DeepFaceLab/models/Model_RecycleGAN/Model.py
iperov b72d5a3f9a fixed error "Failed to get convolution algorithm" on some systems
fixed error "dll load failed" on some systems
Expanded eyebrows line of face masks. It does not affect mask of FAN-x converter mode.
2019-08-11 11:17:22 +04:00

482 lines
18 KiB
Python

from functools import partial
import cv2
import numpy as np
from facelib import FaceType
from interact import interact as io
from mathlib import get_power_of_two
from models import ModelBase
from nnlib import nnlib
from samplelib import *
class RecycleGANModel(ModelBase):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs,
ask_sort_by_yaw=False,
ask_random_flip=False,
ask_src_scale_mod=False)
#override
def onInitializeOptions(self, is_first_run, ask_override):
if is_first_run:
self.options['resolution'] = io.input_int("Resolution ( 128,256 ?:help skip:128) : ", 128, [128,256], help_message="More resolution requires more VRAM and time to train. Value will be adjusted to multiple of 16.")
else:
self.options['resolution'] = self.options.get('resolution', 128)
#override
def onInitialize(self, batch_size=-1, **in_options):
exec(nnlib.code_import_all, locals(), globals())
self.set_vram_batch_requirements({6:16})
resolution = self.options['resolution']
bgr_shape = (resolution, resolution, 3)
ngf = 64
npf = 32
ndf = 64
lambda_A = 10
lambda_B = 10
use_batch_norm = True #created_batch_size > 1
self.GA = modelify(RecycleGANModel.ResNet (bgr_shape[2], use_batch_norm, n_blocks=6, ngf=ngf, use_dropout=True))(Input(bgr_shape))
self.GB = modelify(RecycleGANModel.ResNet (bgr_shape[2], use_batch_norm, n_blocks=6, ngf=ngf, use_dropout=True))(Input(bgr_shape))
#self.GA = modelify(UNet (bgr_shape[2], use_batch_norm, num_downs=get_power_of_two(resolution)-1, ngf=ngf, use_dropout=True))(Input(bgr_shape))
#self.GB = modelify(UNet (bgr_shape[2], use_batch_norm, num_downs=get_power_of_two(resolution)-1, ngf=ngf, use_dropout=True))(Input(bgr_shape))
self.PA = modelify(RecycleGANModel.UNetTemporalPredictor(bgr_shape[2], use_batch_norm, ngf=npf))([Input(bgr_shape), Input(bgr_shape)])
self.PB = modelify(RecycleGANModel.UNetTemporalPredictor(bgr_shape[2], use_batch_norm, ngf=npf))([Input(bgr_shape), Input(bgr_shape)])
self.DA = modelify(RecycleGANModel.PatchDiscriminator(ndf=ndf) ) (Input(bgr_shape))
self.DB = modelify(RecycleGANModel.PatchDiscriminator(ndf=ndf) ) (Input(bgr_shape))
if not self.is_first_run():
weights_to_load = [
(self.GA, 'GA.h5'),
(self.DA, 'DA.h5'),
(self.PA, 'PA.h5'),
(self.GB, 'GB.h5'),
(self.DB, 'DB.h5'),
(self.PB, 'PB.h5'),
]
self.load_weights_safe(weights_to_load)
real_A0 = Input(bgr_shape, name="real_A0")
real_A1 = Input(bgr_shape, name="real_A1")
real_A2 = Input(bgr_shape, name="real_A2")
real_B0 = Input(bgr_shape, name="real_B0")
real_B1 = Input(bgr_shape, name="real_B1")
real_B2 = Input(bgr_shape, name="real_B2")
DA_ones = K.ones_like ( K.shape(self.DA.outputs[0]) )
DA_zeros = K.zeros_like ( K.shape(self.DA.outputs[0] ))
DB_ones = K.ones_like ( K.shape(self.DB.outputs[0] ))
DB_zeros = K.zeros_like ( K.shape(self.DB.outputs[0] ))
def DLoss(labels,logits):
return K.mean(K.binary_crossentropy(labels,logits))
def CycleLoss (t1,t2):
return K.mean(K.abs(t1 - t2))
def RecurrentLOSS(t1,t2):
return K.mean(K.abs(t1 - t2))
def RecycleLOSS(t1,t2):
return K.mean(K.abs(t1 - t2))
fake_B0 = self.GA(real_A0)
fake_B1 = self.GA(real_A1)
fake_A0 = self.GB(real_B0)
fake_A1 = self.GB(real_B1)
real_A0_d = self.DA(real_A0)
real_A0_d_ones = K.ones_like(real_A0_d)
real_A1_d = self.DA(real_A1)
real_A1_d_ones = K.ones_like(real_A1_d)
fake_A0_d = self.DA(fake_A0)
fake_A0_d_ones = K.ones_like(fake_A0_d)
fake_A0_d_zeros = K.zeros_like(fake_A0_d)
fake_A1_d = self.DA(fake_A1)
fake_A1_d_ones = K.ones_like(fake_A1_d)
fake_A1_d_zeros = K.zeros_like(fake_A1_d)
real_B0_d = self.DB(real_B0)
real_B0_d_ones = K.ones_like(real_B0_d)
real_B1_d = self.DB(real_B1)
real_B1_d_ones = K.ones_like(real_B1_d)
fake_B0_d = self.DB(fake_B0)
fake_B0_d_ones = K.ones_like(fake_B0_d)
fake_B0_d_zeros = K.zeros_like(fake_B0_d)
fake_B1_d = self.DB(fake_B1)
fake_B1_d_ones = K.ones_like(fake_B1_d)
fake_B1_d_zeros = K.zeros_like(fake_B1_d)
pred_A2 = self.PA ( [real_A0, real_A1])
pred_B2 = self.PB ( [real_B0, real_B1])
rec_A2 = self.GB ( self.PB ( [fake_B0, fake_B1]) )
rec_B2 = self.GA ( self.PA ( [fake_A0, fake_A1]))
loss_GA = DLoss(fake_B0_d_ones, fake_B0_d ) + \
DLoss(fake_B1_d_ones, fake_B1_d ) + \
lambda_A * (RecurrentLOSS(pred_A2, real_A2) + \
RecycleLOSS(rec_B2, real_B2) )
weights_GA = self.GA.trainable_weights + self.PA.trainable_weights
loss_GB = DLoss(fake_A0_d_ones, fake_A0_d ) + \
DLoss(fake_A1_d_ones, fake_A1_d ) + \
lambda_B * (RecurrentLOSS(pred_B2, real_B2) + \
RecycleLOSS(rec_A2, real_A2) )
weights_GB = self.GB.trainable_weights + self.PB.trainable_weights
def opt():
return Adam(lr=2e-4, beta_1=0.5, beta_2=0.999, tf_cpu_mode=2)#, clipnorm=1)
self.GA_train = K.function ([real_A0, real_A1, real_A2, real_B0, real_B1, real_B2],[loss_GA],
opt().get_updates(loss_GA, weights_GA) )
self.GB_train = K.function ([real_A0, real_A1, real_A2, real_B0, real_B1, real_B2],[loss_GB],
opt().get_updates(loss_GB, weights_GB) )
###########
loss_D_A0 = ( DLoss(real_A0_d_ones, real_A0_d ) + \
DLoss(fake_A0_d_zeros, fake_A0_d ) ) * 0.5
loss_D_A1 = ( DLoss(real_A1_d_ones, real_A1_d ) + \
DLoss(fake_A1_d_zeros, fake_A1_d ) ) * 0.5
loss_D_A = loss_D_A0 + loss_D_A1
self.DA_train = K.function ([real_A0, real_A1, real_A2, real_B0, real_B1, real_B2],[loss_D_A],
opt().get_updates(loss_D_A, self.DA.trainable_weights) )
############
loss_D_B0 = ( DLoss(real_B0_d_ones, real_B0_d ) + \
DLoss(fake_B0_d_zeros, fake_B0_d ) ) * 0.5
loss_D_B1 = ( DLoss(real_B1_d_ones, real_B1_d ) + \
DLoss(fake_B1_d_zeros, fake_B1_d ) ) * 0.5
loss_D_B = loss_D_B0 + loss_D_B1
self.DB_train = K.function ([real_A0, real_A1, real_A2, real_B0, real_B1, real_B2],[loss_D_B],
opt().get_updates(loss_D_B, self.DB.trainable_weights) )
############
self.G_view = K.function([real_A0, real_A1, real_A2, real_B0, real_B1, real_B2],[fake_A0, fake_A1, pred_A2, rec_A2, fake_B0, fake_B1, pred_B2, rec_B2 ])
if self.is_training_mode:
t = SampleProcessor.Types
output_sample_types=[ { 'types': (t.IMG_SOURCE, t.MODE_BGR), 'resolution':resolution, 'normalize_tanh' : True} ]
self.set_training_data_generators ([
SampleGeneratorImageTemporal(self.training_data_src_path, debug=self.is_debug(), batch_size=self.batch_size,
temporal_image_count=3,
sample_process_options=SampleProcessor.Options(random_flip = False),
output_sample_types=output_sample_types ),
SampleGeneratorImageTemporal(self.training_data_dst_path, debug=self.is_debug(), batch_size=self.batch_size,
temporal_image_count=3,
sample_process_options=SampleProcessor.Options(random_flip = False),
output_sample_types=output_sample_types ),
])
else:
self.G_convert = K.function([real_B0],[fake_A0])
#override
def get_model_filename_list(self):
return [ [self.GA, 'GA.h5'],
[self.GB, 'GB.h5'],
[self.DA, 'DA.h5'],
[self.DB, 'DB.h5'],
[self.PA, 'PA.h5'],
[self.PB, 'PB.h5'] ]
#override
def onSave(self):
self.save_weights_safe( self.get_model_filename_list() )
#override
def onTrainOneIter(self, generators_samples, generators_list):
source_src_0, source_src_1, source_src_2, = generators_samples[0]
source_dst_0, source_dst_1, source_dst_2, = generators_samples[1]
feed = [source_src_0, source_src_1, source_src_2, source_dst_0, source_dst_1, source_dst_2]
loss_GA, = self.GA_train ( feed )
loss_GB, = self.GB_train ( feed )
loss_DA, = self.DA_train( feed )
loss_DB, = self.DB_train( feed )
return ( ('GA', loss_GA), ('GB', loss_GB), ('DA', loss_DA), ('DB', loss_DB) )
#override
def onGetPreview(self, sample):
test_A0 = sample[0][0]
test_A1 = sample[0][1]
test_A2 = sample[0][2]
test_B0 = sample[1][0]
test_B1 = sample[1][1]
test_B2 = sample[1][2]
G_view_result = self.G_view([test_A0, test_A1, test_A2, test_B0, test_B1, test_B2])
fake_A0, fake_A1, pred_A2, rec_A2, fake_B0, fake_B1, pred_B2, rec_B2 = [ x[0] / 2 + 0.5 for x in G_view_result]
test_A0, test_A1, test_A2, test_B0, test_B1, test_B2 = [ x[0] / 2 + 0.5 for x in [test_A0, test_A1, test_A2, test_B0, test_B1, test_B2] ]
r = np.concatenate ((np.concatenate ( (test_A0, test_A1, test_A2, pred_A2, fake_B0, fake_B1, rec_A2), axis=1),
np.concatenate ( (test_B0, test_B1, test_B2, pred_B2, fake_A0, fake_A1, rec_B2), axis=1)
), axis=0)
return [ ('RecycleGAN', r ) ]
def predictor_func (self, face):
x = self.G_convert ( [ face[np.newaxis,...]*2-1 ] )[0]
return np.clip ( x[0] / 2 + 0.5 , 0, 1)
#override
def get_converter(self, **in_options):
from converters import ConverterImage
return ConverterImage(self.predictor_func,
predictor_input_size=self.options['resolution'],
**in_options)
@staticmethod
def ResNet(output_nc, use_batch_norm, ngf=64, n_blocks=6, use_dropout=False):
exec (nnlib.import_all(), locals(), globals())
if not use_batch_norm:
use_bias = True
def XNormalization(x):
return InstanceNormalization (axis=-1)(x)
else:
use_bias = False
def XNormalization(x):
return BatchNormalization (axis=-1)(x)
XConv2D = partial(Conv2D, padding='same', use_bias=use_bias)
XConv2DTranspose = partial(Conv2DTranspose, padding='same', use_bias=use_bias)
def func(input):
def ResnetBlock(dim, use_dropout=False):
def func(input):
x = input
x = XConv2D(dim, 3, strides=1)(x)
x = XNormalization(x)
x = ReLU()(x)
if use_dropout:
x = Dropout(0.5)(x)
x = XConv2D(dim, 3, strides=1)(x)
x = XNormalization(x)
x = ReLU()(x)
return Add()([x,input])
return func
x = input
x = ReLU()(XNormalization(XConv2D(ngf, 7, strides=1)(x)))
x = ReLU()(XNormalization(XConv2D(ngf*2, 3, strides=2)(x)))
x = ReLU()(XNormalization(XConv2D(ngf*4, 3, strides=2)(x)))
for i in range(n_blocks):
x = ResnetBlock(ngf*4, use_dropout=use_dropout)(x)
x = ReLU()(XNormalization(XConv2DTranspose(ngf*2, 3, strides=2)(x)))
x = ReLU()(XNormalization(XConv2DTranspose(ngf , 3, strides=2)(x)))
x = XConv2D(output_nc, 7, strides=1, activation='tanh', use_bias=True)(x)
return x
return func
@staticmethod
def UNet(output_nc, use_batch_norm, ngf=64, use_dropout=False):
exec (nnlib.import_all(), locals(), globals())
if not use_batch_norm:
use_bias = True
def XNormalizationL():
return InstanceNormalization (axis=-1)
else:
use_bias = False
def XNormalizationL():
return BatchNormalization (axis=-1)
def XNormalization(x):
return XNormalizationL()(x)
XConv2D = partial(Conv2D, padding='same', use_bias=use_bias)
XConv2DTranspose = partial(Conv2DTranspose, padding='same', use_bias=use_bias)
def func(input):
b,h,w,c = K.int_shape(input)
n_downs = get_power_of_two(w) - 4
Norm = XNormalizationL()
Norm2 = XNormalizationL()
Norm4 = XNormalizationL()
Norm8 = XNormalizationL()
x = input
x = e1 = XConv2D( ngf, 4, strides=2, use_bias=True ) (x)
x = e2 = Norm2( XConv2D( ngf*2, 4, strides=2 )( LeakyReLU(0.2)(x) ) )
x = e3 = Norm4( XConv2D( ngf*4, 4, strides=2 )( LeakyReLU(0.2)(x) ) )
l = []
for i in range(n_downs):
x = Norm8( XConv2D( ngf*8, 4, strides=2 )( LeakyReLU(0.2)(x) ) )
l += [x]
x = XConv2D( ngf*8, 4, strides=2, use_bias=True )( LeakyReLU(0.2)(x) )
for i in range(n_downs):
x = Norm8( XConv2DTranspose( ngf*8, 4, strides=2 )( ReLU()(x) ) )
if i <= n_downs-2:
x = Dropout(0.5)(x)
x = Concatenate(axis=-1)([x, l[-i-1] ])
x = Norm4( XConv2DTranspose( ngf*4, 4, strides=2 )( ReLU()(x) ) )
x = Concatenate(axis=-1)([x, e3])
x = Norm2( XConv2DTranspose( ngf*2, 4, strides=2 )( ReLU()(x) ) )
x = Concatenate(axis=-1)([x, e2])
x = Norm( XConv2DTranspose( ngf, 4, strides=2 )( ReLU()(x) ) )
x = Concatenate(axis=-1)([x, e1])
x = XConv2DTranspose(output_nc, 4, strides=2, activation='tanh', use_bias=True)( ReLU()(x) )
return x
return func
@staticmethod
def UNetTemporalPredictor(output_nc, use_batch_norm, ngf=64, use_dropout=False):
exec (nnlib.import_all(), locals(), globals())
def func(inputs):
past_2_image_tensor, past_1_image_tensor = inputs
x = Concatenate(axis=-1)([ past_2_image_tensor, past_1_image_tensor ])
x = UNet(3, use_batch_norm, ngf=ngf, use_dropout=use_dropout) (x)
return x
return func
@staticmethod
def PatchDiscriminator(ndf=64):
exec (nnlib.import_all(), locals(), globals())
#use_bias = True
#def XNormalization(x):
# return InstanceNormalization (axis=-1)(x)
use_bias = False
def XNormalization(x):
return BatchNormalization (axis=-1)(x)
XConv2D = partial(Conv2D, use_bias=use_bias)
def func(input):
b,h,w,c = K.int_shape(input)
x = input
x = ZeroPadding2D((1,1))(x)
x = XConv2D( ndf, 4, strides=2, padding='valid', use_bias=True)(x)
x = LeakyReLU(0.2)(x)
x = ZeroPadding2D((1,1))(x)
x = XConv2D( ndf*2, 4, strides=2, padding='valid')(x)
x = XNormalization(x)
x = LeakyReLU(0.2)(x)
x = ZeroPadding2D((1,1))(x)
x = XConv2D( ndf*4, 4, strides=2, padding='valid')(x)
x = XNormalization(x)
x = LeakyReLU(0.2)(x)
x = ZeroPadding2D((1,1))(x)
x = XConv2D( ndf*8, 4, strides=2, padding='valid')(x)
x = XNormalization(x)
x = LeakyReLU(0.2)(x)
x = ZeroPadding2D((1,1))(x)
x = XConv2D( ndf*8, 4, strides=2, padding='valid')(x)
x = XNormalization(x)
x = LeakyReLU(0.2)(x)
x = ZeroPadding2D((1,1))(x)
return XConv2D( 1, 4, strides=1, padding='valid', use_bias=True, activation='sigmoid')(x)#
return func
@staticmethod
def NLayerDiscriminator(ndf=64, n_layers=3):
exec (nnlib.import_all(), locals(), globals())
#use_bias = True
#def XNormalization(x):
# return InstanceNormalization (axis=-1)(x)
use_bias = False
def XNormalization(x):
return BatchNormalization (axis=-1)(x)
XConv2D = partial(Conv2D, use_bias=use_bias)
def func(input):
b,h,w,c = K.int_shape(input)
x = input
f = ndf
x = ZeroPadding2D((1,1))(x)
x = XConv2D( f, 4, strides=2, padding='valid', use_bias=True)(x)
f = min( ndf*8, f*2 )
x = LeakyReLU(0.2)(x)
for i in range(n_layers):
x = ZeroPadding2D((1,1))(x)
x = XConv2D( f, 4, strides=2, padding='valid')(x)
f = min( ndf*8, f*2 )
x = XNormalization(x)
x = LeakyReLU(0.2)(x)
x = ZeroPadding2D((1,1))(x)
x = XConv2D( f, 4, strides=1, padding='valid')(x)
x = XNormalization(x)
x = LeakyReLU(0.2)(x)
x = ZeroPadding2D((1,1))(x)
return XConv2D( 1, 4, strides=1, padding='valid', use_bias=True, activation='sigmoid')(x)#
return func
Model = RecycleGANModel