tools: fix mix of spaces & tabs

This commit is contained in:
Philippe Teuwen 2019-03-09 10:46:59 +01:00
commit e559a4a5af
10 changed files with 1162 additions and 1162 deletions

View file

@ -34,65 +34,65 @@ static void __attribute__((constructor)) fill_lut()
typedef struct bucket { typedef struct bucket {
uint32_t *head; uint32_t *head;
uint32_t *bp; uint32_t *bp;
} bucket_t; } bucket_t;
typedef bucket_t bucket_array_t[2][0x100]; typedef bucket_t bucket_array_t[2][0x100];
typedef struct bucket_info { typedef struct bucket_info {
struct { struct {
uint32_t *head, *tail; uint32_t *head, *tail;
} bucket_info[2][0x100]; } bucket_info[2][0x100];
uint32_t numbuckets; uint32_t numbuckets;
} bucket_info_t; } bucket_info_t;
static void bucket_sort_intersect(uint32_t* const estart, uint32_t* const estop, static void bucket_sort_intersect(uint32_t* const estart, uint32_t* const estop,
uint32_t* const ostart, uint32_t* const ostop, uint32_t* const ostart, uint32_t* const ostop,
bucket_info_t *bucket_info, bucket_array_t bucket) bucket_info_t *bucket_info, bucket_array_t bucket)
{ {
uint32_t *p1, *p2; uint32_t *p1, *p2;
uint32_t *start[2]; uint32_t *start[2];
uint32_t *stop[2]; uint32_t *stop[2];
start[0] = estart; start[0] = estart;
stop[0] = estop; stop[0] = estop;
start[1] = ostart; start[1] = ostart;
stop[1] = ostop; stop[1] = ostop;
// init buckets to be empty // init buckets to be empty
for (uint32_t i = 0; i < 2; i++) { for (uint32_t i = 0; i < 2; i++) {
for (uint32_t j = 0x00; j <= 0xff; j++) { for (uint32_t j = 0x00; j <= 0xff; j++) {
bucket[i][j].bp = bucket[i][j].head; bucket[i][j].bp = bucket[i][j].head;
} }
} }
// sort the lists into the buckets based on the MSB (contribution bits) // sort the lists into the buckets based on the MSB (contribution bits)
for (uint32_t i = 0; i < 2; i++) { for (uint32_t i = 0; i < 2; i++) {
for (p1 = start[i]; p1 <= stop[i]; p1++) { for (p1 = start[i]; p1 <= stop[i]; p1++) {
uint32_t bucket_index = (*p1 & 0xff000000) >> 24; uint32_t bucket_index = (*p1 & 0xff000000) >> 24;
*(bucket[i][bucket_index].bp++) = *p1; *(bucket[i][bucket_index].bp++) = *p1;
} }
} }
// write back intersecting buckets as sorted list. // write back intersecting buckets as sorted list.
// fill in bucket_info with head and tail of the bucket contents in the list and number of non-empty buckets. // fill in bucket_info with head and tail of the bucket contents in the list and number of non-empty buckets.
uint32_t nonempty_bucket; uint32_t nonempty_bucket;
for (uint32_t i = 0; i < 2; i++) { for (uint32_t i = 0; i < 2; i++) {
p1 = start[i]; p1 = start[i];
nonempty_bucket = 0; nonempty_bucket = 0;
for (uint32_t j = 0x00; j <= 0xff; j++) { for (uint32_t j = 0x00; j <= 0xff; j++) {
if (bucket[0][j].bp != bucket[0][j].head && bucket[1][j].bp != bucket[1][j].head) { // non-empty intersecting buckets only if (bucket[0][j].bp != bucket[0][j].head && bucket[1][j].bp != bucket[1][j].head) { // non-empty intersecting buckets only
bucket_info->bucket_info[i][nonempty_bucket].head = p1; bucket_info->bucket_info[i][nonempty_bucket].head = p1;
for (p2 = bucket[i][j].head; p2 < bucket[i][j].bp; *p1++ = *p2++); for (p2 = bucket[i][j].head; p2 < bucket[i][j].bp; *p1++ = *p2++);
bucket_info->bucket_info[i][nonempty_bucket].tail = p1 - 1; bucket_info->bucket_info[i][nonempty_bucket].tail = p1 - 1;
nonempty_bucket++; nonempty_bucket++;
} }
} }
bucket_info->numbuckets = nonempty_bucket; bucket_info->numbuckets = nonempty_bucket;
} }
} }
@ -101,11 +101,11 @@ static void bucket_sort_intersect(uint32_t* const estart, uint32_t* const estop,
*/ */
static inline void update_contribution(uint32_t *item, const uint32_t mask1, const uint32_t mask2) static inline void update_contribution(uint32_t *item, const uint32_t mask1, const uint32_t mask2)
{ {
uint32_t p = *item >> 25; uint32_t p = *item >> 25;
p = p << 1 | parity(*item & mask1); p = p << 1 | parity(*item & mask1);
p = p << 1 | parity(*item & mask2); p = p << 1 | parity(*item & mask2);
*item = p << 24 | (*item & 0xffffff); *item = p << 24 | (*item & 0xffffff);
} }
/** extend_table /** extend_table
@ -113,83 +113,83 @@ static inline void update_contribution(uint32_t *item, const uint32_t mask1, con
*/ */
static inline void extend_table(uint32_t *tbl, uint32_t **end, int bit, int m1, int m2, uint32_t in) static inline void extend_table(uint32_t *tbl, uint32_t **end, int bit, int m1, int m2, uint32_t in)
{ {
in <<= 24; in <<= 24;
for(*tbl <<= 1; tbl <= *end; *++tbl <<= 1) for(*tbl <<= 1; tbl <= *end; *++tbl <<= 1)
if(filter(*tbl) ^ filter(*tbl | 1)) { if(filter(*tbl) ^ filter(*tbl | 1)) {
*tbl |= filter(*tbl) ^ bit; *tbl |= filter(*tbl) ^ bit;
update_contribution(tbl, m1, m2); update_contribution(tbl, m1, m2);
*tbl ^= in; *tbl ^= in;
} else if(filter(*tbl) == bit) { } else if(filter(*tbl) == bit) {
*++*end = tbl[1]; *++*end = tbl[1];
tbl[1] = tbl[0] | 1; tbl[1] = tbl[0] | 1;
update_contribution(tbl, m1, m2); update_contribution(tbl, m1, m2);
*tbl++ ^= in; *tbl++ ^= in;
update_contribution(tbl, m1, m2); update_contribution(tbl, m1, m2);
*tbl ^= in; *tbl ^= in;
} else } else
*tbl-- = *(*end)--; *tbl-- = *(*end)--;
} }
/** extend_table_simple /** extend_table_simple
* using a bit of the keystream extend the table of possible lfsr states * using a bit of the keystream extend the table of possible lfsr states
*/ */
static inline void extend_table_simple(uint32_t *tbl, uint32_t **end, int bit) static inline void extend_table_simple(uint32_t *tbl, uint32_t **end, int bit)
{ {
for(*tbl <<= 1; tbl <= *end; *++tbl <<= 1) { for(*tbl <<= 1; tbl <= *end; *++tbl <<= 1) {
if(filter(*tbl) ^ filter(*tbl | 1)) { // replace if(filter(*tbl) ^ filter(*tbl | 1)) { // replace
*tbl |= filter(*tbl) ^ bit; *tbl |= filter(*tbl) ^ bit;
} else if(filter(*tbl) == bit) { // insert } else if(filter(*tbl) == bit) { // insert
*++*end = *++tbl; *++*end = *++tbl;
*tbl = tbl[-1] | 1; *tbl = tbl[-1] | 1;
} else { // drop } else { // drop
*tbl-- = *(*end)--; *tbl-- = *(*end)--;
} }
} }
} }
/** recover /** recover
* recursively narrow down the search space, 4 bits of keystream at a time * recursively narrow down the search space, 4 bits of keystream at a time
*/ */
static struct Crypto1State* static struct Crypto1State*
recover(uint32_t *o_head, uint32_t *o_tail, uint32_t oks, recover(uint32_t *o_head, uint32_t *o_tail, uint32_t oks,
uint32_t *e_head, uint32_t *e_tail, uint32_t eks, int rem, uint32_t *e_head, uint32_t *e_tail, uint32_t eks, int rem,
struct Crypto1State *sl, uint32_t in, bucket_array_t bucket) struct Crypto1State *sl, uint32_t in, bucket_array_t bucket)
{ {
uint32_t *o, *e; uint32_t *o, *e;
bucket_info_t bucket_info; bucket_info_t bucket_info;
if(rem == -1) { if(rem == -1) {
for(e = e_head; e <= e_tail; ++e) { for(e = e_head; e <= e_tail; ++e) {
*e = *e << 1 ^ parity(*e & LF_POLY_EVEN) ^ !!(in & 4); *e = *e << 1 ^ parity(*e & LF_POLY_EVEN) ^ !!(in & 4);
for(o = o_head; o <= o_tail; ++o, ++sl) { for(o = o_head; o <= o_tail; ++o, ++sl) {
sl->even = *o; sl->even = *o;
sl->odd = *e ^ parity(*o & LF_POLY_ODD); sl->odd = *e ^ parity(*o & LF_POLY_ODD);
sl[1].odd = sl[1].even = 0; sl[1].odd = sl[1].even = 0;
} }
} }
return sl; return sl;
} }
for(uint32_t i = 0; i < 4 && rem--; i++) { for(uint32_t i = 0; i < 4 && rem--; i++) {
oks >>= 1; oks >>= 1;
eks >>= 1; eks >>= 1;
in >>= 2; in >>= 2;
extend_table(o_head, &o_tail, oks & 1, LF_POLY_EVEN << 1 | 1, LF_POLY_ODD << 1, 0); extend_table(o_head, &o_tail, oks & 1, LF_POLY_EVEN << 1 | 1, LF_POLY_ODD << 1, 0);
if(o_head > o_tail) if(o_head > o_tail)
return sl; return sl;
extend_table(e_head, &e_tail, eks & 1, LF_POLY_ODD, LF_POLY_EVEN << 1 | 1, in & 3); extend_table(e_head, &e_tail, eks & 1, LF_POLY_ODD, LF_POLY_EVEN << 1 | 1, in & 3);
if(e_head > e_tail) if(e_head > e_tail)
return sl; return sl;
} }
bucket_sort_intersect(e_head, e_tail, o_head, o_tail, &bucket_info, bucket); bucket_sort_intersect(e_head, e_tail, o_head, o_tail, &bucket_info, bucket);
for (int i = bucket_info.numbuckets - 1; i >= 0; i--) { for (int i = bucket_info.numbuckets - 1; i >= 0; i--) {
sl = recover(bucket_info.bucket_info[1][i].head, bucket_info.bucket_info[1][i].tail, oks, sl = recover(bucket_info.bucket_info[1][i].head, bucket_info.bucket_info[1][i].tail, oks,
bucket_info.bucket_info[0][i].head, bucket_info.bucket_info[0][i].tail, eks, bucket_info.bucket_info[0][i].head, bucket_info.bucket_info[0][i].tail, eks,
rem, sl, in, bucket); rem, sl, in, bucket);
} }
return sl; return sl;
} }
/** lfsr_recovery /** lfsr_recovery
* recover the state of the lfsr given 32 bits of the keystream * recover the state of the lfsr given 32 bits of the keystream
@ -198,87 +198,87 @@ recover(uint32_t *o_head, uint32_t *o_tail, uint32_t oks,
*/ */
struct Crypto1State* lfsr_recovery32(uint32_t ks2, uint32_t in) struct Crypto1State* lfsr_recovery32(uint32_t ks2, uint32_t in)
{ {
struct Crypto1State *statelist; struct Crypto1State *statelist;
uint32_t *odd_head = 0, *odd_tail = 0, oks = 0; uint32_t *odd_head = 0, *odd_tail = 0, oks = 0;
uint32_t *even_head = 0, *even_tail = 0, eks = 0; uint32_t *even_head = 0, *even_tail = 0, eks = 0;
int i; int i;
// split the keystream into an odd and even part // split the keystream into an odd and even part
for(i = 31; i >= 0; i -= 2) for(i = 31; i >= 0; i -= 2)
oks = oks << 1 | BEBIT(ks2, i); oks = oks << 1 | BEBIT(ks2, i);
for(i = 30; i >= 0; i -= 2) for(i = 30; i >= 0; i -= 2)
eks = eks << 1 | BEBIT(ks2, i); eks = eks << 1 | BEBIT(ks2, i);
odd_head = odd_tail = malloc(sizeof(uint32_t) << 21); odd_head = odd_tail = malloc(sizeof(uint32_t) << 21);
even_head = even_tail = malloc(sizeof(uint32_t) << 21); even_head = even_tail = malloc(sizeof(uint32_t) << 21);
statelist = malloc(sizeof(struct Crypto1State) << 18); statelist = malloc(sizeof(struct Crypto1State) << 18);
if(!odd_tail-- || !even_tail-- || !statelist) { if(!odd_tail-- || !even_tail-- || !statelist) {
free(statelist); free(statelist);
statelist = 0; statelist = 0;
goto out; goto out;
} }
statelist->odd = statelist->even = 0; statelist->odd = statelist->even = 0;
// allocate memory for out of place bucket_sort // allocate memory for out of place bucket_sort
bucket_array_t bucket; bucket_array_t bucket;
for (uint32_t i = 0; i < 2; i++) { for (uint32_t i = 0; i < 2; i++) {
for (uint32_t j = 0; j <= 0xff; j++) { for (uint32_t j = 0; j <= 0xff; j++) {
bucket[i][j].head = malloc(sizeof(uint32_t)<<14); bucket[i][j].head = malloc(sizeof(uint32_t)<<14);
if (!bucket[i][j].head) { if (!bucket[i][j].head) {
goto out; goto out;
} }
} }
} }
// initialize statelists: add all possible states which would result into the rightmost 2 bits of the keystream // initialize statelists: add all possible states which would result into the rightmost 2 bits of the keystream
for(i = 1 << 20; i >= 0; --i) { for(i = 1 << 20; i >= 0; --i) {
if(filter(i) == (oks & 1)) if(filter(i) == (oks & 1))
*++odd_tail = i; *++odd_tail = i;
if(filter(i) == (eks & 1)) if(filter(i) == (eks & 1))
*++even_tail = i; *++even_tail = i;
} }
// extend the statelists. Look at the next 8 Bits of the keystream (4 Bit each odd and even): // extend the statelists. Look at the next 8 Bits of the keystream (4 Bit each odd and even):
for(i = 0; i < 4; i++) { for(i = 0; i < 4; i++) {
extend_table_simple(odd_head, &odd_tail, (oks >>= 1) & 1); extend_table_simple(odd_head, &odd_tail, (oks >>= 1) & 1);
extend_table_simple(even_head, &even_tail, (eks >>= 1) & 1); extend_table_simple(even_head, &even_tail, (eks >>= 1) & 1);
} }
// the statelists now contain all states which could have generated the last 10 Bits of the keystream. // the statelists now contain all states which could have generated the last 10 Bits of the keystream.
// 22 bits to go to recover 32 bits in total. From now on, we need to take the "in" // 22 bits to go to recover 32 bits in total. From now on, we need to take the "in"
// parameter into account. // parameter into account.
in = (in >> 16 & 0xff) | (in << 16) | (in & 0xff00); // Byte swapping in = (in >> 16 & 0xff) | (in << 16) | (in & 0xff00); // Byte swapping
recover(odd_head, odd_tail, oks, even_head, even_tail, eks, 11, statelist, in << 1, bucket); recover(odd_head, odd_tail, oks, even_head, even_tail, eks, 11, statelist, in << 1, bucket);
out: out:
for (uint32_t i = 0; i < 2; i++) for (uint32_t i = 0; i < 2; i++)
for (uint32_t j = 0; j <= 0xff; j++) for (uint32_t j = 0; j <= 0xff; j++)
free(bucket[i][j].head); free(bucket[i][j].head);
free(odd_head); free(odd_head);
free(even_head); free(even_head);
return statelist; return statelist;
} }
static const uint32_t S1[] = { 0x62141, 0x310A0, 0x18850, 0x0C428, 0x06214, static const uint32_t S1[] = { 0x62141, 0x310A0, 0x18850, 0x0C428, 0x06214,
0x0310A, 0x85E30, 0xC69AD, 0x634D6, 0xB5CDE, 0xDE8DA, 0x6F46D, 0xB3C83, 0x0310A, 0x85E30, 0xC69AD, 0x634D6, 0xB5CDE, 0xDE8DA, 0x6F46D, 0xB3C83,
0x59E41, 0xA8995, 0xD027F, 0x6813F, 0x3409F, 0x9E6FA}; 0x59E41, 0xA8995, 0xD027F, 0x6813F, 0x3409F, 0x9E6FA};
static const uint32_t S2[] = { 0x3A557B00, 0x5D2ABD80, 0x2E955EC0, 0x174AAF60, static const uint32_t S2[] = { 0x3A557B00, 0x5D2ABD80, 0x2E955EC0, 0x174AAF60,
0x0BA557B0, 0x05D2ABD8, 0x0449DE68, 0x048464B0, 0x42423258, 0x278192A8, 0x0BA557B0, 0x05D2ABD8, 0x0449DE68, 0x048464B0, 0x42423258, 0x278192A8,
0x156042D0, 0x0AB02168, 0x43F89B30, 0x61FC4D98, 0x765EAD48, 0x7D8FDD20, 0x156042D0, 0x0AB02168, 0x43F89B30, 0x61FC4D98, 0x765EAD48, 0x7D8FDD20,
0x7EC7EE90, 0x7F63F748, 0x79117020}; 0x7EC7EE90, 0x7F63F748, 0x79117020};
static const uint32_t T1[] = { static const uint32_t T1[] = {
0x4F37D, 0x279BE, 0x97A6A, 0x4BD35, 0x25E9A, 0x12F4D, 0x097A6, 0x80D66, 0x4F37D, 0x279BE, 0x97A6A, 0x4BD35, 0x25E9A, 0x12F4D, 0x097A6, 0x80D66,
0xC4006, 0x62003, 0xB56B4, 0x5AB5A, 0xA9318, 0xD0F39, 0x6879C, 0xB057B, 0xC4006, 0x62003, 0xB56B4, 0x5AB5A, 0xA9318, 0xD0F39, 0x6879C, 0xB057B,
0x582BD, 0x2C15E, 0x160AF, 0x8F6E2, 0xC3DC4, 0xE5857, 0x72C2B, 0x39615, 0x582BD, 0x2C15E, 0x160AF, 0x8F6E2, 0xC3DC4, 0xE5857, 0x72C2B, 0x39615,
0x98DBF, 0xC806A, 0xE0680, 0x70340, 0x381A0, 0x98665, 0x4C332, 0xA272C}; 0x98DBF, 0xC806A, 0xE0680, 0x70340, 0x381A0, 0x98665, 0x4C332, 0xA272C};
static const uint32_t T2[] = { 0x3C88B810, 0x5E445C08, 0x2982A580, 0x14C152C0, static const uint32_t T2[] = { 0x3C88B810, 0x5E445C08, 0x2982A580, 0x14C152C0,
0x4A60A960, 0x253054B0, 0x52982A58, 0x2FEC9EA8, 0x1156C4D0, 0x08AB6268, 0x4A60A960, 0x253054B0, 0x52982A58, 0x2FEC9EA8, 0x1156C4D0, 0x08AB6268,
0x42F53AB0, 0x217A9D58, 0x161DC528, 0x0DAE6910, 0x46D73488, 0x25CB11C0, 0x42F53AB0, 0x217A9D58, 0x161DC528, 0x0DAE6910, 0x46D73488, 0x25CB11C0,
0x52E588E0, 0x6972C470, 0x34B96238, 0x5CFC3A98, 0x28DE96C8, 0x12CFC0E0, 0x52E588E0, 0x6972C470, 0x34B96238, 0x5CFC3A98, 0x28DE96C8, 0x12CFC0E0,
0x4967E070, 0x64B3F038, 0x74F97398, 0x7CDC3248, 0x38CE92A0, 0x1C674950, 0x4967E070, 0x64B3F038, 0x74F97398, 0x7CDC3248, 0x38CE92A0, 0x1C674950,
0x0E33A4A8, 0x01B959D0, 0x40DCACE8, 0x26CEDDF0}; 0x0E33A4A8, 0x01B959D0, 0x40DCACE8, 0x26CEDDF0};
static const uint32_t C1[] = { 0x846B5, 0x4235A, 0x211AD}; static const uint32_t C1[] = { 0x846B5, 0x4235A, 0x211AD};
static const uint32_t C2[] = { 0x1A822E0, 0x21A822E0, 0x21A822E0}; static const uint32_t C2[] = { 0x1A822E0, 0x21A822E0, 0x21A822E0};
/** Reverse 64 bits of keystream into possible cipher states /** Reverse 64 bits of keystream into possible cipher states
@ -286,69 +286,69 @@ static const uint32_t C2[] = { 0x1A822E0, 0x21A822E0, 0x21A822E0};
*/ */
struct Crypto1State* lfsr_recovery64(uint32_t ks2, uint32_t ks3) struct Crypto1State* lfsr_recovery64(uint32_t ks2, uint32_t ks3)
{ {
struct Crypto1State *statelist, *sl; struct Crypto1State *statelist, *sl;
uint8_t oks[32], eks[32], hi[32]; uint8_t oks[32], eks[32], hi[32];
uint32_t low = 0, win = 0; uint32_t low = 0, win = 0;
uint32_t *tail, table[1 << 16]; uint32_t *tail, table[1 << 16];
int i, j; int i, j;
sl = statelist = malloc(sizeof(struct Crypto1State) << 4); sl = statelist = malloc(sizeof(struct Crypto1State) << 4);
if(!sl) if(!sl)
return 0; return 0;
sl->odd = sl->even = 0; sl->odd = sl->even = 0;
for(i = 30; i >= 0; i -= 2) { for(i = 30; i >= 0; i -= 2) {
oks[i >> 1] = BEBIT(ks2, i); oks[i >> 1] = BEBIT(ks2, i);
oks[16 + (i >> 1)] = BEBIT(ks3, i); oks[16 + (i >> 1)] = BEBIT(ks3, i);
} }
for(i = 31; i >= 0; i -= 2) { for(i = 31; i >= 0; i -= 2) {
eks[i >> 1] = BEBIT(ks2, i); eks[i >> 1] = BEBIT(ks2, i);
eks[16 + (i >> 1)] = BEBIT(ks3, i); eks[16 + (i >> 1)] = BEBIT(ks3, i);
} }
for(i = 0xfffff; i >= 0; --i) { for(i = 0xfffff; i >= 0; --i) {
if (filter(i) != oks[0]) if (filter(i) != oks[0])
continue; continue;
*(tail = table) = i; *(tail = table) = i;
for(j = 1; tail >= table && j < 29; ++j) for(j = 1; tail >= table && j < 29; ++j)
extend_table_simple(table, &tail, oks[j]); extend_table_simple(table, &tail, oks[j]);
if(tail < table) if(tail < table)
continue; continue;
for(j = 0; j < 19; ++j) for(j = 0; j < 19; ++j)
low = low << 1 | parity(i & S1[j]); low = low << 1 | parity(i & S1[j]);
for(j = 0; j < 32; ++j) for(j = 0; j < 32; ++j)
hi[j] = parity(i & T1[j]); hi[j] = parity(i & T1[j]);
for(; tail >= table; --tail) { for(; tail >= table; --tail) {
for(j = 0; j < 3; ++j) { for(j = 0; j < 3; ++j) {
*tail = *tail << 1; *tail = *tail << 1;
*tail |= parity((i & C1[j]) ^ (*tail & C2[j])); *tail |= parity((i & C1[j]) ^ (*tail & C2[j]));
if(filter(*tail) != oks[29 + j]) if(filter(*tail) != oks[29 + j])
goto continue2; goto continue2;
} }
for(j = 0; j < 19; ++j) for(j = 0; j < 19; ++j)
win = win << 1 | parity(*tail & S2[j]); win = win << 1 | parity(*tail & S2[j]);
win ^= low; win ^= low;
for(j = 0; j < 32; ++j) { for(j = 0; j < 32; ++j) {
win = win << 1 ^ hi[j] ^ parity(*tail & T2[j]); win = win << 1 ^ hi[j] ^ parity(*tail & T2[j]);
if(filter(win) != eks[j]) if(filter(win) != eks[j])
goto continue2; goto continue2;
} }
*tail = *tail << 1 | parity(LF_POLY_EVEN & *tail); *tail = *tail << 1 | parity(LF_POLY_EVEN & *tail);
sl->odd = *tail ^ parity(LF_POLY_ODD & win); sl->odd = *tail ^ parity(LF_POLY_ODD & win);
sl->even = win; sl->even = win;
++sl; ++sl;
sl->odd = sl->even = 0; sl->odd = sl->even = 0;
continue2:; continue2:;
} }
} }
return statelist; return statelist;
} }
/** lfsr_rollback_bit /** lfsr_rollback_bit
@ -356,93 +356,93 @@ struct Crypto1State* lfsr_recovery64(uint32_t ks2, uint32_t ks3)
*/ */
uint8_t lfsr_rollback_bit(struct Crypto1State *s, uint32_t in, int fb) uint8_t lfsr_rollback_bit(struct Crypto1State *s, uint32_t in, int fb)
{ {
int out; int out;
uint8_t ret; uint8_t ret;
uint32_t t; uint32_t t;
s->odd &= 0xffffff; s->odd &= 0xffffff;
t = s->odd, s->odd = s->even, s->even = t; t = s->odd, s->odd = s->even, s->even = t;
out = s->even & 1; out = s->even & 1;
out ^= LF_POLY_EVEN & (s->even >>= 1); out ^= LF_POLY_EVEN & (s->even >>= 1);
out ^= LF_POLY_ODD & s->odd; out ^= LF_POLY_ODD & s->odd;
out ^= !!in; out ^= !!in;
out ^= (ret = filter(s->odd)) & !!fb; out ^= (ret = filter(s->odd)) & !!fb;
s->even |= parity(out) << 23; s->even |= parity(out) << 23;
return ret; return ret;
} }
/** lfsr_rollback_byte /** lfsr_rollback_byte
* Rollback the shift register in order to get previous states * Rollback the shift register in order to get previous states
*/ */
uint8_t lfsr_rollback_byte(struct Crypto1State *s, uint32_t in, int fb) uint8_t lfsr_rollback_byte(struct Crypto1State *s, uint32_t in, int fb)
{ {
/* /*
int i, ret = 0; int i, ret = 0;
for (i = 7; i >= 0; --i) for (i = 7; i >= 0; --i)
ret |= lfsr_rollback_bit(s, BIT(in, i), fb) << i; ret |= lfsr_rollback_bit(s, BIT(in, i), fb) << i;
*/ */
// unfold loop 20160112 // unfold loop 20160112
uint8_t ret = 0; uint8_t ret = 0;
ret |= lfsr_rollback_bit(s, BIT(in, 7), fb) << 7; ret |= lfsr_rollback_bit(s, BIT(in, 7), fb) << 7;
ret |= lfsr_rollback_bit(s, BIT(in, 6), fb) << 6; ret |= lfsr_rollback_bit(s, BIT(in, 6), fb) << 6;
ret |= lfsr_rollback_bit(s, BIT(in, 5), fb) << 5; ret |= lfsr_rollback_bit(s, BIT(in, 5), fb) << 5;
ret |= lfsr_rollback_bit(s, BIT(in, 4), fb) << 4; ret |= lfsr_rollback_bit(s, BIT(in, 4), fb) << 4;
ret |= lfsr_rollback_bit(s, BIT(in, 3), fb) << 3; ret |= lfsr_rollback_bit(s, BIT(in, 3), fb) << 3;
ret |= lfsr_rollback_bit(s, BIT(in, 2), fb) << 2; ret |= lfsr_rollback_bit(s, BIT(in, 2), fb) << 2;
ret |= lfsr_rollback_bit(s, BIT(in, 1), fb) << 1; ret |= lfsr_rollback_bit(s, BIT(in, 1), fb) << 1;
ret |= lfsr_rollback_bit(s, BIT(in, 0), fb) << 0; ret |= lfsr_rollback_bit(s, BIT(in, 0), fb) << 0;
return ret; return ret;
} }
/** lfsr_rollback_word /** lfsr_rollback_word
* Rollback the shift register in order to get previous states * Rollback the shift register in order to get previous states
*/ */
uint32_t lfsr_rollback_word(struct Crypto1State *s, uint32_t in, int fb) uint32_t lfsr_rollback_word(struct Crypto1State *s, uint32_t in, int fb)
{ {
/* /*
int i; int i;
uint32_t ret = 0; uint32_t ret = 0;
for (i = 31; i >= 0; --i) for (i = 31; i >= 0; --i)
ret |= lfsr_rollback_bit(s, BEBIT(in, i), fb) << (i ^ 24); ret |= lfsr_rollback_bit(s, BEBIT(in, i), fb) << (i ^ 24);
*/ */
// unfold loop 20160112 // unfold loop 20160112
uint32_t ret = 0; uint32_t ret = 0;
ret |= lfsr_rollback_bit(s, BEBIT(in, 31), fb) << (31 ^ 24); ret |= lfsr_rollback_bit(s, BEBIT(in, 31), fb) << (31 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 30), fb) << (30 ^ 24); ret |= lfsr_rollback_bit(s, BEBIT(in, 30), fb) << (30 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 29), fb) << (29 ^ 24); ret |= lfsr_rollback_bit(s, BEBIT(in, 29), fb) << (29 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 28), fb) << (28 ^ 24); ret |= lfsr_rollback_bit(s, BEBIT(in, 28), fb) << (28 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 27), fb) << (27 ^ 24); ret |= lfsr_rollback_bit(s, BEBIT(in, 27), fb) << (27 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 26), fb) << (26 ^ 24); ret |= lfsr_rollback_bit(s, BEBIT(in, 26), fb) << (26 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 25), fb) << (25 ^ 24); ret |= lfsr_rollback_bit(s, BEBIT(in, 25), fb) << (25 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 24), fb) << (24 ^ 24); ret |= lfsr_rollback_bit(s, BEBIT(in, 24), fb) << (24 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 23), fb) << (23 ^ 24); ret |= lfsr_rollback_bit(s, BEBIT(in, 23), fb) << (23 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 22), fb) << (22 ^ 24); ret |= lfsr_rollback_bit(s, BEBIT(in, 22), fb) << (22 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 21), fb) << (21 ^ 24); ret |= lfsr_rollback_bit(s, BEBIT(in, 21), fb) << (21 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 20), fb) << (20 ^ 24); ret |= lfsr_rollback_bit(s, BEBIT(in, 20), fb) << (20 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 19), fb) << (19 ^ 24); ret |= lfsr_rollback_bit(s, BEBIT(in, 19), fb) << (19 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 18), fb) << (18 ^ 24); ret |= lfsr_rollback_bit(s, BEBIT(in, 18), fb) << (18 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 17), fb) << (17 ^ 24); ret |= lfsr_rollback_bit(s, BEBIT(in, 17), fb) << (17 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 16), fb) << (16 ^ 24); ret |= lfsr_rollback_bit(s, BEBIT(in, 16), fb) << (16 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 15), fb) << (15 ^ 24); ret |= lfsr_rollback_bit(s, BEBIT(in, 15), fb) << (15 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 14), fb) << (14 ^ 24); ret |= lfsr_rollback_bit(s, BEBIT(in, 14), fb) << (14 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 13), fb) << (13 ^ 24); ret |= lfsr_rollback_bit(s, BEBIT(in, 13), fb) << (13 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 12), fb) << (12 ^ 24); ret |= lfsr_rollback_bit(s, BEBIT(in, 12), fb) << (12 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 11), fb) << (11 ^ 24); ret |= lfsr_rollback_bit(s, BEBIT(in, 11), fb) << (11 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 10), fb) << (10 ^ 24); ret |= lfsr_rollback_bit(s, BEBIT(in, 10), fb) << (10 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 9), fb) << (9 ^ 24); ret |= lfsr_rollback_bit(s, BEBIT(in, 9), fb) << (9 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 8), fb) << (8 ^ 24); ret |= lfsr_rollback_bit(s, BEBIT(in, 8), fb) << (8 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 7), fb) << (7 ^ 24); ret |= lfsr_rollback_bit(s, BEBIT(in, 7), fb) << (7 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 6), fb) << (6 ^ 24); ret |= lfsr_rollback_bit(s, BEBIT(in, 6), fb) << (6 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 5), fb) << (5 ^ 24); ret |= lfsr_rollback_bit(s, BEBIT(in, 5), fb) << (5 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 4), fb) << (4 ^ 24); ret |= lfsr_rollback_bit(s, BEBIT(in, 4), fb) << (4 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 3), fb) << (3 ^ 24); ret |= lfsr_rollback_bit(s, BEBIT(in, 3), fb) << (3 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 2), fb) << (2 ^ 24); ret |= lfsr_rollback_bit(s, BEBIT(in, 2), fb) << (2 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 1), fb) << (1 ^ 24); ret |= lfsr_rollback_bit(s, BEBIT(in, 1), fb) << (1 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 0), fb) << (0 ^ 24); ret |= lfsr_rollback_bit(s, BEBIT(in, 0), fb) << (0 ^ 24);
return ret; return ret;
} }
/** nonce_distance /** nonce_distance
@ -451,23 +451,23 @@ uint32_t lfsr_rollback_word(struct Crypto1State *s, uint32_t in, int fb)
static uint16_t *dist = 0; static uint16_t *dist = 0;
int nonce_distance(uint32_t from, uint32_t to) int nonce_distance(uint32_t from, uint32_t to)
{ {
uint16_t x, i; uint16_t x, i;
if(!dist) { if(!dist) {
dist = malloc(2 << 16); dist = malloc(2 << 16);
if(!dist) if(!dist)
return -1; return -1;
for (x = i = 1; i; ++i) { for (x = i = 1; i; ++i) {
dist[(x & 0xff) << 8 | x >> 8] = i; dist[(x & 0xff) << 8 | x >> 8] = i;
x = x >> 1 | (x ^ x >> 2 ^ x >> 3 ^ x >> 5) << 15; x = x >> 1 | (x ^ x >> 2 ^ x >> 3 ^ x >> 5) << 15;
} }
} }
return (65535 + dist[to >> 16] - dist[from >> 16]) % 65535; return (65535 + dist[to >> 16] - dist[from >> 16]) % 65535;
} }
static uint32_t fastfwd[2][8] = { static uint32_t fastfwd[2][8] = {
{ 0, 0x4BC53, 0xECB1, 0x450E2, 0x25E29, 0x6E27A, 0x2B298, 0x60ECB}, { 0, 0x4BC53, 0xECB1, 0x450E2, 0x25E29, 0x6E27A, 0x2B298, 0x60ECB},
{ 0, 0x1D962, 0x4BC53, 0x56531, 0xECB1, 0x135D3, 0x450E2, 0x58980}}; { 0, 0x1D962, 0x4BC53, 0x56531, 0xECB1, 0x135D3, 0x450E2, 0x58980}};
/** lfsr_prefix_ks /** lfsr_prefix_ks
@ -481,25 +481,25 @@ static uint32_t fastfwd[2][8] = {
*/ */
uint32_t *lfsr_prefix_ks(uint8_t ks[8], int isodd) uint32_t *lfsr_prefix_ks(uint8_t ks[8], int isodd)
{ {
uint32_t *candidates = malloc(4 << 10); uint32_t *candidates = malloc(4 << 10);
if(!candidates) return 0; if(!candidates) return 0;
uint32_t c, entry; uint32_t c, entry;
int size = 0, i, good; int size = 0, i, good;
for(i = 0; i < 1 << 21; ++i) { for(i = 0; i < 1 << 21; ++i) {
for(c = 0, good = 1; good && c < 8; ++c) { for(c = 0, good = 1; good && c < 8; ++c) {
entry = i ^ fastfwd[isodd][c]; entry = i ^ fastfwd[isodd][c];
good &= (BIT(ks[c], isodd) == filter(entry >> 1)); good &= (BIT(ks[c], isodd) == filter(entry >> 1));
good &= (BIT(ks[c], isodd + 2) == filter(entry)); good &= (BIT(ks[c], isodd + 2) == filter(entry));
} }
if(good) if(good)
candidates[size++] = i; candidates[size++] = i;
} }
candidates[size] = -1; candidates[size] = -1;
return candidates; return candidates;
} }
/** check_pfx_parity /** check_pfx_parity
@ -507,30 +507,30 @@ uint32_t *lfsr_prefix_ks(uint8_t ks[8], int isodd)
*/ */
static struct Crypto1State* check_pfx_parity(uint32_t prefix, uint32_t rresp, uint8_t parities[8][8], uint32_t odd, uint32_t even, struct Crypto1State* sl) static struct Crypto1State* check_pfx_parity(uint32_t prefix, uint32_t rresp, uint8_t parities[8][8], uint32_t odd, uint32_t even, struct Crypto1State* sl)
{ {
uint32_t ks1, nr, ks2, rr, ks3, c, good = 1; uint32_t ks1, nr, ks2, rr, ks3, c, good = 1;
for(c = 0; good && c < 8; ++c) { for(c = 0; good && c < 8; ++c) {
sl->odd = odd ^ fastfwd[1][c]; sl->odd = odd ^ fastfwd[1][c];
sl->even = even ^ fastfwd[0][c]; sl->even = even ^ fastfwd[0][c];
lfsr_rollback_bit(sl, 0, 0); lfsr_rollback_bit(sl, 0, 0);
lfsr_rollback_bit(sl, 0, 0); lfsr_rollback_bit(sl, 0, 0);
ks3 = lfsr_rollback_bit(sl, 0, 0); ks3 = lfsr_rollback_bit(sl, 0, 0);
ks2 = lfsr_rollback_word(sl, 0, 0); ks2 = lfsr_rollback_word(sl, 0, 0);
ks1 = lfsr_rollback_word(sl, prefix | c << 5, 1); ks1 = lfsr_rollback_word(sl, prefix | c << 5, 1);
nr = ks1 ^ (prefix | c << 5); nr = ks1 ^ (prefix | c << 5);
rr = ks2 ^ rresp; rr = ks2 ^ rresp;
good &= parity(nr & 0x000000ff) ^ parities[c][3] ^ BIT(ks2, 24); good &= parity(nr & 0x000000ff) ^ parities[c][3] ^ BIT(ks2, 24);
good &= parity(rr & 0xff000000) ^ parities[c][4] ^ BIT(ks2, 16); good &= parity(rr & 0xff000000) ^ parities[c][4] ^ BIT(ks2, 16);
good &= parity(rr & 0x00ff0000) ^ parities[c][5] ^ BIT(ks2, 8); good &= parity(rr & 0x00ff0000) ^ parities[c][5] ^ BIT(ks2, 8);
good &= parity(rr & 0x0000ff00) ^ parities[c][6] ^ BIT(ks2, 0); good &= parity(rr & 0x0000ff00) ^ parities[c][6] ^ BIT(ks2, 0);
good &= parity(rr & 0x000000ff) ^ parities[c][7] ^ ks3; good &= parity(rr & 0x000000ff) ^ parities[c][7] ^ ks3;
} }
return sl + good; return sl + good;
} }
/** lfsr_common_prefix /** lfsr_common_prefix
@ -545,30 +545,30 @@ static struct Crypto1State* check_pfx_parity(uint32_t prefix, uint32_t rresp, ui
struct Crypto1State* lfsr_common_prefix(uint32_t pfx, uint32_t rr, uint8_t ks[8], uint8_t par[8][8]) struct Crypto1State* lfsr_common_prefix(uint32_t pfx, uint32_t rr, uint8_t ks[8], uint8_t par[8][8])
{ {
struct Crypto1State *statelist, *s; struct Crypto1State *statelist, *s;
uint32_t *odd, *even, *o, *e, top; uint32_t *odd, *even, *o, *e, top;
odd = lfsr_prefix_ks(ks, 1); odd = lfsr_prefix_ks(ks, 1);
even = lfsr_prefix_ks(ks, 0); even = lfsr_prefix_ks(ks, 0);
s = statelist = malloc((sizeof *statelist) << 24); s = statelist = malloc((sizeof *statelist) << 24);
if(!s || !odd || !even) { if(!s || !odd || !even) {
free(statelist); free(statelist);
statelist = 0; statelist = 0;
goto out; goto out;
} }
for(o = odd; *o + 1; ++o) for(o = odd; *o + 1; ++o)
for(e = even; *e + 1; ++e) for(e = even; *e + 1; ++e)
for(top = 0; top < 64; ++top) { for(top = 0; top < 64; ++top) {
*o += 1 << 21; *o += 1 << 21;
*e += (!(top & 7) + 1) << 21; *e += (!(top & 7) + 1) << 21;
s = check_pfx_parity(pfx, rr, par, *o, *e, s); s = check_pfx_parity(pfx, rr, par, *o, *e, s);
} }
s->odd = s->even = 0; s->odd = s->even = 0;
out: out:
free(odd); free(odd);
free(even); free(even);
return statelist; return statelist;
} }

View file

@ -43,18 +43,18 @@ uint8_t lfsr_rollback_byte(struct Crypto1State* s, uint32_t in, int fb);
uint32_t lfsr_rollback_word(struct Crypto1State* s, uint32_t in, int fb); uint32_t lfsr_rollback_word(struct Crypto1State* s, uint32_t in, int fb);
int nonce_distance(uint32_t from, uint32_t to); int nonce_distance(uint32_t from, uint32_t to);
#define SWAPENDIAN(x)\ #define SWAPENDIAN(x)\
(x = (x >> 8 & 0xff00ff) | (x & 0xff00ff) << 8, x = x >> 16 | x << 16) (x = (x >> 8 & 0xff00ff) | (x & 0xff00ff) << 8, x = x >> 16 | x << 16)
#define FOREACH_VALID_NONCE(N, FILTER, FSIZE)\ #define FOREACH_VALID_NONCE(N, FILTER, FSIZE)\
uint32_t __n = 0,__M = 0, N = 0;\ uint32_t __n = 0,__M = 0, N = 0;\
int __i;\ int __i;\
for(; __n < 1 << 16; N = prng_successor(__M = ++__n, 16))\ for(; __n < 1 << 16; N = prng_successor(__M = ++__n, 16))\
for(__i = FSIZE - 1; __i >= 0; __i--)\ for(__i = FSIZE - 1; __i >= 0; __i--)\
if(BIT(FILTER, __i) ^ parity(__M & 0xFF01))\ if(BIT(FILTER, __i) ^ parity(__M & 0xFF01))\
break;\ break;\
else if(__i)\ else if(__i)\
__M = prng_successor(__M, (__i == 7) ? 48 : 8);\ __M = prng_successor(__M, (__i == 7) ? 48 : 8);\
else else
#define LF_POLY_ODD (0x29CE5C) #define LF_POLY_ODD (0x29CE5C)
#define LF_POLY_EVEN (0x870804) #define LF_POLY_EVEN (0x870804)
@ -63,31 +63,31 @@ int nonce_distance(uint32_t from, uint32_t to);
static inline int parity(uint32_t x) static inline int parity(uint32_t x)
{ {
#if !defined __i386__ || !defined __GNUC__ #if !defined __i386__ || !defined __GNUC__
x ^= x >> 16; x ^= x >> 16;
x ^= x >> 8; x ^= x >> 8;
x ^= x >> 4; x ^= x >> 4;
return BIT(0x6996, x & 0xf); return BIT(0x6996, x & 0xf);
#else #else
__asm__( "movl %1, %%eax\n" __asm__( "movl %1, %%eax\n"
"mov %%ax, %%cx\n" "mov %%ax, %%cx\n"
"shrl $0x10, %%eax\n" "shrl $0x10, %%eax\n"
"xor %%ax, %%cx\n" "xor %%ax, %%cx\n"
"xor %%ch, %%cl\n" "xor %%ch, %%cl\n"
"setpo %%al\n" "setpo %%al\n"
"movzx %%al, %0\n": "=r"(x) : "r"(x): "eax","ecx"); "movzx %%al, %0\n": "=r"(x) : "r"(x): "eax","ecx");
return x; return x;
#endif #endif
} }
static inline int filter(uint32_t const x) static inline int filter(uint32_t const x)
{ {
uint32_t f; uint32_t f;
f = 0xf22c0 >> (x & 0xf) & 16; f = 0xf22c0 >> (x & 0xf) & 16;
f |= 0x6c9c0 >> (x >> 4 & 0xf) & 8; f |= 0x6c9c0 >> (x >> 4 & 0xf) & 8;
f |= 0x3c8b0 >> (x >> 8 & 0xf) & 4; f |= 0x3c8b0 >> (x >> 8 & 0xf) & 4;
f |= 0x1e458 >> (x >> 12 & 0xf) & 2; f |= 0x1e458 >> (x >> 12 & 0xf) & 2;
f |= 0x0d938 >> (x >> 16 & 0xf) & 1; f |= 0x0d938 >> (x >> 16 & 0xf) & 1;
return BIT(0xEC57E80A, f); return BIT(0xEC57E80A, f);
} }
#ifdef __cplusplus #ifdef __cplusplus
} }

View file

@ -22,115 +22,115 @@
struct Crypto1State * crypto1_create(uint64_t key) struct Crypto1State * crypto1_create(uint64_t key)
{ {
struct Crypto1State *s = malloc(sizeof(*s)); struct Crypto1State *s = malloc(sizeof(*s));
if ( !s ) return NULL; if ( !s ) return NULL;
s->odd = s->even = 0; s->odd = s->even = 0;
int i; int i;
//for(i = 47;s && i > 0; i -= 2) { //for(i = 47;s && i > 0; i -= 2) {
for(i = 47; i > 0; i -= 2) { for(i = 47; i > 0; i -= 2) {
s->odd = s->odd << 1 | BIT(key, (i - 1) ^ 7); s->odd = s->odd << 1 | BIT(key, (i - 1) ^ 7);
s->even = s->even << 1 | BIT(key, i ^ 7); s->even = s->even << 1 | BIT(key, i ^ 7);
} }
return s; return s;
} }
void crypto1_destroy(struct Crypto1State *state) void crypto1_destroy(struct Crypto1State *state)
{ {
free(state); free(state);
} }
void crypto1_get_lfsr(struct Crypto1State *state, uint64_t *lfsr) void crypto1_get_lfsr(struct Crypto1State *state, uint64_t *lfsr)
{ {
int i; int i;
for(*lfsr = 0, i = 23; i >= 0; --i) { for(*lfsr = 0, i = 23; i >= 0; --i) {
*lfsr = *lfsr << 1 | BIT(state->odd, i ^ 3); *lfsr = *lfsr << 1 | BIT(state->odd, i ^ 3);
*lfsr = *lfsr << 1 | BIT(state->even, i ^ 3); *lfsr = *lfsr << 1 | BIT(state->even, i ^ 3);
} }
} }
uint8_t crypto1_bit(struct Crypto1State *s, uint8_t in, int is_encrypted) uint8_t crypto1_bit(struct Crypto1State *s, uint8_t in, int is_encrypted)
{ {
uint32_t feedin; uint32_t feedin;
uint32_t tmp; uint32_t tmp;
uint8_t ret = filter(s->odd); uint8_t ret = filter(s->odd);
feedin = ret & !!is_encrypted; feedin = ret & !!is_encrypted;
feedin ^= !!in; feedin ^= !!in;
feedin ^= LF_POLY_ODD & s->odd; feedin ^= LF_POLY_ODD & s->odd;
feedin ^= LF_POLY_EVEN & s->even; feedin ^= LF_POLY_EVEN & s->even;
s->even = s->even << 1 | parity(feedin); s->even = s->even << 1 | parity(feedin);
tmp = s->odd; tmp = s->odd;
s->odd = s->even; s->odd = s->even;
s->even = tmp; s->even = tmp;
return ret; return ret;
} }
uint8_t crypto1_byte(struct Crypto1State *s, uint8_t in, int is_encrypted) uint8_t crypto1_byte(struct Crypto1State *s, uint8_t in, int is_encrypted)
{ {
/* /*
uint8_t i, ret = 0; uint8_t i, ret = 0;
for (i = 0; i < 8; ++i) for (i = 0; i < 8; ++i)
ret |= crypto1_bit(s, BIT(in, i), is_encrypted) << i; ret |= crypto1_bit(s, BIT(in, i), is_encrypted) << i;
*/ */
// unfold loop 20161012 // unfold loop 20161012
uint8_t ret = 0; uint8_t ret = 0;
ret |= crypto1_bit(s, BIT(in, 0), is_encrypted) << 0; ret |= crypto1_bit(s, BIT(in, 0), is_encrypted) << 0;
ret |= crypto1_bit(s, BIT(in, 1), is_encrypted) << 1; ret |= crypto1_bit(s, BIT(in, 1), is_encrypted) << 1;
ret |= crypto1_bit(s, BIT(in, 2), is_encrypted) << 2; ret |= crypto1_bit(s, BIT(in, 2), is_encrypted) << 2;
ret |= crypto1_bit(s, BIT(in, 3), is_encrypted) << 3; ret |= crypto1_bit(s, BIT(in, 3), is_encrypted) << 3;
ret |= crypto1_bit(s, BIT(in, 4), is_encrypted) << 4; ret |= crypto1_bit(s, BIT(in, 4), is_encrypted) << 4;
ret |= crypto1_bit(s, BIT(in, 5), is_encrypted) << 5; ret |= crypto1_bit(s, BIT(in, 5), is_encrypted) << 5;
ret |= crypto1_bit(s, BIT(in, 6), is_encrypted) << 6; ret |= crypto1_bit(s, BIT(in, 6), is_encrypted) << 6;
ret |= crypto1_bit(s, BIT(in, 7), is_encrypted) << 7; ret |= crypto1_bit(s, BIT(in, 7), is_encrypted) << 7;
return ret; return ret;
} }
uint32_t crypto1_word(struct Crypto1State *s, uint32_t in, int is_encrypted) uint32_t crypto1_word(struct Crypto1State *s, uint32_t in, int is_encrypted)
{ {
/* /*
uint32_t i, ret = 0; uint32_t i, ret = 0;
for (i = 0; i < 32; ++i) for (i = 0; i < 32; ++i)
ret |= crypto1_bit(s, BEBIT(in, i), is_encrypted) << (i ^ 24); ret |= crypto1_bit(s, BEBIT(in, i), is_encrypted) << (i ^ 24);
*/ */
//unfold loop 2016012 //unfold loop 2016012
uint32_t ret = 0; uint32_t ret = 0;
ret |= crypto1_bit(s, BEBIT(in, 0), is_encrypted) << (0 ^ 24); ret |= crypto1_bit(s, BEBIT(in, 0), is_encrypted) << (0 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 1), is_encrypted) << (1 ^ 24); ret |= crypto1_bit(s, BEBIT(in, 1), is_encrypted) << (1 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 2), is_encrypted) << (2 ^ 24); ret |= crypto1_bit(s, BEBIT(in, 2), is_encrypted) << (2 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 3), is_encrypted) << (3 ^ 24); ret |= crypto1_bit(s, BEBIT(in, 3), is_encrypted) << (3 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 4), is_encrypted) << (4 ^ 24); ret |= crypto1_bit(s, BEBIT(in, 4), is_encrypted) << (4 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 5), is_encrypted) << (5 ^ 24); ret |= crypto1_bit(s, BEBIT(in, 5), is_encrypted) << (5 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 6), is_encrypted) << (6 ^ 24); ret |= crypto1_bit(s, BEBIT(in, 6), is_encrypted) << (6 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 7), is_encrypted) << (7 ^ 24); ret |= crypto1_bit(s, BEBIT(in, 7), is_encrypted) << (7 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 8), is_encrypted) << (8 ^ 24); ret |= crypto1_bit(s, BEBIT(in, 8), is_encrypted) << (8 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 9), is_encrypted) << (9 ^ 24); ret |= crypto1_bit(s, BEBIT(in, 9), is_encrypted) << (9 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 10), is_encrypted) << (10 ^ 24); ret |= crypto1_bit(s, BEBIT(in, 10), is_encrypted) << (10 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 11), is_encrypted) << (11 ^ 24); ret |= crypto1_bit(s, BEBIT(in, 11), is_encrypted) << (11 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 12), is_encrypted) << (12 ^ 24); ret |= crypto1_bit(s, BEBIT(in, 12), is_encrypted) << (12 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 13), is_encrypted) << (13 ^ 24); ret |= crypto1_bit(s, BEBIT(in, 13), is_encrypted) << (13 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 14), is_encrypted) << (14 ^ 24); ret |= crypto1_bit(s, BEBIT(in, 14), is_encrypted) << (14 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 15), is_encrypted) << (15 ^ 24); ret |= crypto1_bit(s, BEBIT(in, 15), is_encrypted) << (15 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 16), is_encrypted) << (16 ^ 24); ret |= crypto1_bit(s, BEBIT(in, 16), is_encrypted) << (16 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 17), is_encrypted) << (17 ^ 24); ret |= crypto1_bit(s, BEBIT(in, 17), is_encrypted) << (17 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 18), is_encrypted) << (18 ^ 24); ret |= crypto1_bit(s, BEBIT(in, 18), is_encrypted) << (18 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 19), is_encrypted) << (19 ^ 24); ret |= crypto1_bit(s, BEBIT(in, 19), is_encrypted) << (19 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 20), is_encrypted) << (20 ^ 24); ret |= crypto1_bit(s, BEBIT(in, 20), is_encrypted) << (20 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 21), is_encrypted) << (21 ^ 24); ret |= crypto1_bit(s, BEBIT(in, 21), is_encrypted) << (21 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 22), is_encrypted) << (22 ^ 24); ret |= crypto1_bit(s, BEBIT(in, 22), is_encrypted) << (22 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 23), is_encrypted) << (23 ^ 24); ret |= crypto1_bit(s, BEBIT(in, 23), is_encrypted) << (23 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 24), is_encrypted) << (24 ^ 24); ret |= crypto1_bit(s, BEBIT(in, 24), is_encrypted) << (24 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 25), is_encrypted) << (25 ^ 24); ret |= crypto1_bit(s, BEBIT(in, 25), is_encrypted) << (25 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 26), is_encrypted) << (26 ^ 24); ret |= crypto1_bit(s, BEBIT(in, 26), is_encrypted) << (26 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 27), is_encrypted) << (27 ^ 24); ret |= crypto1_bit(s, BEBIT(in, 27), is_encrypted) << (27 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 28), is_encrypted) << (28 ^ 24); ret |= crypto1_bit(s, BEBIT(in, 28), is_encrypted) << (28 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 29), is_encrypted) << (29 ^ 24); ret |= crypto1_bit(s, BEBIT(in, 29), is_encrypted) << (29 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 30), is_encrypted) << (30 ^ 24); ret |= crypto1_bit(s, BEBIT(in, 30), is_encrypted) << (30 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 31), is_encrypted) << (31 ^ 24); ret |= crypto1_bit(s, BEBIT(in, 31), is_encrypted) << (31 ^ 24);
return ret; return ret;
} }
/* prng_successor /* prng_successor
@ -138,9 +138,9 @@ uint32_t crypto1_word(struct Crypto1State *s, uint32_t in, int is_encrypted)
*/ */
uint32_t prng_successor(uint32_t x, uint32_t n) uint32_t prng_successor(uint32_t x, uint32_t n)
{ {
SWAPENDIAN(x); SWAPENDIAN(x);
while(n--) while(n--)
x = x >> 1 | (x >> 16 ^ x >> 18 ^ x >> 19 ^ x >> 21) << 31; x = x >> 1 | (x >> 16 ^ x >> 18 ^ x >> 19 ^ x >> 21) << 31;
return SWAPENDIAN(x); return SWAPENDIAN(x);
} }

View file

@ -5,63 +5,63 @@
#include <stdlib.h> #include <stdlib.h>
int main (int argc, char *argv[]) { int main (int argc, char *argv[]) {
struct Crypto1State *s,*t; struct Crypto1State *s,*t;
uint64_t key; // recovered key uint64_t key; // recovered key
uint32_t uid; // serial number uint32_t uid; // serial number
uint32_t nt; // tag challenge uint32_t nt; // tag challenge
uint32_t nr0_enc; // first encrypted reader challenge uint32_t nr0_enc; // first encrypted reader challenge
uint32_t ar0_enc; // first encrypted reader response uint32_t ar0_enc; // first encrypted reader response
uint32_t nr1_enc; // second encrypted reader challenge uint32_t nr1_enc; // second encrypted reader challenge
uint32_t ar1_enc; // second encrypted reader response uint32_t ar1_enc; // second encrypted reader response
uint32_t ks2; // keystream used to encrypt reader response uint32_t ks2; // keystream used to encrypt reader response
printf("MIFARE Classic key recovery - based 32 bits of keystream\n"); printf("MIFARE Classic key recovery - based 32 bits of keystream\n");
printf("Recover key from two 32-bit reader authentication answers only!\n\n"); printf("Recover key from two 32-bit reader authentication answers only!\n\n");
if (argc < 7) { if (argc < 7) {
printf(" syntax: %s <uid> <nt> <nr_0> <ar_0> <nr_1> <ar_1>\n\n",argv[0]); printf(" syntax: %s <uid> <nt> <nr_0> <ar_0> <nr_1> <ar_1>\n\n",argv[0]);
return 1; return 1;
} }
sscanf(argv[1],"%x",&uid); sscanf(argv[1],"%x",&uid);
sscanf(argv[2],"%x",&nt); sscanf(argv[2],"%x",&nt);
sscanf(argv[3],"%x",&nr0_enc); sscanf(argv[3],"%x",&nr0_enc);
sscanf(argv[4],"%x",&ar0_enc); sscanf(argv[4],"%x",&ar0_enc);
sscanf(argv[5],"%x",&nr1_enc); sscanf(argv[5],"%x",&nr1_enc);
sscanf(argv[6],"%x",&ar1_enc); sscanf(argv[6],"%x",&ar1_enc);
printf("Recovering key for:\n"); printf("Recovering key for:\n");
printf(" uid: %08x\n",uid); printf(" uid: %08x\n",uid);
printf(" nt: %08x\n",nt); printf(" nt: %08x\n",nt);
printf(" {nr_0}: %08x\n",nr0_enc); printf(" {nr_0}: %08x\n",nr0_enc);
printf(" {ar_0}: %08x\n",ar0_enc); printf(" {ar_0}: %08x\n",ar0_enc);
printf(" {nr_1}: %08x\n",nr1_enc); printf(" {nr_1}: %08x\n",nr1_enc);
printf(" {ar_1}: %08x\n",ar1_enc); printf(" {ar_1}: %08x\n",ar1_enc);
// Generate lfsr succesors of the tag challenge // Generate lfsr succesors of the tag challenge
printf("\nLFSR succesors of the tag challenge:\n"); printf("\nLFSR succesors of the tag challenge:\n");
uint32_t p64 = prng_successor(nt, 64); uint32_t p64 = prng_successor(nt, 64);
printf(" nt': %08x\n", p64); printf(" nt': %08x\n", p64);
printf(" nt'': %08x\n", prng_successor(p64, 32)); printf(" nt'': %08x\n", prng_successor(p64, 32));
// Extract the keystream from the messages // Extract the keystream from the messages
printf("\nKeystream used to generate {ar} and {at}:\n"); printf("\nKeystream used to generate {ar} and {at}:\n");
ks2 = ar0_enc ^ p64; ks2 = ar0_enc ^ p64;
printf(" ks2: %08x\n", ks2); printf(" ks2: %08x\n", ks2);
s = lfsr_recovery32(ar0_enc ^ p64, 0); s = lfsr_recovery32(ar0_enc ^ p64, 0);
for(t = s; t->odd | t->even; ++t) { for(t = s; t->odd | t->even; ++t) {
lfsr_rollback_word(t, 0, 0); lfsr_rollback_word(t, 0, 0);
lfsr_rollback_word(t, nr0_enc, 1); lfsr_rollback_word(t, nr0_enc, 1);
lfsr_rollback_word(t, uid ^ nt, 0); lfsr_rollback_word(t, uid ^ nt, 0);
crypto1_get_lfsr(t, &key); crypto1_get_lfsr(t, &key);
crypto1_word(t, uid ^ nt, 0); crypto1_word(t, uid ^ nt, 0);
crypto1_word(t, nr1_enc, 1); crypto1_word(t, nr1_enc, 1);
if (ar1_enc == (crypto1_word(t, 0, 0) ^ p64)) { if (ar1_enc == (crypto1_word(t, 0, 0) ^ p64)) {
printf("\nFound Key: [%012" PRIx64 "]\n\n",key); printf("\nFound Key: [%012" PRIx64 "]\n\n",key);
break;} break;}
} }
free(s); free(s);
return 0; return 0;
} }

View file

@ -5,70 +5,70 @@
#include <stdlib.h> #include <stdlib.h>
int main (int argc, char *argv[]) { int main (int argc, char *argv[]) {
struct Crypto1State *s,*t; struct Crypto1State *s,*t;
uint64_t key; // recovered key uint64_t key; // recovered key
uint32_t uid; // serial number uint32_t uid; // serial number
uint32_t nt0; // tag challenge first uint32_t nt0; // tag challenge first
uint32_t nt1; // tag challenge second uint32_t nt1; // tag challenge second
uint32_t nr0_enc; // first encrypted reader challenge uint32_t nr0_enc; // first encrypted reader challenge
uint32_t ar0_enc; // first encrypted reader response uint32_t ar0_enc; // first encrypted reader response
uint32_t nr1_enc; // second encrypted reader challenge uint32_t nr1_enc; // second encrypted reader challenge
uint32_t ar1_enc; // second encrypted reader response uint32_t ar1_enc; // second encrypted reader response
uint32_t ks2; // keystream used to encrypt reader response uint32_t ks2; // keystream used to encrypt reader response
printf("MIFARE Classic key recovery - based 32 bits of keystream VERSION2\n"); printf("MIFARE Classic key recovery - based 32 bits of keystream VERSION2\n");
printf("Recover key from two 32-bit reader authentication answers only\n"); printf("Recover key from two 32-bit reader authentication answers only\n");
printf("This version implements Moebius two different nonce solution (like the supercard)\n\n"); printf("This version implements Moebius two different nonce solution (like the supercard)\n\n");
if (argc < 8) { if (argc < 8) {
printf("syntax: %s <uid> <nt> <nr_0> <ar_0> <nt1> <nr_1> <ar_1>\n\n", argv[0]); printf("syntax: %s <uid> <nt> <nr_0> <ar_0> <nt1> <nr_1> <ar_1>\n\n", argv[0]);
return 1; return 1;
} }
sscanf(argv[1],"%x",&uid); sscanf(argv[1],"%x",&uid);
sscanf(argv[2],"%x",&nt0); sscanf(argv[2],"%x",&nt0);
sscanf(argv[3],"%x",&nr0_enc); sscanf(argv[3],"%x",&nr0_enc);
sscanf(argv[4],"%x",&ar0_enc); sscanf(argv[4],"%x",&ar0_enc);
sscanf(argv[5],"%x",&nt1); sscanf(argv[5],"%x",&nt1);
sscanf(argv[6],"%x",&nr1_enc); sscanf(argv[6],"%x",&nr1_enc);
sscanf(argv[7],"%x",&ar1_enc); sscanf(argv[7],"%x",&ar1_enc);
printf("Recovering key for:\n"); printf("Recovering key for:\n");
printf(" uid: %08x\n",uid); printf(" uid: %08x\n",uid);
printf(" nt_0: %08x\n",nt0); printf(" nt_0: %08x\n",nt0);
printf(" {nr_0}: %08x\n",nr0_enc); printf(" {nr_0}: %08x\n",nr0_enc);
printf(" {ar_0}: %08x\n",ar0_enc); printf(" {ar_0}: %08x\n",ar0_enc);
printf(" nt_1: %08x\n",nt1); printf(" nt_1: %08x\n",nt1);
printf(" {nr_1}: %08x\n",nr1_enc); printf(" {nr_1}: %08x\n",nr1_enc);
printf(" {ar_1}: %08x\n",ar1_enc); printf(" {ar_1}: %08x\n",ar1_enc);
// Generate lfsr succesors of the tag challenge // Generate lfsr succesors of the tag challenge
printf("\nLFSR succesors of the tag challenge:\n"); printf("\nLFSR succesors of the tag challenge:\n");
uint32_t p64 = prng_successor(nt0, 64); uint32_t p64 = prng_successor(nt0, 64);
uint32_t p64b = prng_successor(nt1, 64); uint32_t p64b = prng_successor(nt1, 64);
printf(" nt': %08x\n", p64); printf(" nt': %08x\n", p64);
printf(" nt'': %08x\n", prng_successor(p64, 32)); printf(" nt'': %08x\n", prng_successor(p64, 32));
// Extract the keystream from the messages // Extract the keystream from the messages
printf("\nKeystream used to generate {ar} and {at}:\n"); printf("\nKeystream used to generate {ar} and {at}:\n");
ks2 = ar0_enc ^ p64; ks2 = ar0_enc ^ p64;
printf(" ks2: %08x\n",ks2); printf(" ks2: %08x\n",ks2);
s = lfsr_recovery32(ar0_enc ^ p64, 0); s = lfsr_recovery32(ar0_enc ^ p64, 0);
for(t = s; t->odd | t->even; ++t) { for(t = s; t->odd | t->even; ++t) {
lfsr_rollback_word(t, 0, 0); lfsr_rollback_word(t, 0, 0);
lfsr_rollback_word(t, nr0_enc, 1); lfsr_rollback_word(t, nr0_enc, 1);
lfsr_rollback_word(t, uid ^ nt0, 0); lfsr_rollback_word(t, uid ^ nt0, 0);
crypto1_get_lfsr(t, &key); crypto1_get_lfsr(t, &key);
crypto1_word(t, uid ^ nt1, 0); crypto1_word(t, uid ^ nt1, 0);
crypto1_word(t, nr1_enc, 1); crypto1_word(t, nr1_enc, 1);
if (ar1_enc == (crypto1_word(t, 0, 0) ^ p64b)) { if (ar1_enc == (crypto1_word(t, 0, 0) ^ p64b)) {
printf("\nFound Key: [%012" PRIx64 "]\n\n",key); printf("\nFound Key: [%012" PRIx64 "]\n\n",key);
break;} break;}
} }
free(s); free(s);
return 0; return 0;
} }

View file

@ -6,94 +6,94 @@
#include "crapto1.h" #include "crapto1.h"
int main (int argc, char *argv[]) { int main (int argc, char *argv[]) {
struct Crypto1State *revstate; struct Crypto1State *revstate;
uint64_t key; // recovered key uint64_t key; // recovered key
uint32_t uid; // serial number uint32_t uid; // serial number
uint32_t nt; // tag challenge uint32_t nt; // tag challenge
uint32_t nr_enc; // encrypted reader challenge uint32_t nr_enc; // encrypted reader challenge
uint32_t ar_enc; // encrypted reader response uint32_t ar_enc; // encrypted reader response
uint32_t at_enc; // encrypted tag response uint32_t at_enc; // encrypted tag response
uint32_t ks2; // keystream used to encrypt reader response uint32_t ks2; // keystream used to encrypt reader response
uint32_t ks3; // keystream used to encrypt tag response uint32_t ks3; // keystream used to encrypt tag response
printf("MIFARE Classic key recovery - based 64 bits of keystream\n"); printf("MIFARE Classic key recovery - based 64 bits of keystream\n");
printf("Recover key from only one complete authentication!\n\n"); printf("Recover key from only one complete authentication!\n\n");
if (argc < 6) { if (argc < 6) {
printf(" syntax: %s <uid> <nt> <{nr}> <{ar}> <{at}> [enc...]\n\n", argv[0]); printf(" syntax: %s <uid> <nt> <{nr}> <{ar}> <{at}> [enc...]\n\n", argv[0]);
return 1; return 1;
} }
int encc = argc - 6; int encc = argc - 6;
int enclen[encc]; int enclen[encc];
uint8_t enc[encc][120]; uint8_t enc[encc][120];
sscanf(argv[1],"%x",&uid); sscanf(argv[1],"%x",&uid);
sscanf(argv[2],"%x",&nt); sscanf(argv[2],"%x",&nt);
sscanf(argv[3],"%x",&nr_enc); sscanf(argv[3],"%x",&nr_enc);
sscanf(argv[4],"%x",&ar_enc); sscanf(argv[4],"%x",&ar_enc);
sscanf(argv[5],"%x",&at_enc); sscanf(argv[5],"%x",&at_enc);
for (int i = 0; i < encc; i++) { for (int i = 0; i < encc; i++) {
enclen[i] = strlen(argv[i + 6]) / 2; enclen[i] = strlen(argv[i + 6]) / 2;
for (int i2 = 0; i2 < enclen[i]; i2++) { for (int i2 = 0; i2 < enclen[i]; i2++) {
sscanf(argv[i+6] + i2*2, "%2x", (unsigned int *)&enc[i][i2]); sscanf(argv[i+6] + i2*2, "%2x", (unsigned int *)&enc[i][i2]);
} }
} }
printf("Recovering key for:\n"); printf("Recovering key for:\n");
printf(" uid: %08x\n",uid); printf(" uid: %08x\n",uid);
printf(" nt: %08x\n",nt); printf(" nt: %08x\n",nt);
printf(" {nr}: %08x\n",nr_enc); printf(" {nr}: %08x\n",nr_enc);
printf(" {ar}: %08x\n",ar_enc); printf(" {ar}: %08x\n",ar_enc);
printf(" {at}: %08x\n",at_enc); printf(" {at}: %08x\n",at_enc);
for (int i = 0; i < encc; i++) { for (int i = 0; i < encc; i++) {
printf("{enc%d}: ", i); printf("{enc%d}: ", i);
for (int i2 = 0; i2 < enclen[i]; i2++) { for (int i2 = 0; i2 < enclen[i]; i2++) {
printf("%02x", enc[i][i2]); printf("%02x", enc[i][i2]);
} }
printf("\n"); printf("\n");
} }
// Generate lfsr succesors of the tag challenge // Generate lfsr succesors of the tag challenge
printf("\nLFSR succesors of the tag challenge:\n"); printf("\nLFSR succesors of the tag challenge:\n");
printf(" nt': %08x\n",prng_successor(nt, 64)); printf(" nt': %08x\n",prng_successor(nt, 64));
printf(" nt'': %08x\n",prng_successor(nt, 96)); printf(" nt'': %08x\n",prng_successor(nt, 96));
// Extract the keystream from the messages // Extract the keystream from the messages
printf("\nKeystream used to generate {ar} and {at}:\n"); printf("\nKeystream used to generate {ar} and {at}:\n");
ks2 = ar_enc ^ prng_successor(nt, 64); ks2 = ar_enc ^ prng_successor(nt, 64);
ks3 = at_enc ^ prng_successor(nt, 96); ks3 = at_enc ^ prng_successor(nt, 96);
printf(" ks2: %08x\n",ks2); printf(" ks2: %08x\n",ks2);
printf(" ks3: %08x\n",ks3); printf(" ks3: %08x\n",ks3);
revstate = lfsr_recovery64(ks2, ks3); revstate = lfsr_recovery64(ks2, ks3);
// Decrypting communication using keystream if presented // Decrypting communication using keystream if presented
if (argc > 6 ) { if (argc > 6 ) {
printf("\nDecrypted communication:\n"); printf("\nDecrypted communication:\n");
uint8_t ks4; uint8_t ks4;
int rollb = 0; int rollb = 0;
for (int i = 0; i < encc; i++) { for (int i = 0; i < encc; i++) {
printf("{dec%d}: ", i); printf("{dec%d}: ", i);
for (int i2 = 0; i2 < enclen[i]; i2++) { for (int i2 = 0; i2 < enclen[i]; i2++) {
ks4 = crypto1_byte(revstate, 0, 0); ks4 = crypto1_byte(revstate, 0, 0);
printf("%02x", ks4 ^ enc[i][i2]); printf("%02x", ks4 ^ enc[i][i2]);
rollb += 1; rollb += 1;
} }
printf("\n"); printf("\n");
} }
for (int i = 0; i < rollb; i++) for (int i = 0; i < rollb; i++)
lfsr_rollback_byte(revstate, 0, 0); lfsr_rollback_byte(revstate, 0, 0);
} }
lfsr_rollback_word(revstate, 0, 0); lfsr_rollback_word(revstate, 0, 0);
lfsr_rollback_word(revstate, 0, 0); lfsr_rollback_word(revstate, 0, 0);
lfsr_rollback_word(revstate, nr_enc, 1); lfsr_rollback_word(revstate, nr_enc, 1);
lfsr_rollback_word(revstate, uid ^ nt, 0); lfsr_rollback_word(revstate, uid ^ nt, 0);
crypto1_get_lfsr(revstate, &key); crypto1_get_lfsr(revstate, &key);
printf("\nFound Key: [%012" PRIx64 "]\n\n", key); printf("\nFound Key: [%012" PRIx64 "]\n\n", key);
crypto1_destroy(revstate); crypto1_destroy(revstate);
return 0; return 0;
} }

View file

@ -34,65 +34,65 @@ static void __attribute__((constructor)) fill_lut()
typedef struct bucket { typedef struct bucket {
uint32_t *head; uint32_t *head;
uint32_t *bp; uint32_t *bp;
} bucket_t; } bucket_t;
typedef bucket_t bucket_array_t[2][0x100]; typedef bucket_t bucket_array_t[2][0x100];
typedef struct bucket_info { typedef struct bucket_info {
struct { struct {
uint32_t *head, *tail; uint32_t *head, *tail;
} bucket_info[2][0x100]; } bucket_info[2][0x100];
uint32_t numbuckets; uint32_t numbuckets;
} bucket_info_t; } bucket_info_t;
static void bucket_sort_intersect(uint32_t* const estart, uint32_t* const estop, static void bucket_sort_intersect(uint32_t* const estart, uint32_t* const estop,
uint32_t* const ostart, uint32_t* const ostop, uint32_t* const ostart, uint32_t* const ostop,
bucket_info_t *bucket_info, bucket_array_t bucket) bucket_info_t *bucket_info, bucket_array_t bucket)
{ {
uint32_t *p1, *p2; uint32_t *p1, *p2;
uint32_t *start[2]; uint32_t *start[2];
uint32_t *stop[2]; uint32_t *stop[2];
start[0] = estart; start[0] = estart;
stop[0] = estop; stop[0] = estop;
start[1] = ostart; start[1] = ostart;
stop[1] = ostop; stop[1] = ostop;
// init buckets to be empty // init buckets to be empty
for (uint32_t i = 0; i < 2; i++) { for (uint32_t i = 0; i < 2; i++) {
for (uint32_t j = 0x00; j <= 0xff; j++) { for (uint32_t j = 0x00; j <= 0xff; j++) {
bucket[i][j].bp = bucket[i][j].head; bucket[i][j].bp = bucket[i][j].head;
} }
} }
// sort the lists into the buckets based on the MSB (contribution bits) // sort the lists into the buckets based on the MSB (contribution bits)
for (uint32_t i = 0; i < 2; i++) { for (uint32_t i = 0; i < 2; i++) {
for (p1 = start[i]; p1 <= stop[i]; p1++) { for (p1 = start[i]; p1 <= stop[i]; p1++) {
uint32_t bucket_index = (*p1 & 0xff000000) >> 24; uint32_t bucket_index = (*p1 & 0xff000000) >> 24;
*(bucket[i][bucket_index].bp++) = *p1; *(bucket[i][bucket_index].bp++) = *p1;
} }
} }
// write back intersecting buckets as sorted list. // write back intersecting buckets as sorted list.
// fill in bucket_info with head and tail of the bucket contents in the list and number of non-empty buckets. // fill in bucket_info with head and tail of the bucket contents in the list and number of non-empty buckets.
uint32_t nonempty_bucket; uint32_t nonempty_bucket;
for (uint32_t i = 0; i < 2; i++) { for (uint32_t i = 0; i < 2; i++) {
p1 = start[i]; p1 = start[i];
nonempty_bucket = 0; nonempty_bucket = 0;
for (uint32_t j = 0x00; j <= 0xff; j++) { for (uint32_t j = 0x00; j <= 0xff; j++) {
if (bucket[0][j].bp != bucket[0][j].head && bucket[1][j].bp != bucket[1][j].head) { // non-empty intersecting buckets only if (bucket[0][j].bp != bucket[0][j].head && bucket[1][j].bp != bucket[1][j].head) { // non-empty intersecting buckets only
bucket_info->bucket_info[i][nonempty_bucket].head = p1; bucket_info->bucket_info[i][nonempty_bucket].head = p1;
for (p2 = bucket[i][j].head; p2 < bucket[i][j].bp; *p1++ = *p2++); for (p2 = bucket[i][j].head; p2 < bucket[i][j].bp; *p1++ = *p2++);
bucket_info->bucket_info[i][nonempty_bucket].tail = p1 - 1; bucket_info->bucket_info[i][nonempty_bucket].tail = p1 - 1;
nonempty_bucket++; nonempty_bucket++;
} }
} }
bucket_info->numbuckets = nonempty_bucket; bucket_info->numbuckets = nonempty_bucket;
} }
} }
/** update_contribution /** update_contribution
@ -100,11 +100,11 @@ static void bucket_sort_intersect(uint32_t* const estart, uint32_t* const estop,
*/ */
static inline void update_contribution(uint32_t *item, const uint32_t mask1, const uint32_t mask2) static inline void update_contribution(uint32_t *item, const uint32_t mask1, const uint32_t mask2)
{ {
uint32_t p = *item >> 25; uint32_t p = *item >> 25;
p = p << 1 | parity(*item & mask1); p = p << 1 | parity(*item & mask1);
p = p << 1 | parity(*item & mask2); p = p << 1 | parity(*item & mask2);
*item = p << 24 | (*item & 0xffffff); *item = p << 24 | (*item & 0xffffff);
} }
/** extend_table /** extend_table
@ -112,83 +112,83 @@ static inline void update_contribution(uint32_t *item, const uint32_t mask1, con
*/ */
static inline void extend_table(uint32_t *tbl, uint32_t **end, int bit, int m1, int m2, uint32_t in) static inline void extend_table(uint32_t *tbl, uint32_t **end, int bit, int m1, int m2, uint32_t in)
{ {
in <<= 24; in <<= 24;
for(*tbl <<= 1; tbl <= *end; *++tbl <<= 1) for(*tbl <<= 1; tbl <= *end; *++tbl <<= 1)
if(filter(*tbl) ^ filter(*tbl | 1)) { if(filter(*tbl) ^ filter(*tbl | 1)) {
*tbl |= filter(*tbl) ^ bit; *tbl |= filter(*tbl) ^ bit;
update_contribution(tbl, m1, m2); update_contribution(tbl, m1, m2);
*tbl ^= in; *tbl ^= in;
} else if(filter(*tbl) == bit) { } else if(filter(*tbl) == bit) {
*++*end = tbl[1]; *++*end = tbl[1];
tbl[1] = tbl[0] | 1; tbl[1] = tbl[0] | 1;
update_contribution(tbl, m1, m2); update_contribution(tbl, m1, m2);
*tbl++ ^= in; *tbl++ ^= in;
update_contribution(tbl, m1, m2); update_contribution(tbl, m1, m2);
*tbl ^= in; *tbl ^= in;
} else } else
*tbl-- = *(*end)--; *tbl-- = *(*end)--;
} }
/** extend_table_simple /** extend_table_simple
* using a bit of the keystream extend the table of possible lfsr states * using a bit of the keystream extend the table of possible lfsr states
*/ */
static inline void extend_table_simple(uint32_t *tbl, uint32_t **end, int bit) static inline void extend_table_simple(uint32_t *tbl, uint32_t **end, int bit)
{ {
for(*tbl <<= 1; tbl <= *end; *++tbl <<= 1) { for(*tbl <<= 1; tbl <= *end; *++tbl <<= 1) {
if(filter(*tbl) ^ filter(*tbl | 1)) { // replace if(filter(*tbl) ^ filter(*tbl | 1)) { // replace
*tbl |= filter(*tbl) ^ bit; *tbl |= filter(*tbl) ^ bit;
} else if(filter(*tbl) == bit) { // insert } else if(filter(*tbl) == bit) { // insert
*++*end = *++tbl; *++*end = *++tbl;
*tbl = tbl[-1] | 1; *tbl = tbl[-1] | 1;
} else { // drop } else { // drop
*tbl-- = *(*end)--; *tbl-- = *(*end)--;
} }
} }
} }
/** recover /** recover
* recursively narrow down the search space, 4 bits of keystream at a time * recursively narrow down the search space, 4 bits of keystream at a time
*/ */
static struct Crypto1State* static struct Crypto1State*
recover(uint32_t *o_head, uint32_t *o_tail, uint32_t oks, recover(uint32_t *o_head, uint32_t *o_tail, uint32_t oks,
uint32_t *e_head, uint32_t *e_tail, uint32_t eks, int rem, uint32_t *e_head, uint32_t *e_tail, uint32_t eks, int rem,
struct Crypto1State *sl, uint32_t in, bucket_array_t bucket) struct Crypto1State *sl, uint32_t in, bucket_array_t bucket)
{ {
uint32_t *o, *e; uint32_t *o, *e;
bucket_info_t bucket_info; bucket_info_t bucket_info;
if(rem == -1) { if(rem == -1) {
for(e = e_head; e <= e_tail; ++e) { for(e = e_head; e <= e_tail; ++e) {
*e = *e << 1 ^ parity(*e & LF_POLY_EVEN) ^ !!(in & 4); *e = *e << 1 ^ parity(*e & LF_POLY_EVEN) ^ !!(in & 4);
for(o = o_head; o <= o_tail; ++o, ++sl) { for(o = o_head; o <= o_tail; ++o, ++sl) {
sl->even = *o; sl->even = *o;
sl->odd = *e ^ parity(*o & LF_POLY_ODD); sl->odd = *e ^ parity(*o & LF_POLY_ODD);
sl[1].odd = sl[1].even = 0; sl[1].odd = sl[1].even = 0;
} }
} }
return sl; return sl;
} }
for(uint32_t i = 0; i < 4 && rem--; i++) { for(uint32_t i = 0; i < 4 && rem--; i++) {
oks >>= 1; oks >>= 1;
eks >>= 1; eks >>= 1;
in >>= 2; in >>= 2;
extend_table(o_head, &o_tail, oks & 1, LF_POLY_EVEN << 1 | 1, LF_POLY_ODD << 1, 0); extend_table(o_head, &o_tail, oks & 1, LF_POLY_EVEN << 1 | 1, LF_POLY_ODD << 1, 0);
if(o_head > o_tail) if(o_head > o_tail)
return sl; return sl;
extend_table(e_head, &e_tail, eks & 1, LF_POLY_ODD, LF_POLY_EVEN << 1 | 1, in & 3); extend_table(e_head, &e_tail, eks & 1, LF_POLY_ODD, LF_POLY_EVEN << 1 | 1, in & 3);
if(e_head > e_tail) if(e_head > e_tail)
return sl; return sl;
} }
bucket_sort_intersect(e_head, e_tail, o_head, o_tail, &bucket_info, bucket); bucket_sort_intersect(e_head, e_tail, o_head, o_tail, &bucket_info, bucket);
for (int i = bucket_info.numbuckets - 1; i >= 0; i--) { for (int i = bucket_info.numbuckets - 1; i >= 0; i--) {
sl = recover(bucket_info.bucket_info[1][i].head, bucket_info.bucket_info[1][i].tail, oks, sl = recover(bucket_info.bucket_info[1][i].head, bucket_info.bucket_info[1][i].tail, oks,
bucket_info.bucket_info[0][i].head, bucket_info.bucket_info[0][i].tail, eks, bucket_info.bucket_info[0][i].head, bucket_info.bucket_info[0][i].tail, eks,
rem, sl, in, bucket); rem, sl, in, bucket);
} }
return sl; return sl;
} }
/** lfsr_recovery /** lfsr_recovery
* recover the state of the lfsr given 32 bits of the keystream * recover the state of the lfsr given 32 bits of the keystream
@ -197,87 +197,87 @@ recover(uint32_t *o_head, uint32_t *o_tail, uint32_t oks,
*/ */
struct Crypto1State* lfsr_recovery32(uint32_t ks2, uint32_t in) struct Crypto1State* lfsr_recovery32(uint32_t ks2, uint32_t in)
{ {
struct Crypto1State *statelist; struct Crypto1State *statelist;
uint32_t *odd_head = 0, *odd_tail = 0, oks = 0; uint32_t *odd_head = 0, *odd_tail = 0, oks = 0;
uint32_t *even_head = 0, *even_tail = 0, eks = 0; uint32_t *even_head = 0, *even_tail = 0, eks = 0;
int i; int i;
// split the keystream into an odd and even part // split the keystream into an odd and even part
for(i = 31; i >= 0; i -= 2) for(i = 31; i >= 0; i -= 2)
oks = oks << 1 | BEBIT(ks2, i); oks = oks << 1 | BEBIT(ks2, i);
for(i = 30; i >= 0; i -= 2) for(i = 30; i >= 0; i -= 2)
eks = eks << 1 | BEBIT(ks2, i); eks = eks << 1 | BEBIT(ks2, i);
odd_head = odd_tail = malloc(sizeof(uint32_t) << 21); odd_head = odd_tail = malloc(sizeof(uint32_t) << 21);
even_head = even_tail = malloc(sizeof(uint32_t) << 21); even_head = even_tail = malloc(sizeof(uint32_t) << 21);
statelist = malloc(sizeof(struct Crypto1State) << 18); statelist = malloc(sizeof(struct Crypto1State) << 18);
if(!odd_tail-- || !even_tail-- || !statelist) { if(!odd_tail-- || !even_tail-- || !statelist) {
free(statelist); free(statelist);
statelist = 0; statelist = 0;
goto out; goto out;
} }
statelist->odd = statelist->even = 0; statelist->odd = statelist->even = 0;
// allocate memory for out of place bucket_sort // allocate memory for out of place bucket_sort
bucket_array_t bucket; bucket_array_t bucket;
for (uint32_t i = 0; i < 2; i++) { for (uint32_t i = 0; i < 2; i++) {
for (uint32_t j = 0; j <= 0xff; j++) { for (uint32_t j = 0; j <= 0xff; j++) {
bucket[i][j].head = malloc(sizeof(uint32_t)<<14); bucket[i][j].head = malloc(sizeof(uint32_t)<<14);
if (!bucket[i][j].head) { if (!bucket[i][j].head) {
goto out; goto out;
} }
} }
} }
// initialize statelists: add all possible states which would result into the rightmost 2 bits of the keystream // initialize statelists: add all possible states which would result into the rightmost 2 bits of the keystream
for(i = 1 << 20; i >= 0; --i) { for(i = 1 << 20; i >= 0; --i) {
if(filter(i) == (oks & 1)) if(filter(i) == (oks & 1))
*++odd_tail = i; *++odd_tail = i;
if(filter(i) == (eks & 1)) if(filter(i) == (eks & 1))
*++even_tail = i; *++even_tail = i;
} }
// extend the statelists. Look at the next 8 Bits of the keystream (4 Bit each odd and even): // extend the statelists. Look at the next 8 Bits of the keystream (4 Bit each odd and even):
for(i = 0; i < 4; i++) { for(i = 0; i < 4; i++) {
extend_table_simple(odd_head, &odd_tail, (oks >>= 1) & 1); extend_table_simple(odd_head, &odd_tail, (oks >>= 1) & 1);
extend_table_simple(even_head, &even_tail, (eks >>= 1) & 1); extend_table_simple(even_head, &even_tail, (eks >>= 1) & 1);
} }
// the statelists now contain all states which could have generated the last 10 Bits of the keystream. // the statelists now contain all states which could have generated the last 10 Bits of the keystream.
// 22 bits to go to recover 32 bits in total. From now on, we need to take the "in" // 22 bits to go to recover 32 bits in total. From now on, we need to take the "in"
// parameter into account. // parameter into account.
in = (in >> 16 & 0xff) | (in << 16) | (in & 0xff00); // Byte swapping in = (in >> 16 & 0xff) | (in << 16) | (in & 0xff00); // Byte swapping
recover(odd_head, odd_tail, oks, even_head, even_tail, eks, 11, statelist, in << 1, bucket); recover(odd_head, odd_tail, oks, even_head, even_tail, eks, 11, statelist, in << 1, bucket);
out: out:
for (uint32_t i = 0; i < 2; i++) for (uint32_t i = 0; i < 2; i++)
for (uint32_t j = 0; j <= 0xff; j++) for (uint32_t j = 0; j <= 0xff; j++)
free(bucket[i][j].head); free(bucket[i][j].head);
free(odd_head); free(odd_head);
free(even_head); free(even_head);
return statelist; return statelist;
} }
static const uint32_t S1[] = { 0x62141, 0x310A0, 0x18850, 0x0C428, 0x06214, static const uint32_t S1[] = { 0x62141, 0x310A0, 0x18850, 0x0C428, 0x06214,
0x0310A, 0x85E30, 0xC69AD, 0x634D6, 0xB5CDE, 0xDE8DA, 0x6F46D, 0xB3C83, 0x0310A, 0x85E30, 0xC69AD, 0x634D6, 0xB5CDE, 0xDE8DA, 0x6F46D, 0xB3C83,
0x59E41, 0xA8995, 0xD027F, 0x6813F, 0x3409F, 0x9E6FA}; 0x59E41, 0xA8995, 0xD027F, 0x6813F, 0x3409F, 0x9E6FA};
static const uint32_t S2[] = { 0x3A557B00, 0x5D2ABD80, 0x2E955EC0, 0x174AAF60, static const uint32_t S2[] = { 0x3A557B00, 0x5D2ABD80, 0x2E955EC0, 0x174AAF60,
0x0BA557B0, 0x05D2ABD8, 0x0449DE68, 0x048464B0, 0x42423258, 0x278192A8, 0x0BA557B0, 0x05D2ABD8, 0x0449DE68, 0x048464B0, 0x42423258, 0x278192A8,
0x156042D0, 0x0AB02168, 0x43F89B30, 0x61FC4D98, 0x765EAD48, 0x7D8FDD20, 0x156042D0, 0x0AB02168, 0x43F89B30, 0x61FC4D98, 0x765EAD48, 0x7D8FDD20,
0x7EC7EE90, 0x7F63F748, 0x79117020}; 0x7EC7EE90, 0x7F63F748, 0x79117020};
static const uint32_t T1[] = { static const uint32_t T1[] = {
0x4F37D, 0x279BE, 0x97A6A, 0x4BD35, 0x25E9A, 0x12F4D, 0x097A6, 0x80D66, 0x4F37D, 0x279BE, 0x97A6A, 0x4BD35, 0x25E9A, 0x12F4D, 0x097A6, 0x80D66,
0xC4006, 0x62003, 0xB56B4, 0x5AB5A, 0xA9318, 0xD0F39, 0x6879C, 0xB057B, 0xC4006, 0x62003, 0xB56B4, 0x5AB5A, 0xA9318, 0xD0F39, 0x6879C, 0xB057B,
0x582BD, 0x2C15E, 0x160AF, 0x8F6E2, 0xC3DC4, 0xE5857, 0x72C2B, 0x39615, 0x582BD, 0x2C15E, 0x160AF, 0x8F6E2, 0xC3DC4, 0xE5857, 0x72C2B, 0x39615,
0x98DBF, 0xC806A, 0xE0680, 0x70340, 0x381A0, 0x98665, 0x4C332, 0xA272C}; 0x98DBF, 0xC806A, 0xE0680, 0x70340, 0x381A0, 0x98665, 0x4C332, 0xA272C};
static const uint32_t T2[] = { 0x3C88B810, 0x5E445C08, 0x2982A580, 0x14C152C0, static const uint32_t T2[] = { 0x3C88B810, 0x5E445C08, 0x2982A580, 0x14C152C0,
0x4A60A960, 0x253054B0, 0x52982A58, 0x2FEC9EA8, 0x1156C4D0, 0x08AB6268, 0x4A60A960, 0x253054B0, 0x52982A58, 0x2FEC9EA8, 0x1156C4D0, 0x08AB6268,
0x42F53AB0, 0x217A9D58, 0x161DC528, 0x0DAE6910, 0x46D73488, 0x25CB11C0, 0x42F53AB0, 0x217A9D58, 0x161DC528, 0x0DAE6910, 0x46D73488, 0x25CB11C0,
0x52E588E0, 0x6972C470, 0x34B96238, 0x5CFC3A98, 0x28DE96C8, 0x12CFC0E0, 0x52E588E0, 0x6972C470, 0x34B96238, 0x5CFC3A98, 0x28DE96C8, 0x12CFC0E0,
0x4967E070, 0x64B3F038, 0x74F97398, 0x7CDC3248, 0x38CE92A0, 0x1C674950, 0x4967E070, 0x64B3F038, 0x74F97398, 0x7CDC3248, 0x38CE92A0, 0x1C674950,
0x0E33A4A8, 0x01B959D0, 0x40DCACE8, 0x26CEDDF0}; 0x0E33A4A8, 0x01B959D0, 0x40DCACE8, 0x26CEDDF0};
static const uint32_t C1[] = { 0x846B5, 0x4235A, 0x211AD}; static const uint32_t C1[] = { 0x846B5, 0x4235A, 0x211AD};
static const uint32_t C2[] = { 0x1A822E0, 0x21A822E0, 0x21A822E0}; static const uint32_t C2[] = { 0x1A822E0, 0x21A822E0, 0x21A822E0};
/** Reverse 64 bits of keystream into possible cipher states /** Reverse 64 bits of keystream into possible cipher states
@ -285,69 +285,69 @@ static const uint32_t C2[] = { 0x1A822E0, 0x21A822E0, 0x21A822E0};
*/ */
struct Crypto1State* lfsr_recovery64(uint32_t ks2, uint32_t ks3) struct Crypto1State* lfsr_recovery64(uint32_t ks2, uint32_t ks3)
{ {
struct Crypto1State *statelist, *sl; struct Crypto1State *statelist, *sl;
uint8_t oks[32], eks[32], hi[32]; uint8_t oks[32], eks[32], hi[32];
uint32_t low = 0, win = 0; uint32_t low = 0, win = 0;
uint32_t *tail, table[1 << 16]; uint32_t *tail, table[1 << 16];
int i, j; int i, j;
sl = statelist = malloc(sizeof(struct Crypto1State) << 4); sl = statelist = malloc(sizeof(struct Crypto1State) << 4);
if(!sl) if(!sl)
return 0; return 0;
sl->odd = sl->even = 0; sl->odd = sl->even = 0;
for(i = 30; i >= 0; i -= 2) { for(i = 30; i >= 0; i -= 2) {
oks[i >> 1] = BEBIT(ks2, i); oks[i >> 1] = BEBIT(ks2, i);
oks[16 + (i >> 1)] = BEBIT(ks3, i); oks[16 + (i >> 1)] = BEBIT(ks3, i);
} }
for(i = 31; i >= 0; i -= 2) { for(i = 31; i >= 0; i -= 2) {
eks[i >> 1] = BEBIT(ks2, i); eks[i >> 1] = BEBIT(ks2, i);
eks[16 + (i >> 1)] = BEBIT(ks3, i); eks[16 + (i >> 1)] = BEBIT(ks3, i);
} }
for(i = 0xfffff; i >= 0; --i) { for(i = 0xfffff; i >= 0; --i) {
if (filter(i) != oks[0]) if (filter(i) != oks[0])
continue; continue;
*(tail = table) = i; *(tail = table) = i;
for(j = 1; tail >= table && j < 29; ++j) for(j = 1; tail >= table && j < 29; ++j)
extend_table_simple(table, &tail, oks[j]); extend_table_simple(table, &tail, oks[j]);
if(tail < table) if(tail < table)
continue; continue;
for(j = 0; j < 19; ++j) for(j = 0; j < 19; ++j)
low = low << 1 | parity(i & S1[j]); low = low << 1 | parity(i & S1[j]);
for(j = 0; j < 32; ++j) for(j = 0; j < 32; ++j)
hi[j] = parity(i & T1[j]); hi[j] = parity(i & T1[j]);
for(; tail >= table; --tail) { for(; tail >= table; --tail) {
for(j = 0; j < 3; ++j) { for(j = 0; j < 3; ++j) {
*tail = *tail << 1; *tail = *tail << 1;
*tail |= parity((i & C1[j]) ^ (*tail & C2[j])); *tail |= parity((i & C1[j]) ^ (*tail & C2[j]));
if(filter(*tail) != oks[29 + j]) if(filter(*tail) != oks[29 + j])
goto continue2; goto continue2;
} }
for(j = 0; j < 19; ++j) for(j = 0; j < 19; ++j)
win = win << 1 | parity(*tail & S2[j]); win = win << 1 | parity(*tail & S2[j]);
win ^= low; win ^= low;
for(j = 0; j < 32; ++j) { for(j = 0; j < 32; ++j) {
win = win << 1 ^ hi[j] ^ parity(*tail & T2[j]); win = win << 1 ^ hi[j] ^ parity(*tail & T2[j]);
if(filter(win) != eks[j]) if(filter(win) != eks[j])
goto continue2; goto continue2;
} }
*tail = *tail << 1 | parity(LF_POLY_EVEN & *tail); *tail = *tail << 1 | parity(LF_POLY_EVEN & *tail);
sl->odd = *tail ^ parity(LF_POLY_ODD & win); sl->odd = *tail ^ parity(LF_POLY_ODD & win);
sl->even = win; sl->even = win;
++sl; ++sl;
sl->odd = sl->even = 0; sl->odd = sl->even = 0;
continue2:; continue2:;
} }
} }
return statelist; return statelist;
} }
/** lfsr_rollback_bit /** lfsr_rollback_bit
@ -355,93 +355,93 @@ struct Crypto1State* lfsr_recovery64(uint32_t ks2, uint32_t ks3)
*/ */
uint8_t lfsr_rollback_bit(struct Crypto1State *s, uint32_t in, int fb) uint8_t lfsr_rollback_bit(struct Crypto1State *s, uint32_t in, int fb)
{ {
int out; int out;
uint8_t ret; uint8_t ret;
uint32_t t; uint32_t t;
s->odd &= 0xffffff; s->odd &= 0xffffff;
t = s->odd, s->odd = s->even, s->even = t; t = s->odd, s->odd = s->even, s->even = t;
out = s->even & 1; out = s->even & 1;
out ^= LF_POLY_EVEN & (s->even >>= 1); out ^= LF_POLY_EVEN & (s->even >>= 1);
out ^= LF_POLY_ODD & s->odd; out ^= LF_POLY_ODD & s->odd;
out ^= !!in; out ^= !!in;
out ^= (ret = filter(s->odd)) & !!fb; out ^= (ret = filter(s->odd)) & !!fb;
s->even |= parity(out) << 23; s->even |= parity(out) << 23;
return ret; return ret;
} }
/** lfsr_rollback_byte /** lfsr_rollback_byte
* Rollback the shift register in order to get previous states * Rollback the shift register in order to get previous states
*/ */
uint8_t lfsr_rollback_byte(struct Crypto1State *s, uint32_t in, int fb) uint8_t lfsr_rollback_byte(struct Crypto1State *s, uint32_t in, int fb)
{ {
/* /*
int i, ret = 0; int i, ret = 0;
for (i = 7; i >= 0; --i) for (i = 7; i >= 0; --i)
ret |= lfsr_rollback_bit(s, BIT(in, i), fb) << i; ret |= lfsr_rollback_bit(s, BIT(in, i), fb) << i;
*/ */
// unfold loop 20160112 // unfold loop 20160112
uint8_t ret = 0; uint8_t ret = 0;
ret |= lfsr_rollback_bit(s, BIT(in, 7), fb) << 7; ret |= lfsr_rollback_bit(s, BIT(in, 7), fb) << 7;
ret |= lfsr_rollback_bit(s, BIT(in, 6), fb) << 6; ret |= lfsr_rollback_bit(s, BIT(in, 6), fb) << 6;
ret |= lfsr_rollback_bit(s, BIT(in, 5), fb) << 5; ret |= lfsr_rollback_bit(s, BIT(in, 5), fb) << 5;
ret |= lfsr_rollback_bit(s, BIT(in, 4), fb) << 4; ret |= lfsr_rollback_bit(s, BIT(in, 4), fb) << 4;
ret |= lfsr_rollback_bit(s, BIT(in, 3), fb) << 3; ret |= lfsr_rollback_bit(s, BIT(in, 3), fb) << 3;
ret |= lfsr_rollback_bit(s, BIT(in, 2), fb) << 2; ret |= lfsr_rollback_bit(s, BIT(in, 2), fb) << 2;
ret |= lfsr_rollback_bit(s, BIT(in, 1), fb) << 1; ret |= lfsr_rollback_bit(s, BIT(in, 1), fb) << 1;
ret |= lfsr_rollback_bit(s, BIT(in, 0), fb) << 0; ret |= lfsr_rollback_bit(s, BIT(in, 0), fb) << 0;
return ret; return ret;
} }
/** lfsr_rollback_word /** lfsr_rollback_word
* Rollback the shift register in order to get previous states * Rollback the shift register in order to get previous states
*/ */
uint32_t lfsr_rollback_word(struct Crypto1State *s, uint32_t in, int fb) uint32_t lfsr_rollback_word(struct Crypto1State *s, uint32_t in, int fb)
{ {
/* /*
int i; int i;
uint32_t ret = 0; uint32_t ret = 0;
for (i = 31; i >= 0; --i) for (i = 31; i >= 0; --i)
ret |= lfsr_rollback_bit(s, BEBIT(in, i), fb) << (i ^ 24); ret |= lfsr_rollback_bit(s, BEBIT(in, i), fb) << (i ^ 24);
*/ */
// unfold loop 20160112 // unfold loop 20160112
uint32_t ret = 0; uint32_t ret = 0;
ret |= lfsr_rollback_bit(s, BEBIT(in, 31), fb) << (31 ^ 24); ret |= lfsr_rollback_bit(s, BEBIT(in, 31), fb) << (31 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 30), fb) << (30 ^ 24); ret |= lfsr_rollback_bit(s, BEBIT(in, 30), fb) << (30 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 29), fb) << (29 ^ 24); ret |= lfsr_rollback_bit(s, BEBIT(in, 29), fb) << (29 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 28), fb) << (28 ^ 24); ret |= lfsr_rollback_bit(s, BEBIT(in, 28), fb) << (28 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 27), fb) << (27 ^ 24); ret |= lfsr_rollback_bit(s, BEBIT(in, 27), fb) << (27 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 26), fb) << (26 ^ 24); ret |= lfsr_rollback_bit(s, BEBIT(in, 26), fb) << (26 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 25), fb) << (25 ^ 24); ret |= lfsr_rollback_bit(s, BEBIT(in, 25), fb) << (25 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 24), fb) << (24 ^ 24); ret |= lfsr_rollback_bit(s, BEBIT(in, 24), fb) << (24 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 23), fb) << (23 ^ 24); ret |= lfsr_rollback_bit(s, BEBIT(in, 23), fb) << (23 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 22), fb) << (22 ^ 24); ret |= lfsr_rollback_bit(s, BEBIT(in, 22), fb) << (22 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 21), fb) << (21 ^ 24); ret |= lfsr_rollback_bit(s, BEBIT(in, 21), fb) << (21 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 20), fb) << (20 ^ 24); ret |= lfsr_rollback_bit(s, BEBIT(in, 20), fb) << (20 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 19), fb) << (19 ^ 24); ret |= lfsr_rollback_bit(s, BEBIT(in, 19), fb) << (19 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 18), fb) << (18 ^ 24); ret |= lfsr_rollback_bit(s, BEBIT(in, 18), fb) << (18 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 17), fb) << (17 ^ 24); ret |= lfsr_rollback_bit(s, BEBIT(in, 17), fb) << (17 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 16), fb) << (16 ^ 24); ret |= lfsr_rollback_bit(s, BEBIT(in, 16), fb) << (16 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 15), fb) << (15 ^ 24); ret |= lfsr_rollback_bit(s, BEBIT(in, 15), fb) << (15 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 14), fb) << (14 ^ 24); ret |= lfsr_rollback_bit(s, BEBIT(in, 14), fb) << (14 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 13), fb) << (13 ^ 24); ret |= lfsr_rollback_bit(s, BEBIT(in, 13), fb) << (13 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 12), fb) << (12 ^ 24); ret |= lfsr_rollback_bit(s, BEBIT(in, 12), fb) << (12 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 11), fb) << (11 ^ 24); ret |= lfsr_rollback_bit(s, BEBIT(in, 11), fb) << (11 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 10), fb) << (10 ^ 24); ret |= lfsr_rollback_bit(s, BEBIT(in, 10), fb) << (10 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 9), fb) << (9 ^ 24); ret |= lfsr_rollback_bit(s, BEBIT(in, 9), fb) << (9 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 8), fb) << (8 ^ 24); ret |= lfsr_rollback_bit(s, BEBIT(in, 8), fb) << (8 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 7), fb) << (7 ^ 24); ret |= lfsr_rollback_bit(s, BEBIT(in, 7), fb) << (7 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 6), fb) << (6 ^ 24); ret |= lfsr_rollback_bit(s, BEBIT(in, 6), fb) << (6 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 5), fb) << (5 ^ 24); ret |= lfsr_rollback_bit(s, BEBIT(in, 5), fb) << (5 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 4), fb) << (4 ^ 24); ret |= lfsr_rollback_bit(s, BEBIT(in, 4), fb) << (4 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 3), fb) << (3 ^ 24); ret |= lfsr_rollback_bit(s, BEBIT(in, 3), fb) << (3 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 2), fb) << (2 ^ 24); ret |= lfsr_rollback_bit(s, BEBIT(in, 2), fb) << (2 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 1), fb) << (1 ^ 24); ret |= lfsr_rollback_bit(s, BEBIT(in, 1), fb) << (1 ^ 24);
ret |= lfsr_rollback_bit(s, BEBIT(in, 0), fb) << (0 ^ 24); ret |= lfsr_rollback_bit(s, BEBIT(in, 0), fb) << (0 ^ 24);
return ret; return ret;
} }
/** nonce_distance /** nonce_distance
@ -450,23 +450,23 @@ uint32_t lfsr_rollback_word(struct Crypto1State *s, uint32_t in, int fb)
static uint16_t *dist = 0; static uint16_t *dist = 0;
int nonce_distance(uint32_t from, uint32_t to) int nonce_distance(uint32_t from, uint32_t to)
{ {
uint16_t x, i; uint16_t x, i;
if(!dist) { if(!dist) {
dist = malloc(2 << 16); dist = malloc(2 << 16);
if(!dist) if(!dist)
return -1; return -1;
for (x = i = 1; i; ++i) { for (x = i = 1; i; ++i) {
dist[(x & 0xff) << 8 | x >> 8] = i; dist[(x & 0xff) << 8 | x >> 8] = i;
x = x >> 1 | (x ^ x >> 2 ^ x >> 3 ^ x >> 5) << 15; x = x >> 1 | (x ^ x >> 2 ^ x >> 3 ^ x >> 5) << 15;
} }
} }
return (65535 + dist[to >> 16] - dist[from >> 16]) % 65535; return (65535 + dist[to >> 16] - dist[from >> 16]) % 65535;
} }
static uint32_t fastfwd[2][8] = { static uint32_t fastfwd[2][8] = {
{ 0, 0x4BC53, 0xECB1, 0x450E2, 0x25E29, 0x6E27A, 0x2B298, 0x60ECB}, { 0, 0x4BC53, 0xECB1, 0x450E2, 0x25E29, 0x6E27A, 0x2B298, 0x60ECB},
{ 0, 0x1D962, 0x4BC53, 0x56531, 0xECB1, 0x135D3, 0x450E2, 0x58980}}; { 0, 0x1D962, 0x4BC53, 0x56531, 0xECB1, 0x135D3, 0x450E2, 0x58980}};
/** lfsr_prefix_ks /** lfsr_prefix_ks
@ -480,25 +480,25 @@ static uint32_t fastfwd[2][8] = {
*/ */
uint32_t *lfsr_prefix_ks(uint8_t ks[8], int isodd) uint32_t *lfsr_prefix_ks(uint8_t ks[8], int isodd)
{ {
uint32_t *candidates = malloc(4 << 10); uint32_t *candidates = malloc(4 << 10);
if(!candidates) return 0; if(!candidates) return 0;
uint32_t c, entry; uint32_t c, entry;
int size = 0, i, good; int size = 0, i, good;
for(i = 0; i < 1 << 21; ++i) { for(i = 0; i < 1 << 21; ++i) {
for(c = 0, good = 1; good && c < 8; ++c) { for(c = 0, good = 1; good && c < 8; ++c) {
entry = i ^ fastfwd[isodd][c]; entry = i ^ fastfwd[isodd][c];
good &= (BIT(ks[c], isodd) == filter(entry >> 1)); good &= (BIT(ks[c], isodd) == filter(entry >> 1));
good &= (BIT(ks[c], isodd + 2) == filter(entry)); good &= (BIT(ks[c], isodd + 2) == filter(entry));
} }
if(good) if(good)
candidates[size++] = i; candidates[size++] = i;
} }
candidates[size] = -1; candidates[size] = -1;
return candidates; return candidates;
} }
/** check_pfx_parity /** check_pfx_parity
@ -506,30 +506,30 @@ uint32_t *lfsr_prefix_ks(uint8_t ks[8], int isodd)
*/ */
static struct Crypto1State* check_pfx_parity(uint32_t prefix, uint32_t rresp, uint8_t parities[8][8], uint32_t odd, uint32_t even, struct Crypto1State* sl) static struct Crypto1State* check_pfx_parity(uint32_t prefix, uint32_t rresp, uint8_t parities[8][8], uint32_t odd, uint32_t even, struct Crypto1State* sl)
{ {
uint32_t ks1, nr, ks2, rr, ks3, c, good = 1; uint32_t ks1, nr, ks2, rr, ks3, c, good = 1;
for(c = 0; good && c < 8; ++c) { for(c = 0; good && c < 8; ++c) {
sl->odd = odd ^ fastfwd[1][c]; sl->odd = odd ^ fastfwd[1][c];
sl->even = even ^ fastfwd[0][c]; sl->even = even ^ fastfwd[0][c];
lfsr_rollback_bit(sl, 0, 0); lfsr_rollback_bit(sl, 0, 0);
lfsr_rollback_bit(sl, 0, 0); lfsr_rollback_bit(sl, 0, 0);
ks3 = lfsr_rollback_bit(sl, 0, 0); ks3 = lfsr_rollback_bit(sl, 0, 0);
ks2 = lfsr_rollback_word(sl, 0, 0); ks2 = lfsr_rollback_word(sl, 0, 0);
ks1 = lfsr_rollback_word(sl, prefix | c << 5, 1); ks1 = lfsr_rollback_word(sl, prefix | c << 5, 1);
nr = ks1 ^ (prefix | c << 5); nr = ks1 ^ (prefix | c << 5);
rr = ks2 ^ rresp; rr = ks2 ^ rresp;
good &= parity(nr & 0x000000ff) ^ parities[c][3] ^ BIT(ks2, 24); good &= parity(nr & 0x000000ff) ^ parities[c][3] ^ BIT(ks2, 24);
good &= parity(rr & 0xff000000) ^ parities[c][4] ^ BIT(ks2, 16); good &= parity(rr & 0xff000000) ^ parities[c][4] ^ BIT(ks2, 16);
good &= parity(rr & 0x00ff0000) ^ parities[c][5] ^ BIT(ks2, 8); good &= parity(rr & 0x00ff0000) ^ parities[c][5] ^ BIT(ks2, 8);
good &= parity(rr & 0x0000ff00) ^ parities[c][6] ^ BIT(ks2, 0); good &= parity(rr & 0x0000ff00) ^ parities[c][6] ^ BIT(ks2, 0);
good &= parity(rr & 0x000000ff) ^ parities[c][7] ^ ks3; good &= parity(rr & 0x000000ff) ^ parities[c][7] ^ ks3;
} }
return sl + good; return sl + good;
} }
/** lfsr_common_prefix /** lfsr_common_prefix
@ -544,30 +544,30 @@ static struct Crypto1State* check_pfx_parity(uint32_t prefix, uint32_t rresp, ui
struct Crypto1State* lfsr_common_prefix(uint32_t pfx, uint32_t rr, uint8_t ks[8], uint8_t par[8][8]) struct Crypto1State* lfsr_common_prefix(uint32_t pfx, uint32_t rr, uint8_t ks[8], uint8_t par[8][8])
{ {
struct Crypto1State *statelist, *s; struct Crypto1State *statelist, *s;
uint32_t *odd, *even, *o, *e, top; uint32_t *odd, *even, *o, *e, top;
odd = lfsr_prefix_ks(ks, 1); odd = lfsr_prefix_ks(ks, 1);
even = lfsr_prefix_ks(ks, 0); even = lfsr_prefix_ks(ks, 0);
s = statelist = malloc((sizeof *statelist) << 20); s = statelist = malloc((sizeof *statelist) << 20);
if(!s || !odd || !even) { if(!s || !odd || !even) {
free(statelist); free(statelist);
statelist = 0; statelist = 0;
goto out; goto out;
} }
for(o = odd; *o + 1; ++o) for(o = odd; *o + 1; ++o)
for(e = even; *e + 1; ++e) for(e = even; *e + 1; ++e)
for(top = 0; top < 64; ++top) { for(top = 0; top < 64; ++top) {
*o += 1 << 21; *o += 1 << 21;
*e += (!(top & 7) + 1) << 21; *e += (!(top & 7) + 1) << 21;
s = check_pfx_parity(pfx, rr, par, *o, *e, s); s = check_pfx_parity(pfx, rr, par, *o, *e, s);
} }
s->odd = s->even = 0; s->odd = s->even = 0;
out: out:
free(odd); free(odd);
free(even); free(even);
return statelist; return statelist;
} }

View file

@ -43,18 +43,18 @@ uint8_t lfsr_rollback_byte(struct Crypto1State* s, uint32_t in, int fb);
uint32_t lfsr_rollback_word(struct Crypto1State* s, uint32_t in, int fb); uint32_t lfsr_rollback_word(struct Crypto1State* s, uint32_t in, int fb);
int nonce_distance(uint32_t from, uint32_t to); int nonce_distance(uint32_t from, uint32_t to);
#define SWAPENDIAN(x)\ #define SWAPENDIAN(x)\
(x = (x >> 8 & 0xff00ff) | (x & 0xff00ff) << 8, x = x >> 16 | x << 16) (x = (x >> 8 & 0xff00ff) | (x & 0xff00ff) << 8, x = x >> 16 | x << 16)
#define FOREACH_VALID_NONCE(N, FILTER, FSIZE)\ #define FOREACH_VALID_NONCE(N, FILTER, FSIZE)\
uint32_t __n = 0,__M = 0, N = 0;\ uint32_t __n = 0,__M = 0, N = 0;\
int __i;\ int __i;\
for(; __n < 1 << 16; N = prng_successor(__M = ++__n, 16))\ for(; __n < 1 << 16; N = prng_successor(__M = ++__n, 16))\
for(__i = FSIZE - 1; __i >= 0; __i--)\ for(__i = FSIZE - 1; __i >= 0; __i--)\
if(BIT(FILTER, __i) ^ parity(__M & 0xFF01))\ if(BIT(FILTER, __i) ^ parity(__M & 0xFF01))\
break;\ break;\
else if(__i)\ else if(__i)\
__M = prng_successor(__M, (__i == 7) ? 48 : 8);\ __M = prng_successor(__M, (__i == 7) ? 48 : 8);\
else else
#define LF_POLY_ODD (0x29CE5C) #define LF_POLY_ODD (0x29CE5C)
#define LF_POLY_EVEN (0x870804) #define LF_POLY_EVEN (0x870804)
@ -63,31 +63,31 @@ int nonce_distance(uint32_t from, uint32_t to);
static inline int parity(uint32_t x) static inline int parity(uint32_t x)
{ {
#if !defined __i386__ || !defined __GNUC__ #if !defined __i386__ || !defined __GNUC__
x ^= x >> 16; x ^= x >> 16;
x ^= x >> 8; x ^= x >> 8;
x ^= x >> 4; x ^= x >> 4;
return BIT(0x6996, x & 0xf); return BIT(0x6996, x & 0xf);
#else #else
__asm__( "movl %1, %%eax\n" __asm__( "movl %1, %%eax\n"
"mov %%ax, %%cx\n" "mov %%ax, %%cx\n"
"shrl $0x10, %%eax\n" "shrl $0x10, %%eax\n"
"xor %%ax, %%cx\n" "xor %%ax, %%cx\n"
"xor %%ch, %%cl\n" "xor %%ch, %%cl\n"
"setpo %%al\n" "setpo %%al\n"
"movzx %%al, %0\n": "=r"(x) : "r"(x): "eax","ecx"); "movzx %%al, %0\n": "=r"(x) : "r"(x): "eax","ecx");
return x; return x;
#endif #endif
} }
static inline int filter(uint32_t const x) static inline int filter(uint32_t const x)
{ {
uint32_t f; uint32_t f;
f = 0xf22c0 >> (x & 0xf) & 16; f = 0xf22c0 >> (x & 0xf) & 16;
f |= 0x6c9c0 >> (x >> 4 & 0xf) & 8; f |= 0x6c9c0 >> (x >> 4 & 0xf) & 8;
f |= 0x3c8b0 >> (x >> 8 & 0xf) & 4; f |= 0x3c8b0 >> (x >> 8 & 0xf) & 4;
f |= 0x1e458 >> (x >> 12 & 0xf) & 2; f |= 0x1e458 >> (x >> 12 & 0xf) & 2;
f |= 0x0d938 >> (x >> 16 & 0xf) & 1; f |= 0x0d938 >> (x >> 16 & 0xf) & 1;
return BIT(0xEC57E80A, f); return BIT(0xEC57E80A, f);
} }
#ifdef __cplusplus #ifdef __cplusplus
} }

View file

@ -22,115 +22,115 @@
struct Crypto1State * crypto1_create(uint64_t key) struct Crypto1State * crypto1_create(uint64_t key)
{ {
struct Crypto1State *s = malloc(sizeof(*s)); struct Crypto1State *s = malloc(sizeof(*s));
if ( !s ) return NULL; if ( !s ) return NULL;
s->odd = s->even = 0; s->odd = s->even = 0;
int i; int i;
//for(i = 47;s && i > 0; i -= 2) { //for(i = 47;s && i > 0; i -= 2) {
for(i = 47; i > 0; i -= 2) { for(i = 47; i > 0; i -= 2) {
s->odd = s->odd << 1 | BIT(key, (i - 1) ^ 7); s->odd = s->odd << 1 | BIT(key, (i - 1) ^ 7);
s->even = s->even << 1 | BIT(key, i ^ 7); s->even = s->even << 1 | BIT(key, i ^ 7);
} }
return s; return s;
} }
void crypto1_destroy(struct Crypto1State *state) void crypto1_destroy(struct Crypto1State *state)
{ {
free(state); free(state);
} }
void crypto1_get_lfsr(struct Crypto1State *state, uint64_t *lfsr) void crypto1_get_lfsr(struct Crypto1State *state, uint64_t *lfsr)
{ {
int i; int i;
for(*lfsr = 0, i = 23; i >= 0; --i) { for(*lfsr = 0, i = 23; i >= 0; --i) {
*lfsr = *lfsr << 1 | BIT(state->odd, i ^ 3); *lfsr = *lfsr << 1 | BIT(state->odd, i ^ 3);
*lfsr = *lfsr << 1 | BIT(state->even, i ^ 3); *lfsr = *lfsr << 1 | BIT(state->even, i ^ 3);
} }
} }
uint8_t crypto1_bit(struct Crypto1State *s, uint8_t in, int is_encrypted) uint8_t crypto1_bit(struct Crypto1State *s, uint8_t in, int is_encrypted)
{ {
uint32_t feedin; uint32_t feedin;
uint32_t tmp; uint32_t tmp;
uint8_t ret = filter(s->odd); uint8_t ret = filter(s->odd);
feedin = ret & !!is_encrypted; feedin = ret & !!is_encrypted;
feedin ^= !!in; feedin ^= !!in;
feedin ^= LF_POLY_ODD & s->odd; feedin ^= LF_POLY_ODD & s->odd;
feedin ^= LF_POLY_EVEN & s->even; feedin ^= LF_POLY_EVEN & s->even;
s->even = s->even << 1 | parity(feedin); s->even = s->even << 1 | parity(feedin);
tmp = s->odd; tmp = s->odd;
s->odd = s->even; s->odd = s->even;
s->even = tmp; s->even = tmp;
return ret; return ret;
} }
uint8_t crypto1_byte(struct Crypto1State *s, uint8_t in, int is_encrypted) uint8_t crypto1_byte(struct Crypto1State *s, uint8_t in, int is_encrypted)
{ {
/* /*
uint8_t i, ret = 0; uint8_t i, ret = 0;
for (i = 0; i < 8; ++i) for (i = 0; i < 8; ++i)
ret |= crypto1_bit(s, BIT(in, i), is_encrypted) << i; ret |= crypto1_bit(s, BIT(in, i), is_encrypted) << i;
*/ */
// unfold loop 20161012 // unfold loop 20161012
uint8_t ret = 0; uint8_t ret = 0;
ret |= crypto1_bit(s, BIT(in, 0), is_encrypted) << 0; ret |= crypto1_bit(s, BIT(in, 0), is_encrypted) << 0;
ret |= crypto1_bit(s, BIT(in, 1), is_encrypted) << 1; ret |= crypto1_bit(s, BIT(in, 1), is_encrypted) << 1;
ret |= crypto1_bit(s, BIT(in, 2), is_encrypted) << 2; ret |= crypto1_bit(s, BIT(in, 2), is_encrypted) << 2;
ret |= crypto1_bit(s, BIT(in, 3), is_encrypted) << 3; ret |= crypto1_bit(s, BIT(in, 3), is_encrypted) << 3;
ret |= crypto1_bit(s, BIT(in, 4), is_encrypted) << 4; ret |= crypto1_bit(s, BIT(in, 4), is_encrypted) << 4;
ret |= crypto1_bit(s, BIT(in, 5), is_encrypted) << 5; ret |= crypto1_bit(s, BIT(in, 5), is_encrypted) << 5;
ret |= crypto1_bit(s, BIT(in, 6), is_encrypted) << 6; ret |= crypto1_bit(s, BIT(in, 6), is_encrypted) << 6;
ret |= crypto1_bit(s, BIT(in, 7), is_encrypted) << 7; ret |= crypto1_bit(s, BIT(in, 7), is_encrypted) << 7;
return ret; return ret;
} }
uint32_t crypto1_word(struct Crypto1State *s, uint32_t in, int is_encrypted) uint32_t crypto1_word(struct Crypto1State *s, uint32_t in, int is_encrypted)
{ {
/* /*
uint32_t i, ret = 0; uint32_t i, ret = 0;
for (i = 0; i < 32; ++i) for (i = 0; i < 32; ++i)
ret |= crypto1_bit(s, BEBIT(in, i), is_encrypted) << (i ^ 24); ret |= crypto1_bit(s, BEBIT(in, i), is_encrypted) << (i ^ 24);
*/ */
//unfold loop 2016012 //unfold loop 2016012
uint32_t ret = 0; uint32_t ret = 0;
ret |= crypto1_bit(s, BEBIT(in, 0), is_encrypted) << (0 ^ 24); ret |= crypto1_bit(s, BEBIT(in, 0), is_encrypted) << (0 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 1), is_encrypted) << (1 ^ 24); ret |= crypto1_bit(s, BEBIT(in, 1), is_encrypted) << (1 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 2), is_encrypted) << (2 ^ 24); ret |= crypto1_bit(s, BEBIT(in, 2), is_encrypted) << (2 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 3), is_encrypted) << (3 ^ 24); ret |= crypto1_bit(s, BEBIT(in, 3), is_encrypted) << (3 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 4), is_encrypted) << (4 ^ 24); ret |= crypto1_bit(s, BEBIT(in, 4), is_encrypted) << (4 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 5), is_encrypted) << (5 ^ 24); ret |= crypto1_bit(s, BEBIT(in, 5), is_encrypted) << (5 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 6), is_encrypted) << (6 ^ 24); ret |= crypto1_bit(s, BEBIT(in, 6), is_encrypted) << (6 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 7), is_encrypted) << (7 ^ 24); ret |= crypto1_bit(s, BEBIT(in, 7), is_encrypted) << (7 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 8), is_encrypted) << (8 ^ 24); ret |= crypto1_bit(s, BEBIT(in, 8), is_encrypted) << (8 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 9), is_encrypted) << (9 ^ 24); ret |= crypto1_bit(s, BEBIT(in, 9), is_encrypted) << (9 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 10), is_encrypted) << (10 ^ 24); ret |= crypto1_bit(s, BEBIT(in, 10), is_encrypted) << (10 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 11), is_encrypted) << (11 ^ 24); ret |= crypto1_bit(s, BEBIT(in, 11), is_encrypted) << (11 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 12), is_encrypted) << (12 ^ 24); ret |= crypto1_bit(s, BEBIT(in, 12), is_encrypted) << (12 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 13), is_encrypted) << (13 ^ 24); ret |= crypto1_bit(s, BEBIT(in, 13), is_encrypted) << (13 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 14), is_encrypted) << (14 ^ 24); ret |= crypto1_bit(s, BEBIT(in, 14), is_encrypted) << (14 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 15), is_encrypted) << (15 ^ 24); ret |= crypto1_bit(s, BEBIT(in, 15), is_encrypted) << (15 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 16), is_encrypted) << (16 ^ 24); ret |= crypto1_bit(s, BEBIT(in, 16), is_encrypted) << (16 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 17), is_encrypted) << (17 ^ 24); ret |= crypto1_bit(s, BEBIT(in, 17), is_encrypted) << (17 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 18), is_encrypted) << (18 ^ 24); ret |= crypto1_bit(s, BEBIT(in, 18), is_encrypted) << (18 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 19), is_encrypted) << (19 ^ 24); ret |= crypto1_bit(s, BEBIT(in, 19), is_encrypted) << (19 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 20), is_encrypted) << (20 ^ 24); ret |= crypto1_bit(s, BEBIT(in, 20), is_encrypted) << (20 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 21), is_encrypted) << (21 ^ 24); ret |= crypto1_bit(s, BEBIT(in, 21), is_encrypted) << (21 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 22), is_encrypted) << (22 ^ 24); ret |= crypto1_bit(s, BEBIT(in, 22), is_encrypted) << (22 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 23), is_encrypted) << (23 ^ 24); ret |= crypto1_bit(s, BEBIT(in, 23), is_encrypted) << (23 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 24), is_encrypted) << (24 ^ 24); ret |= crypto1_bit(s, BEBIT(in, 24), is_encrypted) << (24 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 25), is_encrypted) << (25 ^ 24); ret |= crypto1_bit(s, BEBIT(in, 25), is_encrypted) << (25 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 26), is_encrypted) << (26 ^ 24); ret |= crypto1_bit(s, BEBIT(in, 26), is_encrypted) << (26 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 27), is_encrypted) << (27 ^ 24); ret |= crypto1_bit(s, BEBIT(in, 27), is_encrypted) << (27 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 28), is_encrypted) << (28 ^ 24); ret |= crypto1_bit(s, BEBIT(in, 28), is_encrypted) << (28 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 29), is_encrypted) << (29 ^ 24); ret |= crypto1_bit(s, BEBIT(in, 29), is_encrypted) << (29 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 30), is_encrypted) << (30 ^ 24); ret |= crypto1_bit(s, BEBIT(in, 30), is_encrypted) << (30 ^ 24);
ret |= crypto1_bit(s, BEBIT(in, 31), is_encrypted) << (31 ^ 24); ret |= crypto1_bit(s, BEBIT(in, 31), is_encrypted) << (31 ^ 24);
return ret; return ret;
} }
/* prng_successor /* prng_successor
@ -138,9 +138,9 @@ uint32_t crypto1_word(struct Crypto1State *s, uint32_t in, int is_encrypted)
*/ */
uint32_t prng_successor(uint32_t x, uint32_t n) uint32_t prng_successor(uint32_t x, uint32_t n)
{ {
SWAPENDIAN(x); SWAPENDIAN(x);
while(n--) while(n--)
x = x >> 1 | (x >> 16 ^ x >> 18 ^ x >> 19 ^ x >> 21) << 31; x = x >> 1 | (x >> 16 ^ x >> 18 ^ x >> 19 ^ x >> 21) << 31;
return SWAPENDIAN(x); return SWAPENDIAN(x);
} }

View file

@ -4,54 +4,54 @@
#include <stdio.h> #include <stdio.h>
int main(const int argc, const char* argv[]) { int main(const int argc, const char* argv[]) {
struct Crypto1State *state; struct Crypto1State *state;
uint32_t pos, uid, nt, nr, rr, nr_diff; uint32_t pos, uid, nt, nr, rr, nr_diff;
uint8_t bt, i, ks3x[8], par[8][8]; uint8_t bt, i, ks3x[8], par[8][8];
uint64_t key_recovered; uint64_t key_recovered;
uint64_t par_info; uint64_t par_info;
uint64_t ks_info; uint64_t ks_info;
nr = rr = 0; nr = rr = 0;
if (argc < 5) { if (argc < 5) {
printf("\nsyntax: %s <uid> <nt> <par> <ks>\n\n",argv[0]); printf("\nsyntax: %s <uid> <nt> <par> <ks>\n\n",argv[0]);
return 1; return 1;
} }
sscanf(argv[1],"%08x", &uid); sscanf(argv[1],"%08x", &uid);
sscanf(argv[2],"%08x", &nt); sscanf(argv[2],"%08x", &nt);
sscanf(argv[3],"%016" SCNx64 ,&par_info); sscanf(argv[3],"%016" SCNx64 ,&par_info);
sscanf(argv[4],"%016" SCNx64 ,&ks_info); sscanf(argv[4],"%016" SCNx64 ,&ks_info);
// Reset the last three significant bits of the reader nonce // Reset the last three significant bits of the reader nonce
nr &= 0xffffff1f; nr &= 0xffffff1f;
printf("\nuid(%08x) nt(%08x) par(%016" PRIx64 ") ks(%016" PRIx64 ")\n\n", uid, nt, par_info, ks_info); printf("\nuid(%08x) nt(%08x) par(%016" PRIx64 ") ks(%016" PRIx64 ")\n\n", uid, nt, par_info, ks_info);
for ( pos = 0; pos < 8; pos++ ) { for ( pos = 0; pos < 8; pos++ ) {
ks3x[7-pos] = (ks_info >> (pos*8)) & 0x0f; ks3x[7-pos] = (ks_info >> (pos*8)) & 0x0f;
bt = (par_info >> (pos*8)) & 0xff; bt = (par_info >> (pos*8)) & 0xff;
for ( i = 0; i < 8; i++) { for ( i = 0; i < 8; i++) {
par[7-pos][i] = (bt >> i) & 0x01; par[7-pos][i] = (bt >> i) & 0x01;
} }
} }
printf("|diff|{nr} |ks3|ks3^5|parity |\n"); printf("|diff|{nr} |ks3|ks3^5|parity |\n");
printf("+----+--------+---+-----+---------------+\n"); printf("+----+--------+---+-----+---------------+\n");
for ( i = 0; i < 8; i++) { for ( i = 0; i < 8; i++) {
nr_diff = nr | i << 5; nr_diff = nr | i << 5;
printf("| %02x |%08x| %01x | %01x |", i << 5, nr_diff, ks3x[i], ks3x[i]^5); printf("| %02x |%08x| %01x | %01x |", i << 5, nr_diff, ks3x[i], ks3x[i]^5);
for ( pos = 0; pos < 7; pos++) for ( pos = 0; pos < 7; pos++)
printf("%01x,", par[i][pos]); printf("%01x,", par[i][pos]);
printf("%01x|\n", par[i][7]); printf("%01x|\n", par[i][7]);
} }
printf("+----+--------+---+-----+---------------+\n"); printf("+----+--------+---+-----+---------------+\n");
state = lfsr_common_prefix(nr,rr,ks3x,par); state = lfsr_common_prefix(nr,rr,ks3x,par);
lfsr_rollback_word(state,uid^nt,0); lfsr_rollback_word(state,uid^nt,0);
crypto1_get_lfsr(state,&key_recovered); crypto1_get_lfsr(state,&key_recovered);
printf("\nkey recovered: %012" PRIx64 "\n\n", key_recovered); printf("\nkey recovered: %012" PRIx64 "\n\n", key_recovered);
crypto1_destroy(state); crypto1_destroy(state);
return 0; return 0;
} }