mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-07-06 13:02:15 -07:00
fixed error "dll load failed" on some systems Expanded eyebrows line of face masks. It does not affect mask of FAN-x converter mode.
482 lines
18 KiB
Python
482 lines
18 KiB
Python
from functools import partial
|
|
|
|
import cv2
|
|
import numpy as np
|
|
|
|
from facelib import FaceType
|
|
from interact import interact as io
|
|
from mathlib import get_power_of_two
|
|
from models import ModelBase
|
|
from nnlib import nnlib
|
|
from samplelib import *
|
|
|
|
class RecycleGANModel(ModelBase):
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
super().__init__(*args, **kwargs,
|
|
ask_sort_by_yaw=False,
|
|
ask_random_flip=False,
|
|
ask_src_scale_mod=False)
|
|
|
|
#override
|
|
def onInitializeOptions(self, is_first_run, ask_override):
|
|
if is_first_run:
|
|
self.options['resolution'] = io.input_int("Resolution ( 128,256 ?:help skip:128) : ", 128, [128,256], help_message="More resolution requires more VRAM and time to train. Value will be adjusted to multiple of 16.")
|
|
else:
|
|
self.options['resolution'] = self.options.get('resolution', 128)
|
|
|
|
#override
|
|
def onInitialize(self, batch_size=-1, **in_options):
|
|
exec(nnlib.code_import_all, locals(), globals())
|
|
self.set_vram_batch_requirements({6:16})
|
|
|
|
resolution = self.options['resolution']
|
|
bgr_shape = (resolution, resolution, 3)
|
|
ngf = 64
|
|
npf = 32
|
|
ndf = 64
|
|
lambda_A = 10
|
|
lambda_B = 10
|
|
|
|
use_batch_norm = True #created_batch_size > 1
|
|
self.GA = modelify(RecycleGANModel.ResNet (bgr_shape[2], use_batch_norm, n_blocks=6, ngf=ngf, use_dropout=True))(Input(bgr_shape))
|
|
self.GB = modelify(RecycleGANModel.ResNet (bgr_shape[2], use_batch_norm, n_blocks=6, ngf=ngf, use_dropout=True))(Input(bgr_shape))
|
|
|
|
#self.GA = modelify(UNet (bgr_shape[2], use_batch_norm, num_downs=get_power_of_two(resolution)-1, ngf=ngf, use_dropout=True))(Input(bgr_shape))
|
|
#self.GB = modelify(UNet (bgr_shape[2], use_batch_norm, num_downs=get_power_of_two(resolution)-1, ngf=ngf, use_dropout=True))(Input(bgr_shape))
|
|
|
|
self.PA = modelify(RecycleGANModel.UNetTemporalPredictor(bgr_shape[2], use_batch_norm, ngf=npf))([Input(bgr_shape), Input(bgr_shape)])
|
|
self.PB = modelify(RecycleGANModel.UNetTemporalPredictor(bgr_shape[2], use_batch_norm, ngf=npf))([Input(bgr_shape), Input(bgr_shape)])
|
|
|
|
self.DA = modelify(RecycleGANModel.PatchDiscriminator(ndf=ndf) ) (Input(bgr_shape))
|
|
self.DB = modelify(RecycleGANModel.PatchDiscriminator(ndf=ndf) ) (Input(bgr_shape))
|
|
|
|
if not self.is_first_run():
|
|
weights_to_load = [
|
|
(self.GA, 'GA.h5'),
|
|
(self.DA, 'DA.h5'),
|
|
(self.PA, 'PA.h5'),
|
|
(self.GB, 'GB.h5'),
|
|
(self.DB, 'DB.h5'),
|
|
(self.PB, 'PB.h5'),
|
|
]
|
|
self.load_weights_safe(weights_to_load)
|
|
|
|
real_A0 = Input(bgr_shape, name="real_A0")
|
|
real_A1 = Input(bgr_shape, name="real_A1")
|
|
real_A2 = Input(bgr_shape, name="real_A2")
|
|
|
|
real_B0 = Input(bgr_shape, name="real_B0")
|
|
real_B1 = Input(bgr_shape, name="real_B1")
|
|
real_B2 = Input(bgr_shape, name="real_B2")
|
|
|
|
DA_ones = K.ones_like ( K.shape(self.DA.outputs[0]) )
|
|
DA_zeros = K.zeros_like ( K.shape(self.DA.outputs[0] ))
|
|
DB_ones = K.ones_like ( K.shape(self.DB.outputs[0] ))
|
|
DB_zeros = K.zeros_like ( K.shape(self.DB.outputs[0] ))
|
|
|
|
def DLoss(labels,logits):
|
|
return K.mean(K.binary_crossentropy(labels,logits))
|
|
|
|
def CycleLoss (t1,t2):
|
|
return K.mean(K.abs(t1 - t2))
|
|
|
|
def RecurrentLOSS(t1,t2):
|
|
return K.mean(K.abs(t1 - t2))
|
|
|
|
def RecycleLOSS(t1,t2):
|
|
return K.mean(K.abs(t1 - t2))
|
|
|
|
fake_B0 = self.GA(real_A0)
|
|
fake_B1 = self.GA(real_A1)
|
|
|
|
fake_A0 = self.GB(real_B0)
|
|
fake_A1 = self.GB(real_B1)
|
|
|
|
real_A0_d = self.DA(real_A0)
|
|
real_A0_d_ones = K.ones_like(real_A0_d)
|
|
real_A1_d = self.DA(real_A1)
|
|
real_A1_d_ones = K.ones_like(real_A1_d)
|
|
|
|
fake_A0_d = self.DA(fake_A0)
|
|
fake_A0_d_ones = K.ones_like(fake_A0_d)
|
|
fake_A0_d_zeros = K.zeros_like(fake_A0_d)
|
|
|
|
fake_A1_d = self.DA(fake_A1)
|
|
fake_A1_d_ones = K.ones_like(fake_A1_d)
|
|
fake_A1_d_zeros = K.zeros_like(fake_A1_d)
|
|
|
|
real_B0_d = self.DB(real_B0)
|
|
real_B0_d_ones = K.ones_like(real_B0_d)
|
|
|
|
real_B1_d = self.DB(real_B1)
|
|
real_B1_d_ones = K.ones_like(real_B1_d)
|
|
|
|
fake_B0_d = self.DB(fake_B0)
|
|
fake_B0_d_ones = K.ones_like(fake_B0_d)
|
|
fake_B0_d_zeros = K.zeros_like(fake_B0_d)
|
|
|
|
fake_B1_d = self.DB(fake_B1)
|
|
fake_B1_d_ones = K.ones_like(fake_B1_d)
|
|
fake_B1_d_zeros = K.zeros_like(fake_B1_d)
|
|
|
|
pred_A2 = self.PA ( [real_A0, real_A1])
|
|
pred_B2 = self.PB ( [real_B0, real_B1])
|
|
rec_A2 = self.GB ( self.PB ( [fake_B0, fake_B1]) )
|
|
rec_B2 = self.GA ( self.PA ( [fake_A0, fake_A1]))
|
|
|
|
|
|
loss_GA = DLoss(fake_B0_d_ones, fake_B0_d ) + \
|
|
DLoss(fake_B1_d_ones, fake_B1_d ) + \
|
|
lambda_A * (RecurrentLOSS(pred_A2, real_A2) + \
|
|
RecycleLOSS(rec_B2, real_B2) )
|
|
|
|
|
|
weights_GA = self.GA.trainable_weights + self.PA.trainable_weights
|
|
|
|
loss_GB = DLoss(fake_A0_d_ones, fake_A0_d ) + \
|
|
DLoss(fake_A1_d_ones, fake_A1_d ) + \
|
|
lambda_B * (RecurrentLOSS(pred_B2, real_B2) + \
|
|
RecycleLOSS(rec_A2, real_A2) )
|
|
|
|
weights_GB = self.GB.trainable_weights + self.PB.trainable_weights
|
|
|
|
def opt():
|
|
return Adam(lr=2e-4, beta_1=0.5, beta_2=0.999, tf_cpu_mode=2)#, clipnorm=1)
|
|
|
|
self.GA_train = K.function ([real_A0, real_A1, real_A2, real_B0, real_B1, real_B2],[loss_GA],
|
|
opt().get_updates(loss_GA, weights_GA) )
|
|
|
|
self.GB_train = K.function ([real_A0, real_A1, real_A2, real_B0, real_B1, real_B2],[loss_GB],
|
|
opt().get_updates(loss_GB, weights_GB) )
|
|
|
|
###########
|
|
|
|
loss_D_A0 = ( DLoss(real_A0_d_ones, real_A0_d ) + \
|
|
DLoss(fake_A0_d_zeros, fake_A0_d ) ) * 0.5
|
|
|
|
loss_D_A1 = ( DLoss(real_A1_d_ones, real_A1_d ) + \
|
|
DLoss(fake_A1_d_zeros, fake_A1_d ) ) * 0.5
|
|
|
|
loss_D_A = loss_D_A0 + loss_D_A1
|
|
|
|
self.DA_train = K.function ([real_A0, real_A1, real_A2, real_B0, real_B1, real_B2],[loss_D_A],
|
|
opt().get_updates(loss_D_A, self.DA.trainable_weights) )
|
|
|
|
############
|
|
|
|
loss_D_B0 = ( DLoss(real_B0_d_ones, real_B0_d ) + \
|
|
DLoss(fake_B0_d_zeros, fake_B0_d ) ) * 0.5
|
|
|
|
loss_D_B1 = ( DLoss(real_B1_d_ones, real_B1_d ) + \
|
|
DLoss(fake_B1_d_zeros, fake_B1_d ) ) * 0.5
|
|
|
|
loss_D_B = loss_D_B0 + loss_D_B1
|
|
|
|
self.DB_train = K.function ([real_A0, real_A1, real_A2, real_B0, real_B1, real_B2],[loss_D_B],
|
|
opt().get_updates(loss_D_B, self.DB.trainable_weights) )
|
|
|
|
############
|
|
|
|
|
|
self.G_view = K.function([real_A0, real_A1, real_A2, real_B0, real_B1, real_B2],[fake_A0, fake_A1, pred_A2, rec_A2, fake_B0, fake_B1, pred_B2, rec_B2 ])
|
|
|
|
|
|
|
|
if self.is_training_mode:
|
|
t = SampleProcessor.Types
|
|
output_sample_types=[ { 'types': (t.IMG_SOURCE, t.MODE_BGR), 'resolution':resolution, 'normalize_tanh' : True} ]
|
|
|
|
self.set_training_data_generators ([
|
|
SampleGeneratorImageTemporal(self.training_data_src_path, debug=self.is_debug(), batch_size=self.batch_size,
|
|
temporal_image_count=3,
|
|
sample_process_options=SampleProcessor.Options(random_flip = False),
|
|
output_sample_types=output_sample_types ),
|
|
|
|
SampleGeneratorImageTemporal(self.training_data_dst_path, debug=self.is_debug(), batch_size=self.batch_size,
|
|
temporal_image_count=3,
|
|
sample_process_options=SampleProcessor.Options(random_flip = False),
|
|
output_sample_types=output_sample_types ),
|
|
])
|
|
else:
|
|
self.G_convert = K.function([real_B0],[fake_A0])
|
|
|
|
#override
|
|
def get_model_filename_list(self):
|
|
return [ [self.GA, 'GA.h5'],
|
|
[self.GB, 'GB.h5'],
|
|
[self.DA, 'DA.h5'],
|
|
[self.DB, 'DB.h5'],
|
|
[self.PA, 'PA.h5'],
|
|
[self.PB, 'PB.h5'] ]
|
|
|
|
#override
|
|
def onSave(self):
|
|
self.save_weights_safe( self.get_model_filename_list() )
|
|
|
|
#override
|
|
def onTrainOneIter(self, generators_samples, generators_list):
|
|
source_src_0, source_src_1, source_src_2, = generators_samples[0]
|
|
source_dst_0, source_dst_1, source_dst_2, = generators_samples[1]
|
|
|
|
feed = [source_src_0, source_src_1, source_src_2, source_dst_0, source_dst_1, source_dst_2]
|
|
|
|
loss_GA, = self.GA_train ( feed )
|
|
loss_GB, = self.GB_train ( feed )
|
|
loss_DA, = self.DA_train( feed )
|
|
loss_DB, = self.DB_train( feed )
|
|
|
|
return ( ('GA', loss_GA), ('GB', loss_GB), ('DA', loss_DA), ('DB', loss_DB) )
|
|
|
|
#override
|
|
def onGetPreview(self, sample):
|
|
test_A0 = sample[0][0]
|
|
test_A1 = sample[0][1]
|
|
test_A2 = sample[0][2]
|
|
|
|
test_B0 = sample[1][0]
|
|
test_B1 = sample[1][1]
|
|
test_B2 = sample[1][2]
|
|
|
|
G_view_result = self.G_view([test_A0, test_A1, test_A2, test_B0, test_B1, test_B2])
|
|
|
|
fake_A0, fake_A1, pred_A2, rec_A2, fake_B0, fake_B1, pred_B2, rec_B2 = [ x[0] / 2 + 0.5 for x in G_view_result]
|
|
test_A0, test_A1, test_A2, test_B0, test_B1, test_B2 = [ x[0] / 2 + 0.5 for x in [test_A0, test_A1, test_A2, test_B0, test_B1, test_B2] ]
|
|
|
|
r = np.concatenate ((np.concatenate ( (test_A0, test_A1, test_A2, pred_A2, fake_B0, fake_B1, rec_A2), axis=1),
|
|
np.concatenate ( (test_B0, test_B1, test_B2, pred_B2, fake_A0, fake_A1, rec_B2), axis=1)
|
|
), axis=0)
|
|
|
|
return [ ('RecycleGAN', r ) ]
|
|
|
|
def predictor_func (self, face):
|
|
x = self.G_convert ( [ face[np.newaxis,...]*2-1 ] )[0]
|
|
return np.clip ( x[0] / 2 + 0.5 , 0, 1)
|
|
|
|
#override
|
|
def get_converter(self, **in_options):
|
|
from converters import ConverterImage
|
|
return ConverterImage(self.predictor_func,
|
|
predictor_input_size=self.options['resolution'],
|
|
**in_options)
|
|
|
|
@staticmethod
|
|
def ResNet(output_nc, use_batch_norm, ngf=64, n_blocks=6, use_dropout=False):
|
|
exec (nnlib.import_all(), locals(), globals())
|
|
|
|
if not use_batch_norm:
|
|
use_bias = True
|
|
def XNormalization(x):
|
|
return InstanceNormalization (axis=-1)(x)
|
|
else:
|
|
use_bias = False
|
|
def XNormalization(x):
|
|
return BatchNormalization (axis=-1)(x)
|
|
|
|
XConv2D = partial(Conv2D, padding='same', use_bias=use_bias)
|
|
XConv2DTranspose = partial(Conv2DTranspose, padding='same', use_bias=use_bias)
|
|
|
|
def func(input):
|
|
|
|
|
|
def ResnetBlock(dim, use_dropout=False):
|
|
def func(input):
|
|
x = input
|
|
|
|
x = XConv2D(dim, 3, strides=1)(x)
|
|
x = XNormalization(x)
|
|
x = ReLU()(x)
|
|
|
|
if use_dropout:
|
|
x = Dropout(0.5)(x)
|
|
|
|
x = XConv2D(dim, 3, strides=1)(x)
|
|
x = XNormalization(x)
|
|
x = ReLU()(x)
|
|
return Add()([x,input])
|
|
return func
|
|
|
|
x = input
|
|
|
|
x = ReLU()(XNormalization(XConv2D(ngf, 7, strides=1)(x)))
|
|
|
|
x = ReLU()(XNormalization(XConv2D(ngf*2, 3, strides=2)(x)))
|
|
x = ReLU()(XNormalization(XConv2D(ngf*4, 3, strides=2)(x)))
|
|
|
|
for i in range(n_blocks):
|
|
x = ResnetBlock(ngf*4, use_dropout=use_dropout)(x)
|
|
|
|
x = ReLU()(XNormalization(XConv2DTranspose(ngf*2, 3, strides=2)(x)))
|
|
x = ReLU()(XNormalization(XConv2DTranspose(ngf , 3, strides=2)(x)))
|
|
|
|
x = XConv2D(output_nc, 7, strides=1, activation='tanh', use_bias=True)(x)
|
|
|
|
return x
|
|
|
|
return func
|
|
|
|
@staticmethod
|
|
def UNet(output_nc, use_batch_norm, ngf=64, use_dropout=False):
|
|
exec (nnlib.import_all(), locals(), globals())
|
|
|
|
if not use_batch_norm:
|
|
use_bias = True
|
|
def XNormalizationL():
|
|
return InstanceNormalization (axis=-1)
|
|
else:
|
|
use_bias = False
|
|
def XNormalizationL():
|
|
return BatchNormalization (axis=-1)
|
|
|
|
def XNormalization(x):
|
|
return XNormalizationL()(x)
|
|
|
|
XConv2D = partial(Conv2D, padding='same', use_bias=use_bias)
|
|
XConv2DTranspose = partial(Conv2DTranspose, padding='same', use_bias=use_bias)
|
|
|
|
def func(input):
|
|
|
|
b,h,w,c = K.int_shape(input)
|
|
|
|
n_downs = get_power_of_two(w) - 4
|
|
|
|
Norm = XNormalizationL()
|
|
Norm2 = XNormalizationL()
|
|
Norm4 = XNormalizationL()
|
|
Norm8 = XNormalizationL()
|
|
|
|
x = input
|
|
|
|
x = e1 = XConv2D( ngf, 4, strides=2, use_bias=True ) (x)
|
|
|
|
x = e2 = Norm2( XConv2D( ngf*2, 4, strides=2 )( LeakyReLU(0.2)(x) ) )
|
|
x = e3 = Norm4( XConv2D( ngf*4, 4, strides=2 )( LeakyReLU(0.2)(x) ) )
|
|
|
|
l = []
|
|
for i in range(n_downs):
|
|
x = Norm8( XConv2D( ngf*8, 4, strides=2 )( LeakyReLU(0.2)(x) ) )
|
|
l += [x]
|
|
|
|
x = XConv2D( ngf*8, 4, strides=2, use_bias=True )( LeakyReLU(0.2)(x) )
|
|
|
|
for i in range(n_downs):
|
|
x = Norm8( XConv2DTranspose( ngf*8, 4, strides=2 )( ReLU()(x) ) )
|
|
if i <= n_downs-2:
|
|
x = Dropout(0.5)(x)
|
|
x = Concatenate(axis=-1)([x, l[-i-1] ])
|
|
|
|
x = Norm4( XConv2DTranspose( ngf*4, 4, strides=2 )( ReLU()(x) ) )
|
|
x = Concatenate(axis=-1)([x, e3])
|
|
|
|
x = Norm2( XConv2DTranspose( ngf*2, 4, strides=2 )( ReLU()(x) ) )
|
|
x = Concatenate(axis=-1)([x, e2])
|
|
|
|
x = Norm( XConv2DTranspose( ngf, 4, strides=2 )( ReLU()(x) ) )
|
|
x = Concatenate(axis=-1)([x, e1])
|
|
|
|
x = XConv2DTranspose(output_nc, 4, strides=2, activation='tanh', use_bias=True)( ReLU()(x) )
|
|
|
|
return x
|
|
return func
|
|
|
|
@staticmethod
|
|
def UNetTemporalPredictor(output_nc, use_batch_norm, ngf=64, use_dropout=False):
|
|
exec (nnlib.import_all(), locals(), globals())
|
|
def func(inputs):
|
|
past_2_image_tensor, past_1_image_tensor = inputs
|
|
|
|
x = Concatenate(axis=-1)([ past_2_image_tensor, past_1_image_tensor ])
|
|
x = UNet(3, use_batch_norm, ngf=ngf, use_dropout=use_dropout) (x)
|
|
|
|
return x
|
|
|
|
return func
|
|
|
|
@staticmethod
|
|
def PatchDiscriminator(ndf=64):
|
|
exec (nnlib.import_all(), locals(), globals())
|
|
|
|
#use_bias = True
|
|
#def XNormalization(x):
|
|
# return InstanceNormalization (axis=-1)(x)
|
|
use_bias = False
|
|
def XNormalization(x):
|
|
return BatchNormalization (axis=-1)(x)
|
|
|
|
XConv2D = partial(Conv2D, use_bias=use_bias)
|
|
|
|
def func(input):
|
|
b,h,w,c = K.int_shape(input)
|
|
|
|
x = input
|
|
|
|
x = ZeroPadding2D((1,1))(x)
|
|
x = XConv2D( ndf, 4, strides=2, padding='valid', use_bias=True)(x)
|
|
x = LeakyReLU(0.2)(x)
|
|
|
|
x = ZeroPadding2D((1,1))(x)
|
|
x = XConv2D( ndf*2, 4, strides=2, padding='valid')(x)
|
|
x = XNormalization(x)
|
|
x = LeakyReLU(0.2)(x)
|
|
|
|
x = ZeroPadding2D((1,1))(x)
|
|
x = XConv2D( ndf*4, 4, strides=2, padding='valid')(x)
|
|
x = XNormalization(x)
|
|
x = LeakyReLU(0.2)(x)
|
|
|
|
x = ZeroPadding2D((1,1))(x)
|
|
x = XConv2D( ndf*8, 4, strides=2, padding='valid')(x)
|
|
x = XNormalization(x)
|
|
x = LeakyReLU(0.2)(x)
|
|
|
|
x = ZeroPadding2D((1,1))(x)
|
|
x = XConv2D( ndf*8, 4, strides=2, padding='valid')(x)
|
|
x = XNormalization(x)
|
|
x = LeakyReLU(0.2)(x)
|
|
|
|
x = ZeroPadding2D((1,1))(x)
|
|
return XConv2D( 1, 4, strides=1, padding='valid', use_bias=True, activation='sigmoid')(x)#
|
|
return func
|
|
|
|
@staticmethod
|
|
def NLayerDiscriminator(ndf=64, n_layers=3):
|
|
exec (nnlib.import_all(), locals(), globals())
|
|
|
|
#use_bias = True
|
|
#def XNormalization(x):
|
|
# return InstanceNormalization (axis=-1)(x)
|
|
use_bias = False
|
|
def XNormalization(x):
|
|
return BatchNormalization (axis=-1)(x)
|
|
|
|
XConv2D = partial(Conv2D, use_bias=use_bias)
|
|
|
|
def func(input):
|
|
b,h,w,c = K.int_shape(input)
|
|
|
|
x = input
|
|
|
|
f = ndf
|
|
|
|
x = ZeroPadding2D((1,1))(x)
|
|
x = XConv2D( f, 4, strides=2, padding='valid', use_bias=True)(x)
|
|
f = min( ndf*8, f*2 )
|
|
x = LeakyReLU(0.2)(x)
|
|
|
|
for i in range(n_layers):
|
|
x = ZeroPadding2D((1,1))(x)
|
|
x = XConv2D( f, 4, strides=2, padding='valid')(x)
|
|
f = min( ndf*8, f*2 )
|
|
x = XNormalization(x)
|
|
x = LeakyReLU(0.2)(x)
|
|
|
|
x = ZeroPadding2D((1,1))(x)
|
|
x = XConv2D( f, 4, strides=1, padding='valid')(x)
|
|
x = XNormalization(x)
|
|
x = LeakyReLU(0.2)(x)
|
|
|
|
x = ZeroPadding2D((1,1))(x)
|
|
return XConv2D( 1, 4, strides=1, padding='valid', use_bias=True, activation='sigmoid')(x)#
|
|
return func
|
|
|
|
Model = RecycleGANModel
|