imread(x)
img_list.append ([x, cv2.calcHist([img], [0], None, [256], [0, 256]),
cv2.calcHist([img], [1], None, [256], [0, 256]),
cv2.calcHist([img], [2], None, [256], [0, 256])
])
img_list_len = len(img_list)
for i in range(img_list_len-1):
min_score = float("inf")
j_min_score = i+1
for j in range(i+1,len(img_list)):
score = cv2.compareHist(img_list[i][1], img_list[j][1], cv2.HISTCMP_BHATTACHARYYA) + \
cv2.compareHist(img_list[i][2], img_list[j][2], cv2.HISTCMP_BHATTACHARYYA) + \
cv2.compareHist(img_list[i][3], img_list[j][3], cv2.HISTCMP_BHATTACHARYYA)
if score < min_score:
min_score = score
j_min_score = j
img_list[i+1], img_list[j_min_score] = img_list[j_min_score], img_list[i+1]
self.progress_bar_inc(1)
return img_list
#override
def get_data_name (self, data):
return "Bunch of images"
#override
def __init__(self, img_list ):
self.img_list = img_list
self.img_list_len = len(img_list)
slice_count = 20000
sliced_count = self.img_list_len // slice_count
if sliced_count > 12:
sliced_count = 11.9
slice_count = int(self.img_list_len / sliced_count)
sliced_count = self.img_list_len // slice_count
self.img_chunks_list = [ self.img_list[i*slice_count : (i+1)*slice_count] for i in range(sliced_count) ] + \
[ self.img_list[sliced_count*slice_count:] ]
self.result = []
super().__init__('HistSsim', HistSsimSubprocessor.Cli, 0)
#override
def process_info_generator(self):
for i in range( len(self.img_chunks_list) ):
yield 'CPU%d' % (i), {'i':i}, {'device_idx': i,
'device_name': 'CPU%d' % (i)
}
#override
def on_clients_initialized(self):
io.progress_bar ("Sorting", len(self.img_list))
io.progress_bar_inc(len(self.img_chunks_list))
#override
def on_clients_finalized(self):
io.progress_bar_close()
#override
def get_data(self, host_dict):
if len (self.img_chunks_list) > 0:
return self.img_chunks_list.pop(0)
return None
#override
def on_data_return (self, host_dict, data):
raise Exception("Fail to process data. Decrease number of images and try again.")
#override
def on_result (self, host_dict, data, result):
self.result += result
return 0
#override
def get_result(self):
return self.result
def sort_by_hist(input_path):
io.log_info ("Sorting by histogram similarity...")
img_list = HistSsimSubprocessor(Path_utils.get_image_paths(input_path)).run()
return img_list
class HistDissimSubprocessor(Subprocessor):
class Cli(Subprocessor.Cli):
#override
def on_initialize(self, client_dict):
self.log_info ('Running on %s.' % (client_dict['device_name']) )
self.img_list = client_dict['img_list']
self.img_list_len = len(self.img_list)
#override
def process_data(self, data):
i = data[0]
score_total = 0
for j in range( 0, self.img_list_len):
if i == j:
continue
score_total += cv2.compareHist(self.img_list[i][1], self.img_list[j][1], cv2.HISTCMP_BHATTACHARYYA)
return score_total
#override
def get_data_name (self, data):
#return string identificator of your data
return self.img_list[data[0]][0]
#override
def __init__(self, img_list ):
self.img_list = img_list
self.img_list_range = [i for i in range(0, len(img_list) )]
self.result = []
super().__init__('HistDissim', HistDissimSubprocessor.Cli, 60)
#override
def on_clients_initialized(self):
io.progress_bar ("Sorting", len (self.img_list) )
#override
def on_clients_finalized(self):
io.progress_bar_close()
#override
def process_info_generator(self):
for i in range(0, min(multiprocessing.cpu_count(), 8) ):
yield 'CPU%d' % (i), {}, {'device_idx': i,
'device_name': 'CPU%d' % (i),
'img_list' : self.img_list
}
#override
def get_data(self, host_dict):
if len (self.img_list_range) > 0:
return [self.img_list_range.pop(0)]
return None
#override
def on_data_return (self, host_dict, data):
self.img_list_range.insert(0, data[0])
#override
def on_result (self, host_dict, data, result):
self.img_list[data[0]][2] = result
io.progress_bar_inc(1)
#override
def get_result(self):
return self.img_list
def sort_by_hist_dissim(input_path):
io.log_info ("Sorting by histogram dissimilarity...")
img_list = []
trash_img_list = []
for filepath in io.progress_bar_generator( Path_utils.get_image_paths(input_path), "Loading"):
filepath = Path(filepath)
if filepath.suffix == '.png':
dflimg = DFLPNG.load( str(filepath) )
elif filepath.suffix == '.jpg':
dflimg = DFLJPG.load ( str(filepath) )
else:
dflimg = None
image = cv2_imread(str(filepath))
if dflimg is not None:
face_mask = LandmarksProcessor.get_image_hull_mask (image.shape, dflimg.get_landmarks())
image = (image*face_mask).astype(np.uint8)
img_list.append ([str(filepath), cv2.calcHist([cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)], [0], None, [256], [0, 256]), 0 ])
img_list = HistDissimSubprocessor(img_list).run()
io.log_info ("Sorting...")
img_list = sorted(img_list, key=operator.itemgetter(2), reverse=True)
return img_list, trash_img_list
def sort_by_brightness(input_path):
io.log_info ("Sorting by brightness...")
img_list = [ [x, np.mean ( cv2.cvtColor(cv2_imread(x), cv2.COLOR_BGR2HSV)[...,2].flatten() )] for x in io.progress_bar_generator( Path_utils.get_image_paths(input_path), "Loading") ]
io.log_info ("Sorting...")
img_list = sorted(img_list, key=operator.itemgetter(1), reverse=True)
return img_list
def sort_by_hue(input_path):
io.log_info ("Sorting by hue...")
img_list = [ [x, np.mean ( cv2.cvtColor(cv2_imread(x), cv2.COLOR_BGR2HSV)[...,0].flatten() )] for x in io.progress_bar_generator( Path_utils.get_image_paths(input_path), "Loading") ]
io.log_info ("Sorting...")
img_list = sorted(img_list, key=operator.itemgetter(1), reverse=True)
return img_list
def sort_by_black(input_path):
io.log_info ("Sorting by amount of black pixels...")
img_list = []
for x in io.progress_bar_generator( Path_utils.get_image_paths(input_path), "Loading"):
img = cv2_imread(x)
img_list.append ([x, img[(img == 0)].size ])
io.log_info ("Sorting...")
img_list = sorted(img_list, key=operator.itemgetter(1), reverse=False)
return img_list
def sort_by_origname(input_path):
io.log_info ("Sort by original filename...")
img_list = []
trash_img_list = []
for filepath in io.progress_bar_generator( Path_utils.get_image_paths(input_path), "Loading"):
filepath = Path(filepath)
if filepath.suffix == '.png':
dflimg = DFLPNG.load( str(filepath) )
elif filepath.suffix == '.jpg':
dflimg = DFLJPG.load( str(filepath) )
else:
dflimg = None
if dflimg is None:
io.log_err ("%s is not a dfl image file" % (filepath.name) )
trash_img_list.append( [str(filepath)] )
continue
img_list.append( [str(filepath), dflimg.get_source_filename()] )
io.log_info ("Sorting...")
img_list = sorted(img_list, key=operator.itemgetter(1))
return img_list, trash_img_list
def sort_by_oneface_in_image(input_path):
io.log_info ("Sort by one face in images...")
image_paths = Path_utils.get_image_paths(input_path)
a = np.array ([ ( int(x[0]), int(x[1]) ) \
for x in [ Path(filepath).stem.split('_') for filepath in image_paths ] if len(x) == 2
])
if len(a) > 0:
idxs = np.ndarray.flatten ( np.argwhere ( a[:,1] != 0 ) )
idxs = np.unique ( a[idxs][:,0] )
idxs = np.ndarray.flatten ( np.argwhere ( np.array([ x[0] in idxs for x in a ]) == True ) )
if len(idxs) > 0:
io.log_info ("Found %d images." % (len(idxs)) )
img_list = [ (path,) for i,path in enumerate(image_paths) if i not in idxs ]
trash_img_list = [ (image_paths[x],) for x in idxs ]
return img_list, trash_img_list
return [], []
class FinalLoaderSubprocessor(Subprocessor):
class Cli(Subprocessor.Cli):
#override
def on_initialize(self, client_dict):
self.log_info ('Running on %s.' % (client_dict['device_name']) )
self.include_by_blur = client_dict['include_by_blur']
#override
def process_data(self, data):
filepath = Path(data[0])
try:
if filepath.suffix == '.png':
dflimg = DFLPNG.load( str(filepath) )
elif filepath.suffix == '.jpg':
dflimg = DFLJPG.load( str(filepath) )
else:
dflimg = None
if dflimg is None:
self.log_err("%s is not a dfl image file" % (filepath.name))
return [ 1, [str(filepath)] ]
bgr = cv2_imread(str(filepath))
if bgr is None:
raise Exception ("Unable to load %s" % (filepath.name) )
gray = cv2.cvtColor(bgr, cv2.COLOR_BGR2GRAY)
sharpness = estimate_sharpness(gray) if self.include_by_blur else 0
pitch, yaw, roll = LandmarksProcessor.estimate_pitch_yaw_roll ( dflimg.get_landmarks() )
hist = cv2.calcHist([gray], [0], None, [256], [0, 256])
except Exception as e:
self.log_err (e)
return [ 1, [str(filepath)] ]
return [ 0, [str(filepath), sharpness, hist, yaw ] ]
#override
def get_data_name (self, data):
#return string identificator of your data
return data[0]
#override
def __init__(self, img_list, include_by_blur ):
self.img_list = img_list
self.include_by_blur = include_by_blur
self.result = []
self.result_trash = []
super().__init__('FinalLoader', FinalLoaderSubprocessor.Cli, 60)
#override
def on_clients_initialized(self):
io.progress_bar ("Loading", len (self.img_list))
#override
def on_clients_finalized(self):
io.progress_bar_close()
#override
def process_info_generator(self):
for i in range(0, min(multiprocessing.cpu_count(), 8) ):
yield 'CPU%d' % (i), {}, {'device_idx': i,
'device_name': 'CPU%d' % (i),
'include_by_blur': self.include_by_blur
}
#override
def get_data(self, host_dict):
if len (self.img_list) > 0:
return [self.img_list.pop(0)]
return None
#override
def on_data_return (self, host_dict, data):
self.img_list.insert(0, data[0])
#override
def on_result (self, host_dict, data, result):
if result[0] == 0:
self.result.append (result[1])
else:
self.result_trash.append (result[1])
io.progress_bar_inc(1)
#override
def get_result(self):
return self.result, self.result_trash
class FinalHistDissimSubprocessor(Subprocessor):
class Cli(Subprocessor.Cli):
#override
def on_initialize(self, client_dict):
self.log_info ('Running on %s.' % (client_dict['device_name']) )
#override
def process_data(self, data):
idx, img_list = data
for i in range( len(img_list) ):
score_total = 0
for j in range( len(img_list) ):
if i == j:
continue
score_total += cv2.compareHist(img_list[i][2], img_list[j][2], cv2.HISTCMP_BHATTACHARYYA)
img_list[i][3] = score_total
img_list = sorted(img_list, key=operator.itemgetter(3), reverse=True)
return idx, img_list
#override
def get_data_name (self, data):
return "Bunch of images"
#override
def __init__(self, yaws_sample_list ):
self.yaws_sample_list = yaws_sample_list
self.yaws_sample_list_len = len(yaws_sample_list)
self.yaws_sample_list_idxs = [ i for i in range(self.yaws_sample_list_len) if self.yaws_sample_list[i] is not None ]
self.result = [ None for _ in range(self.yaws_sample_list_len) ]
super().__init__('FinalHistDissimSubprocessor', FinalHistDissimSubprocessor.Cli)
#override
def process_info_generator(self):
for i in range(min(multiprocessing.cpu_count(), 8) ):
yield 'CPU%d' % (i), {'i':i}, {'device_idx': i,
'device_name': 'CPU%d' % (i)
}
#override
def on_clients_initialized(self):
io.progress_bar ("Sort by hist-dissim", self.yaws_sample_list_len)
#override
def on_clients_finalized(self):
io.progress_bar_close()
#override
def get_data(self, host_dict):
if len (self.yaws_sample_list_idxs) > 0:
idx = self.yaws_sample_list_idxs.pop(0)
return idx, self.yaws_sample_list[idx]
return None
#override
def on_data_return (self, host_dict, data):
self.yaws_sample_list_idxs.insert(0, data[0])
#override
def on_result (self, host_dict, data, result):
idx, yaws_sample_list = data
self.result[idx] = yaws_sample_list
io.progress_bar_inc(1)
#override
def get_result(self):
return self.result
def sort_final(input_path, include_by_blur=True):
io.log_info ("Performing final sort.")
target_count = io.input_int ("Target number of images? (default:2000) : ", 2000)
img_list, trash_img_list = FinalLoaderSubprocessor( Path_utils.get_image_paths(input_path), include_by_blur ).run()
final_img_list = []
grads = 128
imgs_per_grad = round (target_count / grads)
grads_space = np.linspace (-1.0,1.0,grads)
yaws_sample_list = [None]*grads
for g in io.progress_bar_generator ( range(grads), "Sort by yaw"):
yaw = grads_space[g]
next_yaw = grads_space[g+1] if g < grads-1 else yaw
yaw_samples = []
for img in img_list:
s_yaw = -img[3]
if (g == 0 and s_yaw < next_yaw) or \
(g < grads-1 and s_yaw >= yaw and s_yaw < next_yaw) or \
(g == grads-1 and s_yaw >= yaw):
yaw_samples += [ img ]
if len(yaw_samples) > 0:
yaws_sample_list[g] = yaw_samples
total_lack = 0
for g in io.progress_bar_generator ( range(grads), ""):
img_list = yaws_sample_list[g]
img_list_len = len(img_list) if img_list is not None else 0
lack = imgs_per_grad - img_list_len
total_lack += max(lack, 0)
imgs_per_grad += total_lack // grads
if include_by_blur:
sharpned_imgs_per_grad = imgs_per_grad*10
for g in io.progress_bar_generator ( range (grads), "Sort by blur"):
img_list = yaws_sample_list[g]
if img_list is None:
continue
img_list = sorted(img_list, key=operator.itemgetter(1), reverse=True)
if len(img_list) > sharpned_imgs_per_grad:
trash_img_list += img_list[sharpned_imgs_per_grad:]
img_list = img_list[0:sharpned_imgs_per_grad]
yaws_sample_list[g] = img_list
yaws_sample_list = FinalHistDissimSubprocessor(yaws_sample_list).run()
for g in io.progress_bar_generator ( range (grads), "Fetching best"):
img_list = yaws_sample_list[g]
if img_list is None:
continue
final_img_list += img_list[0:imgs_per_grad]
trash_img_list += img_list[imgs_per_grad:]
return final_img_list, trash_img_list
def final_process(input_path, img_list, trash_img_list):
if len(trash_img_list) != 0:
parent_input_path = input_path.parent
trash_path = parent_input_path / (input_path.stem + '_trash')
trash_path.mkdir (exist_ok=True)
io.log_info ("Trashing %d items to %s" % ( len(trash_img_list), str(trash_path) ) )
for filename in Path_utils.get_image_paths(trash_path):
Path(filename).unlink()
for i in io.progress_bar_generator( range(len(trash_img_list)), "Moving trash", leave=False):
src = Path (trash_img_list[i][0])
dst = trash_path / src.name
try:
src.rename (dst)
except:
io.log_info ('fail to trashing %s' % (src.name) )
io.log_info ("")
if len(img_list) != 0:
for i in io.progress_bar_generator( [*range(len(img_list))], "Renaming", leave=False):
src = Path (img_list[i][0])
dst = input_path / ('%.5d_%s' % (i, src.name ))
try:
src.rename (dst)
except:
io.log_info ('fail to rename %s' % (src.name) )
for i in io.progress_bar_generator( [*range(len(img_list))], "Renaming"):
src = Path (img_list[i][0])
src = input_path / ('%.5d_%s' % (i, src.name))
dst = input_path / ('%.5d%s' % (i, src.suffix))
try:
src.rename (dst)
except:
io.log_info ('fail to rename %s' % (src.name) )
def main (input_path, sort_by_method):
input_path = Path(input_path)
sort_by_method = sort_by_method.lower()
io.log_info ("Running sort tool.\r\n")
img_list = []
trash_img_list = []
if sort_by_method == 'blur': img_list, trash_img_list = sort_by_blur (input_path)
elif sort_by_method == 'face': img_list, trash_img_list = sort_by_face (input_path)
elif sort_by_method == 'face-dissim': img_list, trash_img_list = sort_by_face_dissim (input_path)
elif sort_by_method == 'face-yaw': img_list, trash_img_list = sort_by_face_yaw (input_path)
elif sort_by_method == 'face-pitch': img_list, trash_img_list = sort_by_face_pitch (input_path)
elif sort_by_method == 'hist': img_list = sort_by_hist (input_path)
elif sort_by_method == 'hist-dissim': img_list, trash_img_list = sort_by_hist_dissim (input_path)
elif sort_by_method == 'brightness': img_list = sort_by_brightness (input_path)
elif sort_by_method == 'hue': img_list = sort_by_hue (input_path)
elif sort_by_method == 'black': img_list = sort_by_black (input_path)
elif sort_by_method == 'origname': img_list, trash_img_list = sort_by_origname (input_path)
elif sort_by_method == 'oneface': img_list, trash_img_list = sort_by_oneface_in_image (input_path)
elif sort_by_method == 'final': img_list, trash_img_list = sort_final (input_path)
elif sort_by_method == 'final-no-blur': img_list, trash_img_list = sort_final (input_path, include_by_blur=False)
final_process (input_path, img_list, trash_img_list)