From e559a4a5afdaa105aeb5f3eca9dd7487417cff38 Mon Sep 17 00:00:00 2001 From: Philippe Teuwen Date: Sat, 9 Mar 2019 10:46:59 +0100 Subject: [PATCH] tools: fix mix of spaces & tabs --- tools/mfkey/crapto1.c | 712 ++++++++++++++++++------------------ tools/mfkey/crapto1.h | 58 +-- tools/mfkey/crypto1.c | 170 ++++----- tools/mfkey/mfkey32.c | 102 +++--- tools/mfkey/mfkey32v2.c | 112 +++--- tools/mfkey/mfkey64.c | 156 ++++---- tools/nonce2key/crapto1.c | 712 ++++++++++++++++++------------------ tools/nonce2key/crapto1.h | 50 +-- tools/nonce2key/crypto1.c | 170 ++++----- tools/nonce2key/nonce2key.c | 82 ++--- 10 files changed, 1162 insertions(+), 1162 deletions(-) diff --git a/tools/mfkey/crapto1.c b/tools/mfkey/crapto1.c index 9b2b58085..cfb07cea4 100755 --- a/tools/mfkey/crapto1.c +++ b/tools/mfkey/crapto1.c @@ -34,65 +34,65 @@ static void __attribute__((constructor)) fill_lut() typedef struct bucket { - uint32_t *head; - uint32_t *bp; + uint32_t *head; + uint32_t *bp; } bucket_t; typedef bucket_t bucket_array_t[2][0x100]; typedef struct bucket_info { - struct { - uint32_t *head, *tail; - } bucket_info[2][0x100]; - uint32_t numbuckets; - } bucket_info_t; + struct { + uint32_t *head, *tail; + } bucket_info[2][0x100]; + uint32_t numbuckets; + } bucket_info_t; static void bucket_sort_intersect(uint32_t* const estart, uint32_t* const estop, - uint32_t* const ostart, uint32_t* const ostop, - bucket_info_t *bucket_info, bucket_array_t bucket) + uint32_t* const ostart, uint32_t* const ostop, + bucket_info_t *bucket_info, bucket_array_t bucket) { - uint32_t *p1, *p2; - uint32_t *start[2]; - uint32_t *stop[2]; + uint32_t *p1, *p2; + uint32_t *start[2]; + uint32_t *stop[2]; - start[0] = estart; - stop[0] = estop; - start[1] = ostart; - stop[1] = ostop; + start[0] = estart; + stop[0] = estop; + start[1] = ostart; + stop[1] = ostop; - // init buckets to be empty - for (uint32_t i = 0; i < 2; i++) { - for (uint32_t j = 0x00; j <= 0xff; j++) { - bucket[i][j].bp = bucket[i][j].head; - } - } + // init buckets to be empty + for (uint32_t i = 0; i < 2; i++) { + for (uint32_t j = 0x00; j <= 0xff; j++) { + bucket[i][j].bp = bucket[i][j].head; + } + } - // sort the lists into the buckets based on the MSB (contribution bits) - for (uint32_t i = 0; i < 2; i++) { - for (p1 = start[i]; p1 <= stop[i]; p1++) { - uint32_t bucket_index = (*p1 & 0xff000000) >> 24; - *(bucket[i][bucket_index].bp++) = *p1; - } - } + // sort the lists into the buckets based on the MSB (contribution bits) + for (uint32_t i = 0; i < 2; i++) { + for (p1 = start[i]; p1 <= stop[i]; p1++) { + uint32_t bucket_index = (*p1 & 0xff000000) >> 24; + *(bucket[i][bucket_index].bp++) = *p1; + } + } - // write back intersecting buckets as sorted list. - // fill in bucket_info with head and tail of the bucket contents in the list and number of non-empty buckets. - uint32_t nonempty_bucket; - for (uint32_t i = 0; i < 2; i++) { - p1 = start[i]; - nonempty_bucket = 0; - for (uint32_t j = 0x00; j <= 0xff; j++) { - if (bucket[0][j].bp != bucket[0][j].head && bucket[1][j].bp != bucket[1][j].head) { // non-empty intersecting buckets only - bucket_info->bucket_info[i][nonempty_bucket].head = p1; - for (p2 = bucket[i][j].head; p2 < bucket[i][j].bp; *p1++ = *p2++); - bucket_info->bucket_info[i][nonempty_bucket].tail = p1 - 1; - nonempty_bucket++; - } - } - bucket_info->numbuckets = nonempty_bucket; - } + // write back intersecting buckets as sorted list. + // fill in bucket_info with head and tail of the bucket contents in the list and number of non-empty buckets. + uint32_t nonempty_bucket; + for (uint32_t i = 0; i < 2; i++) { + p1 = start[i]; + nonempty_bucket = 0; + for (uint32_t j = 0x00; j <= 0xff; j++) { + if (bucket[0][j].bp != bucket[0][j].head && bucket[1][j].bp != bucket[1][j].head) { // non-empty intersecting buckets only + bucket_info->bucket_info[i][nonempty_bucket].head = p1; + for (p2 = bucket[i][j].head; p2 < bucket[i][j].bp; *p1++ = *p2++); + bucket_info->bucket_info[i][nonempty_bucket].tail = p1 - 1; + nonempty_bucket++; + } + } + bucket_info->numbuckets = nonempty_bucket; + } } @@ -101,11 +101,11 @@ static void bucket_sort_intersect(uint32_t* const estart, uint32_t* const estop, */ static inline void update_contribution(uint32_t *item, const uint32_t mask1, const uint32_t mask2) { - uint32_t p = *item >> 25; + uint32_t p = *item >> 25; - p = p << 1 | parity(*item & mask1); - p = p << 1 | parity(*item & mask2); - *item = p << 24 | (*item & 0xffffff); + p = p << 1 | parity(*item & mask1); + p = p << 1 | parity(*item & mask2); + *item = p << 24 | (*item & 0xffffff); } /** extend_table @@ -113,83 +113,83 @@ static inline void update_contribution(uint32_t *item, const uint32_t mask1, con */ static inline void extend_table(uint32_t *tbl, uint32_t **end, int bit, int m1, int m2, uint32_t in) { - in <<= 24; - for(*tbl <<= 1; tbl <= *end; *++tbl <<= 1) - if(filter(*tbl) ^ filter(*tbl | 1)) { - *tbl |= filter(*tbl) ^ bit; - update_contribution(tbl, m1, m2); - *tbl ^= in; - } else if(filter(*tbl) == bit) { - *++*end = tbl[1]; - tbl[1] = tbl[0] | 1; - update_contribution(tbl, m1, m2); - *tbl++ ^= in; - update_contribution(tbl, m1, m2); - *tbl ^= in; - } else - *tbl-- = *(*end)--; + in <<= 24; + for(*tbl <<= 1; tbl <= *end; *++tbl <<= 1) + if(filter(*tbl) ^ filter(*tbl | 1)) { + *tbl |= filter(*tbl) ^ bit; + update_contribution(tbl, m1, m2); + *tbl ^= in; + } else if(filter(*tbl) == bit) { + *++*end = tbl[1]; + tbl[1] = tbl[0] | 1; + update_contribution(tbl, m1, m2); + *tbl++ ^= in; + update_contribution(tbl, m1, m2); + *tbl ^= in; + } else + *tbl-- = *(*end)--; } /** extend_table_simple * using a bit of the keystream extend the table of possible lfsr states */ static inline void extend_table_simple(uint32_t *tbl, uint32_t **end, int bit) { - for(*tbl <<= 1; tbl <= *end; *++tbl <<= 1) { - if(filter(*tbl) ^ filter(*tbl | 1)) { // replace - *tbl |= filter(*tbl) ^ bit; - } else if(filter(*tbl) == bit) { // insert - *++*end = *++tbl; - *tbl = tbl[-1] | 1; - } else { // drop - *tbl-- = *(*end)--; - } - } + for(*tbl <<= 1; tbl <= *end; *++tbl <<= 1) { + if(filter(*tbl) ^ filter(*tbl | 1)) { // replace + *tbl |= filter(*tbl) ^ bit; + } else if(filter(*tbl) == bit) { // insert + *++*end = *++tbl; + *tbl = tbl[-1] | 1; + } else { // drop + *tbl-- = *(*end)--; + } + } } /** recover * recursively narrow down the search space, 4 bits of keystream at a time */ static struct Crypto1State* recover(uint32_t *o_head, uint32_t *o_tail, uint32_t oks, - uint32_t *e_head, uint32_t *e_tail, uint32_t eks, int rem, - struct Crypto1State *sl, uint32_t in, bucket_array_t bucket) + uint32_t *e_head, uint32_t *e_tail, uint32_t eks, int rem, + struct Crypto1State *sl, uint32_t in, bucket_array_t bucket) { - uint32_t *o, *e; - bucket_info_t bucket_info; + uint32_t *o, *e; + bucket_info_t bucket_info; - if(rem == -1) { - for(e = e_head; e <= e_tail; ++e) { - *e = *e << 1 ^ parity(*e & LF_POLY_EVEN) ^ !!(in & 4); - for(o = o_head; o <= o_tail; ++o, ++sl) { - sl->even = *o; - sl->odd = *e ^ parity(*o & LF_POLY_ODD); - sl[1].odd = sl[1].even = 0; - } - } - return sl; - } + if(rem == -1) { + for(e = e_head; e <= e_tail; ++e) { + *e = *e << 1 ^ parity(*e & LF_POLY_EVEN) ^ !!(in & 4); + for(o = o_head; o <= o_tail; ++o, ++sl) { + sl->even = *o; + sl->odd = *e ^ parity(*o & LF_POLY_ODD); + sl[1].odd = sl[1].even = 0; + } + } + return sl; + } - for(uint32_t i = 0; i < 4 && rem--; i++) { - oks >>= 1; - eks >>= 1; - in >>= 2; - extend_table(o_head, &o_tail, oks & 1, LF_POLY_EVEN << 1 | 1, LF_POLY_ODD << 1, 0); - if(o_head > o_tail) - return sl; + for(uint32_t i = 0; i < 4 && rem--; i++) { + oks >>= 1; + eks >>= 1; + in >>= 2; + extend_table(o_head, &o_tail, oks & 1, LF_POLY_EVEN << 1 | 1, LF_POLY_ODD << 1, 0); + if(o_head > o_tail) + return sl; - extend_table(e_head, &e_tail, eks & 1, LF_POLY_ODD, LF_POLY_EVEN << 1 | 1, in & 3); - if(e_head > e_tail) - return sl; - } + extend_table(e_head, &e_tail, eks & 1, LF_POLY_ODD, LF_POLY_EVEN << 1 | 1, in & 3); + if(e_head > e_tail) + return sl; + } - bucket_sort_intersect(e_head, e_tail, o_head, o_tail, &bucket_info, bucket); + bucket_sort_intersect(e_head, e_tail, o_head, o_tail, &bucket_info, bucket); - for (int i = bucket_info.numbuckets - 1; i >= 0; i--) { - sl = recover(bucket_info.bucket_info[1][i].head, bucket_info.bucket_info[1][i].tail, oks, - bucket_info.bucket_info[0][i].head, bucket_info.bucket_info[0][i].tail, eks, - rem, sl, in, bucket); - } + for (int i = bucket_info.numbuckets - 1; i >= 0; i--) { + sl = recover(bucket_info.bucket_info[1][i].head, bucket_info.bucket_info[1][i].tail, oks, + bucket_info.bucket_info[0][i].head, bucket_info.bucket_info[0][i].tail, eks, + rem, sl, in, bucket); + } - return sl; + return sl; } /** lfsr_recovery * recover the state of the lfsr given 32 bits of the keystream @@ -198,87 +198,87 @@ recover(uint32_t *o_head, uint32_t *o_tail, uint32_t oks, */ struct Crypto1State* lfsr_recovery32(uint32_t ks2, uint32_t in) { - struct Crypto1State *statelist; - uint32_t *odd_head = 0, *odd_tail = 0, oks = 0; - uint32_t *even_head = 0, *even_tail = 0, eks = 0; - int i; + struct Crypto1State *statelist; + uint32_t *odd_head = 0, *odd_tail = 0, oks = 0; + uint32_t *even_head = 0, *even_tail = 0, eks = 0; + int i; - // split the keystream into an odd and even part - for(i = 31; i >= 0; i -= 2) - oks = oks << 1 | BEBIT(ks2, i); - for(i = 30; i >= 0; i -= 2) - eks = eks << 1 | BEBIT(ks2, i); + // split the keystream into an odd and even part + for(i = 31; i >= 0; i -= 2) + oks = oks << 1 | BEBIT(ks2, i); + for(i = 30; i >= 0; i -= 2) + eks = eks << 1 | BEBIT(ks2, i); - odd_head = odd_tail = malloc(sizeof(uint32_t) << 21); - even_head = even_tail = malloc(sizeof(uint32_t) << 21); - statelist = malloc(sizeof(struct Crypto1State) << 18); - if(!odd_tail-- || !even_tail-- || !statelist) { - free(statelist); - statelist = 0; - goto out; - } + odd_head = odd_tail = malloc(sizeof(uint32_t) << 21); + even_head = even_tail = malloc(sizeof(uint32_t) << 21); + statelist = malloc(sizeof(struct Crypto1State) << 18); + if(!odd_tail-- || !even_tail-- || !statelist) { + free(statelist); + statelist = 0; + goto out; + } - statelist->odd = statelist->even = 0; + statelist->odd = statelist->even = 0; - // allocate memory for out of place bucket_sort - bucket_array_t bucket; + // allocate memory for out of place bucket_sort + bucket_array_t bucket; - for (uint32_t i = 0; i < 2; i++) { - for (uint32_t j = 0; j <= 0xff; j++) { - bucket[i][j].head = malloc(sizeof(uint32_t)<<14); - if (!bucket[i][j].head) { - goto out; - } - } - } + for (uint32_t i = 0; i < 2; i++) { + for (uint32_t j = 0; j <= 0xff; j++) { + bucket[i][j].head = malloc(sizeof(uint32_t)<<14); + if (!bucket[i][j].head) { + goto out; + } + } + } - // initialize statelists: add all possible states which would result into the rightmost 2 bits of the keystream - for(i = 1 << 20; i >= 0; --i) { - if(filter(i) == (oks & 1)) - *++odd_tail = i; - if(filter(i) == (eks & 1)) - *++even_tail = i; - } + // initialize statelists: add all possible states which would result into the rightmost 2 bits of the keystream + for(i = 1 << 20; i >= 0; --i) { + if(filter(i) == (oks & 1)) + *++odd_tail = i; + if(filter(i) == (eks & 1)) + *++even_tail = i; + } - // extend the statelists. Look at the next 8 Bits of the keystream (4 Bit each odd and even): - for(i = 0; i < 4; i++) { - extend_table_simple(odd_head, &odd_tail, (oks >>= 1) & 1); - extend_table_simple(even_head, &even_tail, (eks >>= 1) & 1); - } + // extend the statelists. Look at the next 8 Bits of the keystream (4 Bit each odd and even): + for(i = 0; i < 4; i++) { + extend_table_simple(odd_head, &odd_tail, (oks >>= 1) & 1); + extend_table_simple(even_head, &even_tail, (eks >>= 1) & 1); + } - // the statelists now contain all states which could have generated the last 10 Bits of the keystream. - // 22 bits to go to recover 32 bits in total. From now on, we need to take the "in" - // parameter into account. - in = (in >> 16 & 0xff) | (in << 16) | (in & 0xff00); // Byte swapping - recover(odd_head, odd_tail, oks, even_head, even_tail, eks, 11, statelist, in << 1, bucket); + // the statelists now contain all states which could have generated the last 10 Bits of the keystream. + // 22 bits to go to recover 32 bits in total. From now on, we need to take the "in" + // parameter into account. + in = (in >> 16 & 0xff) | (in << 16) | (in & 0xff00); // Byte swapping + recover(odd_head, odd_tail, oks, even_head, even_tail, eks, 11, statelist, in << 1, bucket); out: - for (uint32_t i = 0; i < 2; i++) - for (uint32_t j = 0; j <= 0xff; j++) - free(bucket[i][j].head); - free(odd_head); - free(even_head); - return statelist; + for (uint32_t i = 0; i < 2; i++) + for (uint32_t j = 0; j <= 0xff; j++) + free(bucket[i][j].head); + free(odd_head); + free(even_head); + return statelist; } static const uint32_t S1[] = { 0x62141, 0x310A0, 0x18850, 0x0C428, 0x06214, - 0x0310A, 0x85E30, 0xC69AD, 0x634D6, 0xB5CDE, 0xDE8DA, 0x6F46D, 0xB3C83, - 0x59E41, 0xA8995, 0xD027F, 0x6813F, 0x3409F, 0x9E6FA}; + 0x0310A, 0x85E30, 0xC69AD, 0x634D6, 0xB5CDE, 0xDE8DA, 0x6F46D, 0xB3C83, + 0x59E41, 0xA8995, 0xD027F, 0x6813F, 0x3409F, 0x9E6FA}; static const uint32_t S2[] = { 0x3A557B00, 0x5D2ABD80, 0x2E955EC0, 0x174AAF60, - 0x0BA557B0, 0x05D2ABD8, 0x0449DE68, 0x048464B0, 0x42423258, 0x278192A8, - 0x156042D0, 0x0AB02168, 0x43F89B30, 0x61FC4D98, 0x765EAD48, 0x7D8FDD20, - 0x7EC7EE90, 0x7F63F748, 0x79117020}; + 0x0BA557B0, 0x05D2ABD8, 0x0449DE68, 0x048464B0, 0x42423258, 0x278192A8, + 0x156042D0, 0x0AB02168, 0x43F89B30, 0x61FC4D98, 0x765EAD48, 0x7D8FDD20, + 0x7EC7EE90, 0x7F63F748, 0x79117020}; static const uint32_t T1[] = { - 0x4F37D, 0x279BE, 0x97A6A, 0x4BD35, 0x25E9A, 0x12F4D, 0x097A6, 0x80D66, - 0xC4006, 0x62003, 0xB56B4, 0x5AB5A, 0xA9318, 0xD0F39, 0x6879C, 0xB057B, - 0x582BD, 0x2C15E, 0x160AF, 0x8F6E2, 0xC3DC4, 0xE5857, 0x72C2B, 0x39615, - 0x98DBF, 0xC806A, 0xE0680, 0x70340, 0x381A0, 0x98665, 0x4C332, 0xA272C}; + 0x4F37D, 0x279BE, 0x97A6A, 0x4BD35, 0x25E9A, 0x12F4D, 0x097A6, 0x80D66, + 0xC4006, 0x62003, 0xB56B4, 0x5AB5A, 0xA9318, 0xD0F39, 0x6879C, 0xB057B, + 0x582BD, 0x2C15E, 0x160AF, 0x8F6E2, 0xC3DC4, 0xE5857, 0x72C2B, 0x39615, + 0x98DBF, 0xC806A, 0xE0680, 0x70340, 0x381A0, 0x98665, 0x4C332, 0xA272C}; static const uint32_t T2[] = { 0x3C88B810, 0x5E445C08, 0x2982A580, 0x14C152C0, - 0x4A60A960, 0x253054B0, 0x52982A58, 0x2FEC9EA8, 0x1156C4D0, 0x08AB6268, - 0x42F53AB0, 0x217A9D58, 0x161DC528, 0x0DAE6910, 0x46D73488, 0x25CB11C0, - 0x52E588E0, 0x6972C470, 0x34B96238, 0x5CFC3A98, 0x28DE96C8, 0x12CFC0E0, - 0x4967E070, 0x64B3F038, 0x74F97398, 0x7CDC3248, 0x38CE92A0, 0x1C674950, - 0x0E33A4A8, 0x01B959D0, 0x40DCACE8, 0x26CEDDF0}; + 0x4A60A960, 0x253054B0, 0x52982A58, 0x2FEC9EA8, 0x1156C4D0, 0x08AB6268, + 0x42F53AB0, 0x217A9D58, 0x161DC528, 0x0DAE6910, 0x46D73488, 0x25CB11C0, + 0x52E588E0, 0x6972C470, 0x34B96238, 0x5CFC3A98, 0x28DE96C8, 0x12CFC0E0, + 0x4967E070, 0x64B3F038, 0x74F97398, 0x7CDC3248, 0x38CE92A0, 0x1C674950, + 0x0E33A4A8, 0x01B959D0, 0x40DCACE8, 0x26CEDDF0}; static const uint32_t C1[] = { 0x846B5, 0x4235A, 0x211AD}; static const uint32_t C2[] = { 0x1A822E0, 0x21A822E0, 0x21A822E0}; /** Reverse 64 bits of keystream into possible cipher states @@ -286,69 +286,69 @@ static const uint32_t C2[] = { 0x1A822E0, 0x21A822E0, 0x21A822E0}; */ struct Crypto1State* lfsr_recovery64(uint32_t ks2, uint32_t ks3) { - struct Crypto1State *statelist, *sl; - uint8_t oks[32], eks[32], hi[32]; - uint32_t low = 0, win = 0; - uint32_t *tail, table[1 << 16]; - int i, j; + struct Crypto1State *statelist, *sl; + uint8_t oks[32], eks[32], hi[32]; + uint32_t low = 0, win = 0; + uint32_t *tail, table[1 << 16]; + int i, j; - sl = statelist = malloc(sizeof(struct Crypto1State) << 4); - if(!sl) - return 0; - sl->odd = sl->even = 0; + sl = statelist = malloc(sizeof(struct Crypto1State) << 4); + if(!sl) + return 0; + sl->odd = sl->even = 0; - for(i = 30; i >= 0; i -= 2) { - oks[i >> 1] = BEBIT(ks2, i); - oks[16 + (i >> 1)] = BEBIT(ks3, i); - } - for(i = 31; i >= 0; i -= 2) { - eks[i >> 1] = BEBIT(ks2, i); - eks[16 + (i >> 1)] = BEBIT(ks3, i); - } + for(i = 30; i >= 0; i -= 2) { + oks[i >> 1] = BEBIT(ks2, i); + oks[16 + (i >> 1)] = BEBIT(ks3, i); + } + for(i = 31; i >= 0; i -= 2) { + eks[i >> 1] = BEBIT(ks2, i); + eks[16 + (i >> 1)] = BEBIT(ks3, i); + } - for(i = 0xfffff; i >= 0; --i) { - if (filter(i) != oks[0]) - continue; + for(i = 0xfffff; i >= 0; --i) { + if (filter(i) != oks[0]) + continue; - *(tail = table) = i; - for(j = 1; tail >= table && j < 29; ++j) - extend_table_simple(table, &tail, oks[j]); + *(tail = table) = i; + for(j = 1; tail >= table && j < 29; ++j) + extend_table_simple(table, &tail, oks[j]); - if(tail < table) - continue; + if(tail < table) + continue; - for(j = 0; j < 19; ++j) - low = low << 1 | parity(i & S1[j]); - for(j = 0; j < 32; ++j) - hi[j] = parity(i & T1[j]); + for(j = 0; j < 19; ++j) + low = low << 1 | parity(i & S1[j]); + for(j = 0; j < 32; ++j) + hi[j] = parity(i & T1[j]); - for(; tail >= table; --tail) { - for(j = 0; j < 3; ++j) { - *tail = *tail << 1; - *tail |= parity((i & C1[j]) ^ (*tail & C2[j])); - if(filter(*tail) != oks[29 + j]) - goto continue2; - } + for(; tail >= table; --tail) { + for(j = 0; j < 3; ++j) { + *tail = *tail << 1; + *tail |= parity((i & C1[j]) ^ (*tail & C2[j])); + if(filter(*tail) != oks[29 + j]) + goto continue2; + } - for(j = 0; j < 19; ++j) - win = win << 1 | parity(*tail & S2[j]); + for(j = 0; j < 19; ++j) + win = win << 1 | parity(*tail & S2[j]); - win ^= low; - for(j = 0; j < 32; ++j) { - win = win << 1 ^ hi[j] ^ parity(*tail & T2[j]); - if(filter(win) != eks[j]) - goto continue2; - } + win ^= low; + for(j = 0; j < 32; ++j) { + win = win << 1 ^ hi[j] ^ parity(*tail & T2[j]); + if(filter(win) != eks[j]) + goto continue2; + } - *tail = *tail << 1 | parity(LF_POLY_EVEN & *tail); - sl->odd = *tail ^ parity(LF_POLY_ODD & win); - sl->even = win; - ++sl; - sl->odd = sl->even = 0; - continue2:; - } - } - return statelist; + *tail = *tail << 1 | parity(LF_POLY_EVEN & *tail); + sl->odd = *tail ^ parity(LF_POLY_ODD & win); + sl->even = win; + ++sl; + sl->odd = sl->even = 0; + continue2:; + } + } + return statelist; } /** lfsr_rollback_bit @@ -356,93 +356,93 @@ struct Crypto1State* lfsr_recovery64(uint32_t ks2, uint32_t ks3) */ uint8_t lfsr_rollback_bit(struct Crypto1State *s, uint32_t in, int fb) { - int out; - uint8_t ret; - uint32_t t; + int out; + uint8_t ret; + uint32_t t; - s->odd &= 0xffffff; - t = s->odd, s->odd = s->even, s->even = t; + s->odd &= 0xffffff; + t = s->odd, s->odd = s->even, s->even = t; - out = s->even & 1; - out ^= LF_POLY_EVEN & (s->even >>= 1); - out ^= LF_POLY_ODD & s->odd; - out ^= !!in; - out ^= (ret = filter(s->odd)) & !!fb; + out = s->even & 1; + out ^= LF_POLY_EVEN & (s->even >>= 1); + out ^= LF_POLY_ODD & s->odd; + out ^= !!in; + out ^= (ret = filter(s->odd)) & !!fb; - s->even |= parity(out) << 23; - return ret; + s->even |= parity(out) << 23; + return ret; } /** lfsr_rollback_byte * Rollback the shift register in order to get previous states */ uint8_t lfsr_rollback_byte(struct Crypto1State *s, uint32_t in, int fb) { - /* - int i, ret = 0; - for (i = 7; i >= 0; --i) - ret |= lfsr_rollback_bit(s, BIT(in, i), fb) << i; + /* + int i, ret = 0; + for (i = 7; i >= 0; --i) + ret |= lfsr_rollback_bit(s, BIT(in, i), fb) << i; */ // unfold loop 20160112 - uint8_t ret = 0; - ret |= lfsr_rollback_bit(s, BIT(in, 7), fb) << 7; - ret |= lfsr_rollback_bit(s, BIT(in, 6), fb) << 6; - ret |= lfsr_rollback_bit(s, BIT(in, 5), fb) << 5; - ret |= lfsr_rollback_bit(s, BIT(in, 4), fb) << 4; - ret |= lfsr_rollback_bit(s, BIT(in, 3), fb) << 3; - ret |= lfsr_rollback_bit(s, BIT(in, 2), fb) << 2; - ret |= lfsr_rollback_bit(s, BIT(in, 1), fb) << 1; - ret |= lfsr_rollback_bit(s, BIT(in, 0), fb) << 0; - return ret; + uint8_t ret = 0; + ret |= lfsr_rollback_bit(s, BIT(in, 7), fb) << 7; + ret |= lfsr_rollback_bit(s, BIT(in, 6), fb) << 6; + ret |= lfsr_rollback_bit(s, BIT(in, 5), fb) << 5; + ret |= lfsr_rollback_bit(s, BIT(in, 4), fb) << 4; + ret |= lfsr_rollback_bit(s, BIT(in, 3), fb) << 3; + ret |= lfsr_rollback_bit(s, BIT(in, 2), fb) << 2; + ret |= lfsr_rollback_bit(s, BIT(in, 1), fb) << 1; + ret |= lfsr_rollback_bit(s, BIT(in, 0), fb) << 0; + return ret; } /** lfsr_rollback_word * Rollback the shift register in order to get previous states */ uint32_t lfsr_rollback_word(struct Crypto1State *s, uint32_t in, int fb) { - /* - int i; - uint32_t ret = 0; - for (i = 31; i >= 0; --i) - ret |= lfsr_rollback_bit(s, BEBIT(in, i), fb) << (i ^ 24); + /* + int i; + uint32_t ret = 0; + for (i = 31; i >= 0; --i) + ret |= lfsr_rollback_bit(s, BEBIT(in, i), fb) << (i ^ 24); */ // unfold loop 20160112 - uint32_t ret = 0; - ret |= lfsr_rollback_bit(s, BEBIT(in, 31), fb) << (31 ^ 24); - ret |= lfsr_rollback_bit(s, BEBIT(in, 30), fb) << (30 ^ 24); - ret |= lfsr_rollback_bit(s, BEBIT(in, 29), fb) << (29 ^ 24); - ret |= lfsr_rollback_bit(s, BEBIT(in, 28), fb) << (28 ^ 24); - ret |= lfsr_rollback_bit(s, BEBIT(in, 27), fb) << (27 ^ 24); - ret |= lfsr_rollback_bit(s, BEBIT(in, 26), fb) << (26 ^ 24); - ret |= lfsr_rollback_bit(s, BEBIT(in, 25), fb) << (25 ^ 24); - ret |= lfsr_rollback_bit(s, BEBIT(in, 24), fb) << (24 ^ 24); + uint32_t ret = 0; + ret |= lfsr_rollback_bit(s, BEBIT(in, 31), fb) << (31 ^ 24); + ret |= lfsr_rollback_bit(s, BEBIT(in, 30), fb) << (30 ^ 24); + ret |= lfsr_rollback_bit(s, BEBIT(in, 29), fb) << (29 ^ 24); + ret |= lfsr_rollback_bit(s, BEBIT(in, 28), fb) << (28 ^ 24); + ret |= lfsr_rollback_bit(s, BEBIT(in, 27), fb) << (27 ^ 24); + ret |= lfsr_rollback_bit(s, BEBIT(in, 26), fb) << (26 ^ 24); + ret |= lfsr_rollback_bit(s, BEBIT(in, 25), fb) << (25 ^ 24); + ret |= lfsr_rollback_bit(s, BEBIT(in, 24), fb) << (24 ^ 24); - ret |= lfsr_rollback_bit(s, BEBIT(in, 23), fb) << (23 ^ 24); - ret |= lfsr_rollback_bit(s, BEBIT(in, 22), fb) << (22 ^ 24); - ret |= lfsr_rollback_bit(s, BEBIT(in, 21), fb) << (21 ^ 24); - ret |= lfsr_rollback_bit(s, BEBIT(in, 20), fb) << (20 ^ 24); - ret |= lfsr_rollback_bit(s, BEBIT(in, 19), fb) << (19 ^ 24); - ret |= lfsr_rollback_bit(s, BEBIT(in, 18), fb) << (18 ^ 24); - ret |= lfsr_rollback_bit(s, BEBIT(in, 17), fb) << (17 ^ 24); - ret |= lfsr_rollback_bit(s, BEBIT(in, 16), fb) << (16 ^ 24); + ret |= lfsr_rollback_bit(s, BEBIT(in, 23), fb) << (23 ^ 24); + ret |= lfsr_rollback_bit(s, BEBIT(in, 22), fb) << (22 ^ 24); + ret |= lfsr_rollback_bit(s, BEBIT(in, 21), fb) << (21 ^ 24); + ret |= lfsr_rollback_bit(s, BEBIT(in, 20), fb) << (20 ^ 24); + ret |= lfsr_rollback_bit(s, BEBIT(in, 19), fb) << (19 ^ 24); + ret |= lfsr_rollback_bit(s, BEBIT(in, 18), fb) << (18 ^ 24); + ret |= lfsr_rollback_bit(s, BEBIT(in, 17), fb) << (17 ^ 24); + ret |= lfsr_rollback_bit(s, BEBIT(in, 16), fb) << (16 ^ 24); - ret |= lfsr_rollback_bit(s, BEBIT(in, 15), fb) << (15 ^ 24); - ret |= lfsr_rollback_bit(s, BEBIT(in, 14), fb) << (14 ^ 24); - ret |= lfsr_rollback_bit(s, BEBIT(in, 13), fb) << (13 ^ 24); - ret |= lfsr_rollback_bit(s, BEBIT(in, 12), fb) << (12 ^ 24); - ret |= lfsr_rollback_bit(s, BEBIT(in, 11), fb) << (11 ^ 24); - ret |= lfsr_rollback_bit(s, BEBIT(in, 10), fb) << (10 ^ 24); - ret |= lfsr_rollback_bit(s, BEBIT(in, 9), fb) << (9 ^ 24); - ret |= lfsr_rollback_bit(s, BEBIT(in, 8), fb) << (8 ^ 24); + ret |= lfsr_rollback_bit(s, BEBIT(in, 15), fb) << (15 ^ 24); + ret |= lfsr_rollback_bit(s, BEBIT(in, 14), fb) << (14 ^ 24); + ret |= lfsr_rollback_bit(s, BEBIT(in, 13), fb) << (13 ^ 24); + ret |= lfsr_rollback_bit(s, BEBIT(in, 12), fb) << (12 ^ 24); + ret |= lfsr_rollback_bit(s, BEBIT(in, 11), fb) << (11 ^ 24); + ret |= lfsr_rollback_bit(s, BEBIT(in, 10), fb) << (10 ^ 24); + ret |= lfsr_rollback_bit(s, BEBIT(in, 9), fb) << (9 ^ 24); + ret |= lfsr_rollback_bit(s, BEBIT(in, 8), fb) << (8 ^ 24); - ret |= lfsr_rollback_bit(s, BEBIT(in, 7), fb) << (7 ^ 24); - ret |= lfsr_rollback_bit(s, BEBIT(in, 6), fb) << (6 ^ 24); - ret |= lfsr_rollback_bit(s, BEBIT(in, 5), fb) << (5 ^ 24); - ret |= lfsr_rollback_bit(s, BEBIT(in, 4), fb) << (4 ^ 24); - ret |= lfsr_rollback_bit(s, BEBIT(in, 3), fb) << (3 ^ 24); - ret |= lfsr_rollback_bit(s, BEBIT(in, 2), fb) << (2 ^ 24); - ret |= lfsr_rollback_bit(s, BEBIT(in, 1), fb) << (1 ^ 24); - ret |= lfsr_rollback_bit(s, BEBIT(in, 0), fb) << (0 ^ 24); - return ret; + ret |= lfsr_rollback_bit(s, BEBIT(in, 7), fb) << (7 ^ 24); + ret |= lfsr_rollback_bit(s, BEBIT(in, 6), fb) << (6 ^ 24); + ret |= lfsr_rollback_bit(s, BEBIT(in, 5), fb) << (5 ^ 24); + ret |= lfsr_rollback_bit(s, BEBIT(in, 4), fb) << (4 ^ 24); + ret |= lfsr_rollback_bit(s, BEBIT(in, 3), fb) << (3 ^ 24); + ret |= lfsr_rollback_bit(s, BEBIT(in, 2), fb) << (2 ^ 24); + ret |= lfsr_rollback_bit(s, BEBIT(in, 1), fb) << (1 ^ 24); + ret |= lfsr_rollback_bit(s, BEBIT(in, 0), fb) << (0 ^ 24); + return ret; } /** nonce_distance @@ -451,23 +451,23 @@ uint32_t lfsr_rollback_word(struct Crypto1State *s, uint32_t in, int fb) static uint16_t *dist = 0; int nonce_distance(uint32_t from, uint32_t to) { - uint16_t x, i; - if(!dist) { - dist = malloc(2 << 16); - if(!dist) - return -1; - for (x = i = 1; i; ++i) { - dist[(x & 0xff) << 8 | x >> 8] = i; - x = x >> 1 | (x ^ x >> 2 ^ x >> 3 ^ x >> 5) << 15; - } - } - return (65535 + dist[to >> 16] - dist[from >> 16]) % 65535; + uint16_t x, i; + if(!dist) { + dist = malloc(2 << 16); + if(!dist) + return -1; + for (x = i = 1; i; ++i) { + dist[(x & 0xff) << 8 | x >> 8] = i; + x = x >> 1 | (x ^ x >> 2 ^ x >> 3 ^ x >> 5) << 15; + } + } + return (65535 + dist[to >> 16] - dist[from >> 16]) % 65535; } static uint32_t fastfwd[2][8] = { - { 0, 0x4BC53, 0xECB1, 0x450E2, 0x25E29, 0x6E27A, 0x2B298, 0x60ECB}, - { 0, 0x1D962, 0x4BC53, 0x56531, 0xECB1, 0x135D3, 0x450E2, 0x58980}}; + { 0, 0x4BC53, 0xECB1, 0x450E2, 0x25E29, 0x6E27A, 0x2B298, 0x60ECB}, + { 0, 0x1D962, 0x4BC53, 0x56531, 0xECB1, 0x135D3, 0x450E2, 0x58980}}; /** lfsr_prefix_ks @@ -481,25 +481,25 @@ static uint32_t fastfwd[2][8] = { */ uint32_t *lfsr_prefix_ks(uint8_t ks[8], int isodd) { - uint32_t *candidates = malloc(4 << 10); - if(!candidates) return 0; + uint32_t *candidates = malloc(4 << 10); + if(!candidates) return 0; - uint32_t c, entry; - int size = 0, i, good; + uint32_t c, entry; + int size = 0, i, good; - for(i = 0; i < 1 << 21; ++i) { - for(c = 0, good = 1; good && c < 8; ++c) { - entry = i ^ fastfwd[isodd][c]; - good &= (BIT(ks[c], isodd) == filter(entry >> 1)); - good &= (BIT(ks[c], isodd + 2) == filter(entry)); - } - if(good) - candidates[size++] = i; - } + for(i = 0; i < 1 << 21; ++i) { + for(c = 0, good = 1; good && c < 8; ++c) { + entry = i ^ fastfwd[isodd][c]; + good &= (BIT(ks[c], isodd) == filter(entry >> 1)); + good &= (BIT(ks[c], isodd + 2) == filter(entry)); + } + if(good) + candidates[size++] = i; + } - candidates[size] = -1; + candidates[size] = -1; - return candidates; + return candidates; } /** check_pfx_parity @@ -507,30 +507,30 @@ uint32_t *lfsr_prefix_ks(uint8_t ks[8], int isodd) */ static struct Crypto1State* check_pfx_parity(uint32_t prefix, uint32_t rresp, uint8_t parities[8][8], uint32_t odd, uint32_t even, struct Crypto1State* sl) { - uint32_t ks1, nr, ks2, rr, ks3, c, good = 1; + uint32_t ks1, nr, ks2, rr, ks3, c, good = 1; - for(c = 0; good && c < 8; ++c) { - sl->odd = odd ^ fastfwd[1][c]; - sl->even = even ^ fastfwd[0][c]; + for(c = 0; good && c < 8; ++c) { + sl->odd = odd ^ fastfwd[1][c]; + sl->even = even ^ fastfwd[0][c]; - lfsr_rollback_bit(sl, 0, 0); - lfsr_rollback_bit(sl, 0, 0); + lfsr_rollback_bit(sl, 0, 0); + lfsr_rollback_bit(sl, 0, 0); - ks3 = lfsr_rollback_bit(sl, 0, 0); - ks2 = lfsr_rollback_word(sl, 0, 0); - ks1 = lfsr_rollback_word(sl, prefix | c << 5, 1); + ks3 = lfsr_rollback_bit(sl, 0, 0); + ks2 = lfsr_rollback_word(sl, 0, 0); + ks1 = lfsr_rollback_word(sl, prefix | c << 5, 1); - nr = ks1 ^ (prefix | c << 5); - rr = ks2 ^ rresp; + nr = ks1 ^ (prefix | c << 5); + rr = ks2 ^ rresp; - good &= parity(nr & 0x000000ff) ^ parities[c][3] ^ BIT(ks2, 24); - good &= parity(rr & 0xff000000) ^ parities[c][4] ^ BIT(ks2, 16); - good &= parity(rr & 0x00ff0000) ^ parities[c][5] ^ BIT(ks2, 8); - good &= parity(rr & 0x0000ff00) ^ parities[c][6] ^ BIT(ks2, 0); - good &= parity(rr & 0x000000ff) ^ parities[c][7] ^ ks3; - } + good &= parity(nr & 0x000000ff) ^ parities[c][3] ^ BIT(ks2, 24); + good &= parity(rr & 0xff000000) ^ parities[c][4] ^ BIT(ks2, 16); + good &= parity(rr & 0x00ff0000) ^ parities[c][5] ^ BIT(ks2, 8); + good &= parity(rr & 0x0000ff00) ^ parities[c][6] ^ BIT(ks2, 0); + good &= parity(rr & 0x000000ff) ^ parities[c][7] ^ ks3; + } - return sl + good; + return sl + good; } /** lfsr_common_prefix @@ -545,30 +545,30 @@ static struct Crypto1State* check_pfx_parity(uint32_t prefix, uint32_t rresp, ui struct Crypto1State* lfsr_common_prefix(uint32_t pfx, uint32_t rr, uint8_t ks[8], uint8_t par[8][8]) { - struct Crypto1State *statelist, *s; - uint32_t *odd, *even, *o, *e, top; + struct Crypto1State *statelist, *s; + uint32_t *odd, *even, *o, *e, top; - odd = lfsr_prefix_ks(ks, 1); - even = lfsr_prefix_ks(ks, 0); + odd = lfsr_prefix_ks(ks, 1); + even = lfsr_prefix_ks(ks, 0); - s = statelist = malloc((sizeof *statelist) << 24); - if(!s || !odd || !even) { - free(statelist); - statelist = 0; + s = statelist = malloc((sizeof *statelist) << 24); + if(!s || !odd || !even) { + free(statelist); + statelist = 0; goto out; - } + } - for(o = odd; *o + 1; ++o) - for(e = even; *e + 1; ++e) - for(top = 0; top < 64; ++top) { - *o += 1 << 21; - *e += (!(top & 7) + 1) << 21; - s = check_pfx_parity(pfx, rr, par, *o, *e, s); - } + for(o = odd; *o + 1; ++o) + for(e = even; *e + 1; ++e) + for(top = 0; top < 64; ++top) { + *o += 1 << 21; + *e += (!(top & 7) + 1) << 21; + s = check_pfx_parity(pfx, rr, par, *o, *e, s); + } - s->odd = s->even = 0; + s->odd = s->even = 0; out: - free(odd); - free(even); - return statelist; + free(odd); + free(even); + return statelist; } diff --git a/tools/mfkey/crapto1.h b/tools/mfkey/crapto1.h index 875ffdaab..75391c4f2 100755 --- a/tools/mfkey/crapto1.h +++ b/tools/mfkey/crapto1.h @@ -43,18 +43,18 @@ uint8_t lfsr_rollback_byte(struct Crypto1State* s, uint32_t in, int fb); uint32_t lfsr_rollback_word(struct Crypto1State* s, uint32_t in, int fb); int nonce_distance(uint32_t from, uint32_t to); #define SWAPENDIAN(x)\ - (x = (x >> 8 & 0xff00ff) | (x & 0xff00ff) << 8, x = x >> 16 | x << 16) + (x = (x >> 8 & 0xff00ff) | (x & 0xff00ff) << 8, x = x >> 16 | x << 16) #define FOREACH_VALID_NONCE(N, FILTER, FSIZE)\ - uint32_t __n = 0,__M = 0, N = 0;\ - int __i;\ - for(; __n < 1 << 16; N = prng_successor(__M = ++__n, 16))\ - for(__i = FSIZE - 1; __i >= 0; __i--)\ - if(BIT(FILTER, __i) ^ parity(__M & 0xFF01))\ - break;\ - else if(__i)\ - __M = prng_successor(__M, (__i == 7) ? 48 : 8);\ - else + uint32_t __n = 0,__M = 0, N = 0;\ + int __i;\ + for(; __n < 1 << 16; N = prng_successor(__M = ++__n, 16))\ + for(__i = FSIZE - 1; __i >= 0; __i--)\ + if(BIT(FILTER, __i) ^ parity(__M & 0xFF01))\ + break;\ + else if(__i)\ + __M = prng_successor(__M, (__i == 7) ? 48 : 8);\ + else #define LF_POLY_ODD (0x29CE5C) #define LF_POLY_EVEN (0x870804) @@ -63,31 +63,31 @@ int nonce_distance(uint32_t from, uint32_t to); static inline int parity(uint32_t x) { #if !defined __i386__ || !defined __GNUC__ - x ^= x >> 16; - x ^= x >> 8; - x ^= x >> 4; - return BIT(0x6996, x & 0xf); + x ^= x >> 16; + x ^= x >> 8; + x ^= x >> 4; + return BIT(0x6996, x & 0xf); #else - __asm__( "movl %1, %%eax\n" - "mov %%ax, %%cx\n" - "shrl $0x10, %%eax\n" - "xor %%ax, %%cx\n" - "xor %%ch, %%cl\n" - "setpo %%al\n" - "movzx %%al, %0\n": "=r"(x) : "r"(x): "eax","ecx"); - return x; + __asm__( "movl %1, %%eax\n" + "mov %%ax, %%cx\n" + "shrl $0x10, %%eax\n" + "xor %%ax, %%cx\n" + "xor %%ch, %%cl\n" + "setpo %%al\n" + "movzx %%al, %0\n": "=r"(x) : "r"(x): "eax","ecx"); + return x; #endif } static inline int filter(uint32_t const x) { - uint32_t f; + uint32_t f; - f = 0xf22c0 >> (x & 0xf) & 16; - f |= 0x6c9c0 >> (x >> 4 & 0xf) & 8; - f |= 0x3c8b0 >> (x >> 8 & 0xf) & 4; - f |= 0x1e458 >> (x >> 12 & 0xf) & 2; - f |= 0x0d938 >> (x >> 16 & 0xf) & 1; - return BIT(0xEC57E80A, f); + f = 0xf22c0 >> (x & 0xf) & 16; + f |= 0x6c9c0 >> (x >> 4 & 0xf) & 8; + f |= 0x3c8b0 >> (x >> 8 & 0xf) & 4; + f |= 0x1e458 >> (x >> 12 & 0xf) & 2; + f |= 0x0d938 >> (x >> 16 & 0xf) & 1; + return BIT(0xEC57E80A, f); } #ifdef __cplusplus } diff --git a/tools/mfkey/crypto1.c b/tools/mfkey/crypto1.c index 14e2cc829..e8384c16a 100755 --- a/tools/mfkey/crypto1.c +++ b/tools/mfkey/crypto1.c @@ -22,115 +22,115 @@ struct Crypto1State * crypto1_create(uint64_t key) { - struct Crypto1State *s = malloc(sizeof(*s)); - if ( !s ) return NULL; + struct Crypto1State *s = malloc(sizeof(*s)); + if ( !s ) return NULL; - s->odd = s->even = 0; + s->odd = s->even = 0; - int i; - //for(i = 47;s && i > 0; i -= 2) { - for(i = 47; i > 0; i -= 2) { - s->odd = s->odd << 1 | BIT(key, (i - 1) ^ 7); - s->even = s->even << 1 | BIT(key, i ^ 7); - } - return s; + int i; + //for(i = 47;s && i > 0; i -= 2) { + for(i = 47; i > 0; i -= 2) { + s->odd = s->odd << 1 | BIT(key, (i - 1) ^ 7); + s->even = s->even << 1 | BIT(key, i ^ 7); + } + return s; } void crypto1_destroy(struct Crypto1State *state) { - free(state); + free(state); } void crypto1_get_lfsr(struct Crypto1State *state, uint64_t *lfsr) { - int i; - for(*lfsr = 0, i = 23; i >= 0; --i) { - *lfsr = *lfsr << 1 | BIT(state->odd, i ^ 3); - *lfsr = *lfsr << 1 | BIT(state->even, i ^ 3); - } + int i; + for(*lfsr = 0, i = 23; i >= 0; --i) { + *lfsr = *lfsr << 1 | BIT(state->odd, i ^ 3); + *lfsr = *lfsr << 1 | BIT(state->even, i ^ 3); + } } uint8_t crypto1_bit(struct Crypto1State *s, uint8_t in, int is_encrypted) { - uint32_t feedin; - uint32_t tmp; - uint8_t ret = filter(s->odd); + uint32_t feedin; + uint32_t tmp; + uint8_t ret = filter(s->odd); - feedin = ret & !!is_encrypted; - feedin ^= !!in; - feedin ^= LF_POLY_ODD & s->odd; - feedin ^= LF_POLY_EVEN & s->even; - s->even = s->even << 1 | parity(feedin); + feedin = ret & !!is_encrypted; + feedin ^= !!in; + feedin ^= LF_POLY_ODD & s->odd; + feedin ^= LF_POLY_EVEN & s->even; + s->even = s->even << 1 | parity(feedin); - tmp = s->odd; - s->odd = s->even; - s->even = tmp; + tmp = s->odd; + s->odd = s->even; + s->even = tmp; - return ret; + return ret; } uint8_t crypto1_byte(struct Crypto1State *s, uint8_t in, int is_encrypted) { - /* - uint8_t i, ret = 0; + /* + uint8_t i, ret = 0; - for (i = 0; i < 8; ++i) - ret |= crypto1_bit(s, BIT(in, i), is_encrypted) << i; - */ + for (i = 0; i < 8; ++i) + ret |= crypto1_bit(s, BIT(in, i), is_encrypted) << i; + */ // unfold loop 20161012 - uint8_t ret = 0; - ret |= crypto1_bit(s, BIT(in, 0), is_encrypted) << 0; - ret |= crypto1_bit(s, BIT(in, 1), is_encrypted) << 1; - ret |= crypto1_bit(s, BIT(in, 2), is_encrypted) << 2; - ret |= crypto1_bit(s, BIT(in, 3), is_encrypted) << 3; - ret |= crypto1_bit(s, BIT(in, 4), is_encrypted) << 4; - ret |= crypto1_bit(s, BIT(in, 5), is_encrypted) << 5; - ret |= crypto1_bit(s, BIT(in, 6), is_encrypted) << 6; - ret |= crypto1_bit(s, BIT(in, 7), is_encrypted) << 7; - return ret; + uint8_t ret = 0; + ret |= crypto1_bit(s, BIT(in, 0), is_encrypted) << 0; + ret |= crypto1_bit(s, BIT(in, 1), is_encrypted) << 1; + ret |= crypto1_bit(s, BIT(in, 2), is_encrypted) << 2; + ret |= crypto1_bit(s, BIT(in, 3), is_encrypted) << 3; + ret |= crypto1_bit(s, BIT(in, 4), is_encrypted) << 4; + ret |= crypto1_bit(s, BIT(in, 5), is_encrypted) << 5; + ret |= crypto1_bit(s, BIT(in, 6), is_encrypted) << 6; + ret |= crypto1_bit(s, BIT(in, 7), is_encrypted) << 7; + return ret; } uint32_t crypto1_word(struct Crypto1State *s, uint32_t in, int is_encrypted) { - /* - uint32_t i, ret = 0; + /* + uint32_t i, ret = 0; - for (i = 0; i < 32; ++i) - ret |= crypto1_bit(s, BEBIT(in, i), is_encrypted) << (i ^ 24); + for (i = 0; i < 32; ++i) + ret |= crypto1_bit(s, BEBIT(in, i), is_encrypted) << (i ^ 24); */ //unfold loop 2016012 - uint32_t ret = 0; - ret |= crypto1_bit(s, BEBIT(in, 0), is_encrypted) << (0 ^ 24); - ret |= crypto1_bit(s, BEBIT(in, 1), is_encrypted) << (1 ^ 24); - ret |= crypto1_bit(s, BEBIT(in, 2), is_encrypted) << (2 ^ 24); - ret |= crypto1_bit(s, BEBIT(in, 3), is_encrypted) << (3 ^ 24); - ret |= crypto1_bit(s, BEBIT(in, 4), is_encrypted) << (4 ^ 24); - ret |= crypto1_bit(s, BEBIT(in, 5), is_encrypted) << (5 ^ 24); - ret |= crypto1_bit(s, BEBIT(in, 6), is_encrypted) << (6 ^ 24); - ret |= crypto1_bit(s, BEBIT(in, 7), is_encrypted) << (7 ^ 24); + uint32_t ret = 0; + ret |= crypto1_bit(s, BEBIT(in, 0), is_encrypted) << (0 ^ 24); + ret |= crypto1_bit(s, BEBIT(in, 1), is_encrypted) << (1 ^ 24); + ret |= crypto1_bit(s, BEBIT(in, 2), is_encrypted) << (2 ^ 24); + ret |= crypto1_bit(s, BEBIT(in, 3), is_encrypted) << (3 ^ 24); + ret |= crypto1_bit(s, BEBIT(in, 4), is_encrypted) << (4 ^ 24); + ret |= crypto1_bit(s, BEBIT(in, 5), is_encrypted) << (5 ^ 24); + ret |= crypto1_bit(s, BEBIT(in, 6), is_encrypted) << (6 ^ 24); + ret |= crypto1_bit(s, BEBIT(in, 7), is_encrypted) << (7 ^ 24); - ret |= crypto1_bit(s, BEBIT(in, 8), is_encrypted) << (8 ^ 24); - ret |= crypto1_bit(s, BEBIT(in, 9), is_encrypted) << (9 ^ 24); - ret |= crypto1_bit(s, BEBIT(in, 10), is_encrypted) << (10 ^ 24); - ret |= crypto1_bit(s, BEBIT(in, 11), is_encrypted) << (11 ^ 24); - ret |= crypto1_bit(s, BEBIT(in, 12), is_encrypted) << (12 ^ 24); - ret |= crypto1_bit(s, BEBIT(in, 13), is_encrypted) << (13 ^ 24); - ret |= crypto1_bit(s, BEBIT(in, 14), is_encrypted) << (14 ^ 24); - ret |= crypto1_bit(s, BEBIT(in, 15), is_encrypted) << (15 ^ 24); + ret |= crypto1_bit(s, BEBIT(in, 8), is_encrypted) << (8 ^ 24); + ret |= crypto1_bit(s, BEBIT(in, 9), is_encrypted) << (9 ^ 24); + ret |= crypto1_bit(s, BEBIT(in, 10), is_encrypted) << (10 ^ 24); + ret |= crypto1_bit(s, BEBIT(in, 11), is_encrypted) << (11 ^ 24); + ret |= crypto1_bit(s, BEBIT(in, 12), is_encrypted) << (12 ^ 24); + ret |= crypto1_bit(s, BEBIT(in, 13), is_encrypted) << (13 ^ 24); + ret |= crypto1_bit(s, BEBIT(in, 14), is_encrypted) << (14 ^ 24); + ret |= crypto1_bit(s, BEBIT(in, 15), is_encrypted) << (15 ^ 24); - ret |= crypto1_bit(s, BEBIT(in, 16), is_encrypted) << (16 ^ 24); - ret |= crypto1_bit(s, BEBIT(in, 17), is_encrypted) << (17 ^ 24); - ret |= crypto1_bit(s, BEBIT(in, 18), is_encrypted) << (18 ^ 24); - ret |= crypto1_bit(s, BEBIT(in, 19), is_encrypted) << (19 ^ 24); - ret |= crypto1_bit(s, BEBIT(in, 20), is_encrypted) << (20 ^ 24); - ret |= crypto1_bit(s, BEBIT(in, 21), is_encrypted) << (21 ^ 24); - ret |= crypto1_bit(s, BEBIT(in, 22), is_encrypted) << (22 ^ 24); - ret |= crypto1_bit(s, BEBIT(in, 23), is_encrypted) << (23 ^ 24); + ret |= crypto1_bit(s, BEBIT(in, 16), is_encrypted) << (16 ^ 24); + ret |= crypto1_bit(s, BEBIT(in, 17), is_encrypted) << (17 ^ 24); + ret |= crypto1_bit(s, BEBIT(in, 18), is_encrypted) << (18 ^ 24); + ret |= crypto1_bit(s, BEBIT(in, 19), is_encrypted) << (19 ^ 24); + ret |= crypto1_bit(s, BEBIT(in, 20), is_encrypted) << (20 ^ 24); + ret |= crypto1_bit(s, BEBIT(in, 21), is_encrypted) << (21 ^ 24); + ret |= crypto1_bit(s, BEBIT(in, 22), is_encrypted) << (22 ^ 24); + ret |= crypto1_bit(s, BEBIT(in, 23), is_encrypted) << (23 ^ 24); - ret |= crypto1_bit(s, BEBIT(in, 24), is_encrypted) << (24 ^ 24); - ret |= crypto1_bit(s, BEBIT(in, 25), is_encrypted) << (25 ^ 24); - ret |= crypto1_bit(s, BEBIT(in, 26), is_encrypted) << (26 ^ 24); - ret |= crypto1_bit(s, BEBIT(in, 27), is_encrypted) << (27 ^ 24); - ret |= crypto1_bit(s, BEBIT(in, 28), is_encrypted) << (28 ^ 24); - ret |= crypto1_bit(s, BEBIT(in, 29), is_encrypted) << (29 ^ 24); - ret |= crypto1_bit(s, BEBIT(in, 30), is_encrypted) << (30 ^ 24); - ret |= crypto1_bit(s, BEBIT(in, 31), is_encrypted) << (31 ^ 24); - return ret; + ret |= crypto1_bit(s, BEBIT(in, 24), is_encrypted) << (24 ^ 24); + ret |= crypto1_bit(s, BEBIT(in, 25), is_encrypted) << (25 ^ 24); + ret |= crypto1_bit(s, BEBIT(in, 26), is_encrypted) << (26 ^ 24); + ret |= crypto1_bit(s, BEBIT(in, 27), is_encrypted) << (27 ^ 24); + ret |= crypto1_bit(s, BEBIT(in, 28), is_encrypted) << (28 ^ 24); + ret |= crypto1_bit(s, BEBIT(in, 29), is_encrypted) << (29 ^ 24); + ret |= crypto1_bit(s, BEBIT(in, 30), is_encrypted) << (30 ^ 24); + ret |= crypto1_bit(s, BEBIT(in, 31), is_encrypted) << (31 ^ 24); + return ret; } /* prng_successor @@ -138,9 +138,9 @@ uint32_t crypto1_word(struct Crypto1State *s, uint32_t in, int is_encrypted) */ uint32_t prng_successor(uint32_t x, uint32_t n) { - SWAPENDIAN(x); - while(n--) - x = x >> 1 | (x >> 16 ^ x >> 18 ^ x >> 19 ^ x >> 21) << 31; + SWAPENDIAN(x); + while(n--) + x = x >> 1 | (x >> 16 ^ x >> 18 ^ x >> 19 ^ x >> 21) << 31; - return SWAPENDIAN(x); + return SWAPENDIAN(x); } diff --git a/tools/mfkey/mfkey32.c b/tools/mfkey/mfkey32.c index 2761a063b..df4dc65cd 100755 --- a/tools/mfkey/mfkey32.c +++ b/tools/mfkey/mfkey32.c @@ -5,63 +5,63 @@ #include int main (int argc, char *argv[]) { - struct Crypto1State *s,*t; - uint64_t key; // recovered key - uint32_t uid; // serial number - uint32_t nt; // tag challenge - uint32_t nr0_enc; // first encrypted reader challenge - uint32_t ar0_enc; // first encrypted reader response - uint32_t nr1_enc; // second encrypted reader challenge - uint32_t ar1_enc; // second encrypted reader response - uint32_t ks2; // keystream used to encrypt reader response + struct Crypto1State *s,*t; + uint64_t key; // recovered key + uint32_t uid; // serial number + uint32_t nt; // tag challenge + uint32_t nr0_enc; // first encrypted reader challenge + uint32_t ar0_enc; // first encrypted reader response + uint32_t nr1_enc; // second encrypted reader challenge + uint32_t ar1_enc; // second encrypted reader response + uint32_t ks2; // keystream used to encrypt reader response - printf("MIFARE Classic key recovery - based 32 bits of keystream\n"); - printf("Recover key from two 32-bit reader authentication answers only!\n\n"); + printf("MIFARE Classic key recovery - based 32 bits of keystream\n"); + printf("Recover key from two 32-bit reader authentication answers only!\n\n"); - if (argc < 7) { - printf(" syntax: %s \n\n",argv[0]); - return 1; - } + if (argc < 7) { + printf(" syntax: %s \n\n",argv[0]); + return 1; + } - sscanf(argv[1],"%x",&uid); - sscanf(argv[2],"%x",&nt); - sscanf(argv[3],"%x",&nr0_enc); - sscanf(argv[4],"%x",&ar0_enc); - sscanf(argv[5],"%x",&nr1_enc); - sscanf(argv[6],"%x",&ar1_enc); + sscanf(argv[1],"%x",&uid); + sscanf(argv[2],"%x",&nt); + sscanf(argv[3],"%x",&nr0_enc); + sscanf(argv[4],"%x",&ar0_enc); + sscanf(argv[5],"%x",&nr1_enc); + sscanf(argv[6],"%x",&ar1_enc); - printf("Recovering key for:\n"); - printf(" uid: %08x\n",uid); - printf(" nt: %08x\n",nt); - printf(" {nr_0}: %08x\n",nr0_enc); - printf(" {ar_0}: %08x\n",ar0_enc); - printf(" {nr_1}: %08x\n",nr1_enc); - printf(" {ar_1}: %08x\n",ar1_enc); + printf("Recovering key for:\n"); + printf(" uid: %08x\n",uid); + printf(" nt: %08x\n",nt); + printf(" {nr_0}: %08x\n",nr0_enc); + printf(" {ar_0}: %08x\n",ar0_enc); + printf(" {nr_1}: %08x\n",nr1_enc); + printf(" {ar_1}: %08x\n",ar1_enc); - // Generate lfsr succesors of the tag challenge - printf("\nLFSR succesors of the tag challenge:\n"); - uint32_t p64 = prng_successor(nt, 64); - printf(" nt': %08x\n", p64); - printf(" nt'': %08x\n", prng_successor(p64, 32)); + // Generate lfsr succesors of the tag challenge + printf("\nLFSR succesors of the tag challenge:\n"); + uint32_t p64 = prng_successor(nt, 64); + printf(" nt': %08x\n", p64); + printf(" nt'': %08x\n", prng_successor(p64, 32)); - // Extract the keystream from the messages - printf("\nKeystream used to generate {ar} and {at}:\n"); - ks2 = ar0_enc ^ p64; - printf(" ks2: %08x\n", ks2); + // Extract the keystream from the messages + printf("\nKeystream used to generate {ar} and {at}:\n"); + ks2 = ar0_enc ^ p64; + printf(" ks2: %08x\n", ks2); - s = lfsr_recovery32(ar0_enc ^ p64, 0); + s = lfsr_recovery32(ar0_enc ^ p64, 0); - for(t = s; t->odd | t->even; ++t) { - lfsr_rollback_word(t, 0, 0); - lfsr_rollback_word(t, nr0_enc, 1); - lfsr_rollback_word(t, uid ^ nt, 0); - crypto1_get_lfsr(t, &key); - crypto1_word(t, uid ^ nt, 0); - crypto1_word(t, nr1_enc, 1); - if (ar1_enc == (crypto1_word(t, 0, 0) ^ p64)) { - printf("\nFound Key: [%012" PRIx64 "]\n\n",key); - break;} - } - free(s); - return 0; + for(t = s; t->odd | t->even; ++t) { + lfsr_rollback_word(t, 0, 0); + lfsr_rollback_word(t, nr0_enc, 1); + lfsr_rollback_word(t, uid ^ nt, 0); + crypto1_get_lfsr(t, &key); + crypto1_word(t, uid ^ nt, 0); + crypto1_word(t, nr1_enc, 1); + if (ar1_enc == (crypto1_word(t, 0, 0) ^ p64)) { + printf("\nFound Key: [%012" PRIx64 "]\n\n",key); + break;} + } + free(s); + return 0; } diff --git a/tools/mfkey/mfkey32v2.c b/tools/mfkey/mfkey32v2.c index 03189aa73..d799dc8e6 100644 --- a/tools/mfkey/mfkey32v2.c +++ b/tools/mfkey/mfkey32v2.c @@ -5,70 +5,70 @@ #include int main (int argc, char *argv[]) { - struct Crypto1State *s,*t; - uint64_t key; // recovered key - uint32_t uid; // serial number - uint32_t nt0; // tag challenge first - uint32_t nt1; // tag challenge second - uint32_t nr0_enc; // first encrypted reader challenge - uint32_t ar0_enc; // first encrypted reader response - uint32_t nr1_enc; // second encrypted reader challenge - uint32_t ar1_enc; // second encrypted reader response - uint32_t ks2; // keystream used to encrypt reader response + struct Crypto1State *s,*t; + uint64_t key; // recovered key + uint32_t uid; // serial number + uint32_t nt0; // tag challenge first + uint32_t nt1; // tag challenge second + uint32_t nr0_enc; // first encrypted reader challenge + uint32_t ar0_enc; // first encrypted reader response + uint32_t nr1_enc; // second encrypted reader challenge + uint32_t ar1_enc; // second encrypted reader response + uint32_t ks2; // keystream used to encrypt reader response - printf("MIFARE Classic key recovery - based 32 bits of keystream VERSION2\n"); - printf("Recover key from two 32-bit reader authentication answers only\n"); - printf("This version implements Moebius two different nonce solution (like the supercard)\n\n"); + printf("MIFARE Classic key recovery - based 32 bits of keystream VERSION2\n"); + printf("Recover key from two 32-bit reader authentication answers only\n"); + printf("This version implements Moebius two different nonce solution (like the supercard)\n\n"); - if (argc < 8) { - printf("syntax: %s \n\n", argv[0]); - return 1; - } + if (argc < 8) { + printf("syntax: %s \n\n", argv[0]); + return 1; + } - sscanf(argv[1],"%x",&uid); - sscanf(argv[2],"%x",&nt0); - sscanf(argv[3],"%x",&nr0_enc); - sscanf(argv[4],"%x",&ar0_enc); - sscanf(argv[5],"%x",&nt1); - sscanf(argv[6],"%x",&nr1_enc); - sscanf(argv[7],"%x",&ar1_enc); + sscanf(argv[1],"%x",&uid); + sscanf(argv[2],"%x",&nt0); + sscanf(argv[3],"%x",&nr0_enc); + sscanf(argv[4],"%x",&ar0_enc); + sscanf(argv[5],"%x",&nt1); + sscanf(argv[6],"%x",&nr1_enc); + sscanf(argv[7],"%x",&ar1_enc); - printf("Recovering key for:\n"); - printf(" uid: %08x\n",uid); - printf(" nt_0: %08x\n",nt0); - printf(" {nr_0}: %08x\n",nr0_enc); - printf(" {ar_0}: %08x\n",ar0_enc); - printf(" nt_1: %08x\n",nt1); - printf(" {nr_1}: %08x\n",nr1_enc); - printf(" {ar_1}: %08x\n",ar1_enc); + printf("Recovering key for:\n"); + printf(" uid: %08x\n",uid); + printf(" nt_0: %08x\n",nt0); + printf(" {nr_0}: %08x\n",nr0_enc); + printf(" {ar_0}: %08x\n",ar0_enc); + printf(" nt_1: %08x\n",nt1); + printf(" {nr_1}: %08x\n",nr1_enc); + printf(" {ar_1}: %08x\n",ar1_enc); - // Generate lfsr succesors of the tag challenge - printf("\nLFSR succesors of the tag challenge:\n"); - uint32_t p64 = prng_successor(nt0, 64); - uint32_t p64b = prng_successor(nt1, 64); + // Generate lfsr succesors of the tag challenge + printf("\nLFSR succesors of the tag challenge:\n"); + uint32_t p64 = prng_successor(nt0, 64); + uint32_t p64b = prng_successor(nt1, 64); - printf(" nt': %08x\n", p64); - printf(" nt'': %08x\n", prng_successor(p64, 32)); + printf(" nt': %08x\n", p64); + printf(" nt'': %08x\n", prng_successor(p64, 32)); - // Extract the keystream from the messages - printf("\nKeystream used to generate {ar} and {at}:\n"); - ks2 = ar0_enc ^ p64; - printf(" ks2: %08x\n",ks2); + // Extract the keystream from the messages + printf("\nKeystream used to generate {ar} and {at}:\n"); + ks2 = ar0_enc ^ p64; + printf(" ks2: %08x\n",ks2); - s = lfsr_recovery32(ar0_enc ^ p64, 0); + s = lfsr_recovery32(ar0_enc ^ p64, 0); - for(t = s; t->odd | t->even; ++t) { - lfsr_rollback_word(t, 0, 0); - lfsr_rollback_word(t, nr0_enc, 1); - lfsr_rollback_word(t, uid ^ nt0, 0); - crypto1_get_lfsr(t, &key); + for(t = s; t->odd | t->even; ++t) { + lfsr_rollback_word(t, 0, 0); + lfsr_rollback_word(t, nr0_enc, 1); + lfsr_rollback_word(t, uid ^ nt0, 0); + crypto1_get_lfsr(t, &key); - crypto1_word(t, uid ^ nt1, 0); - crypto1_word(t, nr1_enc, 1); - if (ar1_enc == (crypto1_word(t, 0, 0) ^ p64b)) { - printf("\nFound Key: [%012" PRIx64 "]\n\n",key); - break;} - } - free(s); - return 0; + crypto1_word(t, uid ^ nt1, 0); + crypto1_word(t, nr1_enc, 1); + if (ar1_enc == (crypto1_word(t, 0, 0) ^ p64b)) { + printf("\nFound Key: [%012" PRIx64 "]\n\n",key); + break;} + } + free(s); + return 0; } diff --git a/tools/mfkey/mfkey64.c b/tools/mfkey/mfkey64.c index a05cd223e..f7cf790eb 100755 --- a/tools/mfkey/mfkey64.c +++ b/tools/mfkey/mfkey64.c @@ -6,94 +6,94 @@ #include "crapto1.h" int main (int argc, char *argv[]) { - struct Crypto1State *revstate; - uint64_t key; // recovered key - uint32_t uid; // serial number - uint32_t nt; // tag challenge - uint32_t nr_enc; // encrypted reader challenge - uint32_t ar_enc; // encrypted reader response - uint32_t at_enc; // encrypted tag response - uint32_t ks2; // keystream used to encrypt reader response - uint32_t ks3; // keystream used to encrypt tag response + struct Crypto1State *revstate; + uint64_t key; // recovered key + uint32_t uid; // serial number + uint32_t nt; // tag challenge + uint32_t nr_enc; // encrypted reader challenge + uint32_t ar_enc; // encrypted reader response + uint32_t at_enc; // encrypted tag response + uint32_t ks2; // keystream used to encrypt reader response + uint32_t ks3; // keystream used to encrypt tag response - printf("MIFARE Classic key recovery - based 64 bits of keystream\n"); - printf("Recover key from only one complete authentication!\n\n"); + printf("MIFARE Classic key recovery - based 64 bits of keystream\n"); + printf("Recover key from only one complete authentication!\n\n"); - if (argc < 6) { - printf(" syntax: %s <{nr}> <{ar}> <{at}> [enc...]\n\n", argv[0]); - return 1; - } + if (argc < 6) { + printf(" syntax: %s <{nr}> <{ar}> <{at}> [enc...]\n\n", argv[0]); + return 1; + } - int encc = argc - 6; - int enclen[encc]; - uint8_t enc[encc][120]; + int encc = argc - 6; + int enclen[encc]; + uint8_t enc[encc][120]; - sscanf(argv[1],"%x",&uid); - sscanf(argv[2],"%x",&nt); - sscanf(argv[3],"%x",&nr_enc); - sscanf(argv[4],"%x",&ar_enc); - sscanf(argv[5],"%x",&at_enc); - for (int i = 0; i < encc; i++) { - enclen[i] = strlen(argv[i + 6]) / 2; - for (int i2 = 0; i2 < enclen[i]; i2++) { - sscanf(argv[i+6] + i2*2, "%2x", (unsigned int *)&enc[i][i2]); - } - } + sscanf(argv[1],"%x",&uid); + sscanf(argv[2],"%x",&nt); + sscanf(argv[3],"%x",&nr_enc); + sscanf(argv[4],"%x",&ar_enc); + sscanf(argv[5],"%x",&at_enc); + for (int i = 0; i < encc; i++) { + enclen[i] = strlen(argv[i + 6]) / 2; + for (int i2 = 0; i2 < enclen[i]; i2++) { + sscanf(argv[i+6] + i2*2, "%2x", (unsigned int *)&enc[i][i2]); + } + } - printf("Recovering key for:\n"); + printf("Recovering key for:\n"); - printf(" uid: %08x\n",uid); - printf(" nt: %08x\n",nt); - printf(" {nr}: %08x\n",nr_enc); - printf(" {ar}: %08x\n",ar_enc); - printf(" {at}: %08x\n",at_enc); + printf(" uid: %08x\n",uid); + printf(" nt: %08x\n",nt); + printf(" {nr}: %08x\n",nr_enc); + printf(" {ar}: %08x\n",ar_enc); + printf(" {at}: %08x\n",at_enc); - for (int i = 0; i < encc; i++) { - printf("{enc%d}: ", i); - for (int i2 = 0; i2 < enclen[i]; i2++) { - printf("%02x", enc[i][i2]); - } - printf("\n"); - } + for (int i = 0; i < encc; i++) { + printf("{enc%d}: ", i); + for (int i2 = 0; i2 < enclen[i]; i2++) { + printf("%02x", enc[i][i2]); + } + printf("\n"); + } - // Generate lfsr succesors of the tag challenge - printf("\nLFSR succesors of the tag challenge:\n"); - printf(" nt': %08x\n",prng_successor(nt, 64)); - printf(" nt'': %08x\n",prng_successor(nt, 96)); + // Generate lfsr succesors of the tag challenge + printf("\nLFSR succesors of the tag challenge:\n"); + printf(" nt': %08x\n",prng_successor(nt, 64)); + printf(" nt'': %08x\n",prng_successor(nt, 96)); - // Extract the keystream from the messages - printf("\nKeystream used to generate {ar} and {at}:\n"); - ks2 = ar_enc ^ prng_successor(nt, 64); - ks3 = at_enc ^ prng_successor(nt, 96); - printf(" ks2: %08x\n",ks2); - printf(" ks3: %08x\n",ks3); + // Extract the keystream from the messages + printf("\nKeystream used to generate {ar} and {at}:\n"); + ks2 = ar_enc ^ prng_successor(nt, 64); + ks3 = at_enc ^ prng_successor(nt, 96); + printf(" ks2: %08x\n",ks2); + printf(" ks3: %08x\n",ks3); - revstate = lfsr_recovery64(ks2, ks3); + revstate = lfsr_recovery64(ks2, ks3); - // Decrypting communication using keystream if presented - if (argc > 6 ) { - printf("\nDecrypted communication:\n"); - uint8_t ks4; - int rollb = 0; - for (int i = 0; i < encc; i++) { - printf("{dec%d}: ", i); - for (int i2 = 0; i2 < enclen[i]; i2++) { - ks4 = crypto1_byte(revstate, 0, 0); - printf("%02x", ks4 ^ enc[i][i2]); - rollb += 1; - } - printf("\n"); - } - for (int i = 0; i < rollb; i++) - lfsr_rollback_byte(revstate, 0, 0); - } + // Decrypting communication using keystream if presented + if (argc > 6 ) { + printf("\nDecrypted communication:\n"); + uint8_t ks4; + int rollb = 0; + for (int i = 0; i < encc; i++) { + printf("{dec%d}: ", i); + for (int i2 = 0; i2 < enclen[i]; i2++) { + ks4 = crypto1_byte(revstate, 0, 0); + printf("%02x", ks4 ^ enc[i][i2]); + rollb += 1; + } + printf("\n"); + } + for (int i = 0; i < rollb; i++) + lfsr_rollback_byte(revstate, 0, 0); + } - lfsr_rollback_word(revstate, 0, 0); - lfsr_rollback_word(revstate, 0, 0); - lfsr_rollback_word(revstate, nr_enc, 1); - lfsr_rollback_word(revstate, uid ^ nt, 0); - crypto1_get_lfsr(revstate, &key); - printf("\nFound Key: [%012" PRIx64 "]\n\n", key); - crypto1_destroy(revstate); - return 0; + lfsr_rollback_word(revstate, 0, 0); + lfsr_rollback_word(revstate, 0, 0); + lfsr_rollback_word(revstate, nr_enc, 1); + lfsr_rollback_word(revstate, uid ^ nt, 0); + crypto1_get_lfsr(revstate, &key); + printf("\nFound Key: [%012" PRIx64 "]\n\n", key); + crypto1_destroy(revstate); + return 0; } diff --git a/tools/nonce2key/crapto1.c b/tools/nonce2key/crapto1.c index 5412ca8f6..c4701b7e9 100644 --- a/tools/nonce2key/crapto1.c +++ b/tools/nonce2key/crapto1.c @@ -34,65 +34,65 @@ static void __attribute__((constructor)) fill_lut() typedef struct bucket { - uint32_t *head; - uint32_t *bp; + uint32_t *head; + uint32_t *bp; } bucket_t; typedef bucket_t bucket_array_t[2][0x100]; typedef struct bucket_info { - struct { - uint32_t *head, *tail; - } bucket_info[2][0x100]; - uint32_t numbuckets; - } bucket_info_t; + struct { + uint32_t *head, *tail; + } bucket_info[2][0x100]; + uint32_t numbuckets; + } bucket_info_t; static void bucket_sort_intersect(uint32_t* const estart, uint32_t* const estop, - uint32_t* const ostart, uint32_t* const ostop, - bucket_info_t *bucket_info, bucket_array_t bucket) + uint32_t* const ostart, uint32_t* const ostop, + bucket_info_t *bucket_info, bucket_array_t bucket) { - uint32_t *p1, *p2; - uint32_t *start[2]; - uint32_t *stop[2]; + uint32_t *p1, *p2; + uint32_t *start[2]; + uint32_t *stop[2]; - start[0] = estart; - stop[0] = estop; - start[1] = ostart; - stop[1] = ostop; + start[0] = estart; + stop[0] = estop; + start[1] = ostart; + stop[1] = ostop; - // init buckets to be empty - for (uint32_t i = 0; i < 2; i++) { - for (uint32_t j = 0x00; j <= 0xff; j++) { - bucket[i][j].bp = bucket[i][j].head; - } - } + // init buckets to be empty + for (uint32_t i = 0; i < 2; i++) { + for (uint32_t j = 0x00; j <= 0xff; j++) { + bucket[i][j].bp = bucket[i][j].head; + } + } - // sort the lists into the buckets based on the MSB (contribution bits) - for (uint32_t i = 0; i < 2; i++) { - for (p1 = start[i]; p1 <= stop[i]; p1++) { - uint32_t bucket_index = (*p1 & 0xff000000) >> 24; - *(bucket[i][bucket_index].bp++) = *p1; - } - } + // sort the lists into the buckets based on the MSB (contribution bits) + for (uint32_t i = 0; i < 2; i++) { + for (p1 = start[i]; p1 <= stop[i]; p1++) { + uint32_t bucket_index = (*p1 & 0xff000000) >> 24; + *(bucket[i][bucket_index].bp++) = *p1; + } + } - // write back intersecting buckets as sorted list. - // fill in bucket_info with head and tail of the bucket contents in the list and number of non-empty buckets. - uint32_t nonempty_bucket; - for (uint32_t i = 0; i < 2; i++) { - p1 = start[i]; - nonempty_bucket = 0; - for (uint32_t j = 0x00; j <= 0xff; j++) { - if (bucket[0][j].bp != bucket[0][j].head && bucket[1][j].bp != bucket[1][j].head) { // non-empty intersecting buckets only - bucket_info->bucket_info[i][nonempty_bucket].head = p1; - for (p2 = bucket[i][j].head; p2 < bucket[i][j].bp; *p1++ = *p2++); - bucket_info->bucket_info[i][nonempty_bucket].tail = p1 - 1; - nonempty_bucket++; - } - } - bucket_info->numbuckets = nonempty_bucket; - } + // write back intersecting buckets as sorted list. + // fill in bucket_info with head and tail of the bucket contents in the list and number of non-empty buckets. + uint32_t nonempty_bucket; + for (uint32_t i = 0; i < 2; i++) { + p1 = start[i]; + nonempty_bucket = 0; + for (uint32_t j = 0x00; j <= 0xff; j++) { + if (bucket[0][j].bp != bucket[0][j].head && bucket[1][j].bp != bucket[1][j].head) { // non-empty intersecting buckets only + bucket_info->bucket_info[i][nonempty_bucket].head = p1; + for (p2 = bucket[i][j].head; p2 < bucket[i][j].bp; *p1++ = *p2++); + bucket_info->bucket_info[i][nonempty_bucket].tail = p1 - 1; + nonempty_bucket++; + } + } + bucket_info->numbuckets = nonempty_bucket; + } } /** update_contribution @@ -100,11 +100,11 @@ static void bucket_sort_intersect(uint32_t* const estart, uint32_t* const estop, */ static inline void update_contribution(uint32_t *item, const uint32_t mask1, const uint32_t mask2) { - uint32_t p = *item >> 25; + uint32_t p = *item >> 25; - p = p << 1 | parity(*item & mask1); - p = p << 1 | parity(*item & mask2); - *item = p << 24 | (*item & 0xffffff); + p = p << 1 | parity(*item & mask1); + p = p << 1 | parity(*item & mask2); + *item = p << 24 | (*item & 0xffffff); } /** extend_table @@ -112,83 +112,83 @@ static inline void update_contribution(uint32_t *item, const uint32_t mask1, con */ static inline void extend_table(uint32_t *tbl, uint32_t **end, int bit, int m1, int m2, uint32_t in) { - in <<= 24; - for(*tbl <<= 1; tbl <= *end; *++tbl <<= 1) - if(filter(*tbl) ^ filter(*tbl | 1)) { - *tbl |= filter(*tbl) ^ bit; - update_contribution(tbl, m1, m2); - *tbl ^= in; - } else if(filter(*tbl) == bit) { - *++*end = tbl[1]; - tbl[1] = tbl[0] | 1; - update_contribution(tbl, m1, m2); - *tbl++ ^= in; - update_contribution(tbl, m1, m2); - *tbl ^= in; - } else - *tbl-- = *(*end)--; + in <<= 24; + for(*tbl <<= 1; tbl <= *end; *++tbl <<= 1) + if(filter(*tbl) ^ filter(*tbl | 1)) { + *tbl |= filter(*tbl) ^ bit; + update_contribution(tbl, m1, m2); + *tbl ^= in; + } else if(filter(*tbl) == bit) { + *++*end = tbl[1]; + tbl[1] = tbl[0] | 1; + update_contribution(tbl, m1, m2); + *tbl++ ^= in; + update_contribution(tbl, m1, m2); + *tbl ^= in; + } else + *tbl-- = *(*end)--; } /** extend_table_simple * using a bit of the keystream extend the table of possible lfsr states */ static inline void extend_table_simple(uint32_t *tbl, uint32_t **end, int bit) { - for(*tbl <<= 1; tbl <= *end; *++tbl <<= 1) { - if(filter(*tbl) ^ filter(*tbl | 1)) { // replace - *tbl |= filter(*tbl) ^ bit; - } else if(filter(*tbl) == bit) { // insert - *++*end = *++tbl; - *tbl = tbl[-1] | 1; - } else { // drop - *tbl-- = *(*end)--; - } - } + for(*tbl <<= 1; tbl <= *end; *++tbl <<= 1) { + if(filter(*tbl) ^ filter(*tbl | 1)) { // replace + *tbl |= filter(*tbl) ^ bit; + } else if(filter(*tbl) == bit) { // insert + *++*end = *++tbl; + *tbl = tbl[-1] | 1; + } else { // drop + *tbl-- = *(*end)--; + } + } } /** recover * recursively narrow down the search space, 4 bits of keystream at a time */ static struct Crypto1State* recover(uint32_t *o_head, uint32_t *o_tail, uint32_t oks, - uint32_t *e_head, uint32_t *e_tail, uint32_t eks, int rem, - struct Crypto1State *sl, uint32_t in, bucket_array_t bucket) + uint32_t *e_head, uint32_t *e_tail, uint32_t eks, int rem, + struct Crypto1State *sl, uint32_t in, bucket_array_t bucket) { - uint32_t *o, *e; - bucket_info_t bucket_info; + uint32_t *o, *e; + bucket_info_t bucket_info; - if(rem == -1) { - for(e = e_head; e <= e_tail; ++e) { - *e = *e << 1 ^ parity(*e & LF_POLY_EVEN) ^ !!(in & 4); - for(o = o_head; o <= o_tail; ++o, ++sl) { - sl->even = *o; - sl->odd = *e ^ parity(*o & LF_POLY_ODD); - sl[1].odd = sl[1].even = 0; - } - } - return sl; - } + if(rem == -1) { + for(e = e_head; e <= e_tail; ++e) { + *e = *e << 1 ^ parity(*e & LF_POLY_EVEN) ^ !!(in & 4); + for(o = o_head; o <= o_tail; ++o, ++sl) { + sl->even = *o; + sl->odd = *e ^ parity(*o & LF_POLY_ODD); + sl[1].odd = sl[1].even = 0; + } + } + return sl; + } - for(uint32_t i = 0; i < 4 && rem--; i++) { - oks >>= 1; - eks >>= 1; - in >>= 2; - extend_table(o_head, &o_tail, oks & 1, LF_POLY_EVEN << 1 | 1, LF_POLY_ODD << 1, 0); - if(o_head > o_tail) - return sl; + for(uint32_t i = 0; i < 4 && rem--; i++) { + oks >>= 1; + eks >>= 1; + in >>= 2; + extend_table(o_head, &o_tail, oks & 1, LF_POLY_EVEN << 1 | 1, LF_POLY_ODD << 1, 0); + if(o_head > o_tail) + return sl; - extend_table(e_head, &e_tail, eks & 1, LF_POLY_ODD, LF_POLY_EVEN << 1 | 1, in & 3); - if(e_head > e_tail) - return sl; - } + extend_table(e_head, &e_tail, eks & 1, LF_POLY_ODD, LF_POLY_EVEN << 1 | 1, in & 3); + if(e_head > e_tail) + return sl; + } - bucket_sort_intersect(e_head, e_tail, o_head, o_tail, &bucket_info, bucket); + bucket_sort_intersect(e_head, e_tail, o_head, o_tail, &bucket_info, bucket); - for (int i = bucket_info.numbuckets - 1; i >= 0; i--) { - sl = recover(bucket_info.bucket_info[1][i].head, bucket_info.bucket_info[1][i].tail, oks, - bucket_info.bucket_info[0][i].head, bucket_info.bucket_info[0][i].tail, eks, - rem, sl, in, bucket); - } + for (int i = bucket_info.numbuckets - 1; i >= 0; i--) { + sl = recover(bucket_info.bucket_info[1][i].head, bucket_info.bucket_info[1][i].tail, oks, + bucket_info.bucket_info[0][i].head, bucket_info.bucket_info[0][i].tail, eks, + rem, sl, in, bucket); + } - return sl; + return sl; } /** lfsr_recovery * recover the state of the lfsr given 32 bits of the keystream @@ -197,87 +197,87 @@ recover(uint32_t *o_head, uint32_t *o_tail, uint32_t oks, */ struct Crypto1State* lfsr_recovery32(uint32_t ks2, uint32_t in) { - struct Crypto1State *statelist; - uint32_t *odd_head = 0, *odd_tail = 0, oks = 0; - uint32_t *even_head = 0, *even_tail = 0, eks = 0; - int i; + struct Crypto1State *statelist; + uint32_t *odd_head = 0, *odd_tail = 0, oks = 0; + uint32_t *even_head = 0, *even_tail = 0, eks = 0; + int i; - // split the keystream into an odd and even part - for(i = 31; i >= 0; i -= 2) - oks = oks << 1 | BEBIT(ks2, i); - for(i = 30; i >= 0; i -= 2) - eks = eks << 1 | BEBIT(ks2, i); + // split the keystream into an odd and even part + for(i = 31; i >= 0; i -= 2) + oks = oks << 1 | BEBIT(ks2, i); + for(i = 30; i >= 0; i -= 2) + eks = eks << 1 | BEBIT(ks2, i); - odd_head = odd_tail = malloc(sizeof(uint32_t) << 21); - even_head = even_tail = malloc(sizeof(uint32_t) << 21); - statelist = malloc(sizeof(struct Crypto1State) << 18); - if(!odd_tail-- || !even_tail-- || !statelist) { - free(statelist); - statelist = 0; - goto out; - } + odd_head = odd_tail = malloc(sizeof(uint32_t) << 21); + even_head = even_tail = malloc(sizeof(uint32_t) << 21); + statelist = malloc(sizeof(struct Crypto1State) << 18); + if(!odd_tail-- || !even_tail-- || !statelist) { + free(statelist); + statelist = 0; + goto out; + } - statelist->odd = statelist->even = 0; + statelist->odd = statelist->even = 0; - // allocate memory for out of place bucket_sort - bucket_array_t bucket; + // allocate memory for out of place bucket_sort + bucket_array_t bucket; - for (uint32_t i = 0; i < 2; i++) { - for (uint32_t j = 0; j <= 0xff; j++) { - bucket[i][j].head = malloc(sizeof(uint32_t)<<14); - if (!bucket[i][j].head) { - goto out; - } - } - } + for (uint32_t i = 0; i < 2; i++) { + for (uint32_t j = 0; j <= 0xff; j++) { + bucket[i][j].head = malloc(sizeof(uint32_t)<<14); + if (!bucket[i][j].head) { + goto out; + } + } + } - // initialize statelists: add all possible states which would result into the rightmost 2 bits of the keystream - for(i = 1 << 20; i >= 0; --i) { - if(filter(i) == (oks & 1)) - *++odd_tail = i; - if(filter(i) == (eks & 1)) - *++even_tail = i; - } + // initialize statelists: add all possible states which would result into the rightmost 2 bits of the keystream + for(i = 1 << 20; i >= 0; --i) { + if(filter(i) == (oks & 1)) + *++odd_tail = i; + if(filter(i) == (eks & 1)) + *++even_tail = i; + } - // extend the statelists. Look at the next 8 Bits of the keystream (4 Bit each odd and even): - for(i = 0; i < 4; i++) { - extend_table_simple(odd_head, &odd_tail, (oks >>= 1) & 1); - extend_table_simple(even_head, &even_tail, (eks >>= 1) & 1); - } + // extend the statelists. Look at the next 8 Bits of the keystream (4 Bit each odd and even): + for(i = 0; i < 4; i++) { + extend_table_simple(odd_head, &odd_tail, (oks >>= 1) & 1); + extend_table_simple(even_head, &even_tail, (eks >>= 1) & 1); + } - // the statelists now contain all states which could have generated the last 10 Bits of the keystream. - // 22 bits to go to recover 32 bits in total. From now on, we need to take the "in" - // parameter into account. - in = (in >> 16 & 0xff) | (in << 16) | (in & 0xff00); // Byte swapping - recover(odd_head, odd_tail, oks, even_head, even_tail, eks, 11, statelist, in << 1, bucket); + // the statelists now contain all states which could have generated the last 10 Bits of the keystream. + // 22 bits to go to recover 32 bits in total. From now on, we need to take the "in" + // parameter into account. + in = (in >> 16 & 0xff) | (in << 16) | (in & 0xff00); // Byte swapping + recover(odd_head, odd_tail, oks, even_head, even_tail, eks, 11, statelist, in << 1, bucket); out: - for (uint32_t i = 0; i < 2; i++) - for (uint32_t j = 0; j <= 0xff; j++) - free(bucket[i][j].head); - free(odd_head); - free(even_head); - return statelist; + for (uint32_t i = 0; i < 2; i++) + for (uint32_t j = 0; j <= 0xff; j++) + free(bucket[i][j].head); + free(odd_head); + free(even_head); + return statelist; } static const uint32_t S1[] = { 0x62141, 0x310A0, 0x18850, 0x0C428, 0x06214, - 0x0310A, 0x85E30, 0xC69AD, 0x634D6, 0xB5CDE, 0xDE8DA, 0x6F46D, 0xB3C83, - 0x59E41, 0xA8995, 0xD027F, 0x6813F, 0x3409F, 0x9E6FA}; + 0x0310A, 0x85E30, 0xC69AD, 0x634D6, 0xB5CDE, 0xDE8DA, 0x6F46D, 0xB3C83, + 0x59E41, 0xA8995, 0xD027F, 0x6813F, 0x3409F, 0x9E6FA}; static const uint32_t S2[] = { 0x3A557B00, 0x5D2ABD80, 0x2E955EC0, 0x174AAF60, - 0x0BA557B0, 0x05D2ABD8, 0x0449DE68, 0x048464B0, 0x42423258, 0x278192A8, - 0x156042D0, 0x0AB02168, 0x43F89B30, 0x61FC4D98, 0x765EAD48, 0x7D8FDD20, - 0x7EC7EE90, 0x7F63F748, 0x79117020}; + 0x0BA557B0, 0x05D2ABD8, 0x0449DE68, 0x048464B0, 0x42423258, 0x278192A8, + 0x156042D0, 0x0AB02168, 0x43F89B30, 0x61FC4D98, 0x765EAD48, 0x7D8FDD20, + 0x7EC7EE90, 0x7F63F748, 0x79117020}; static const uint32_t T1[] = { - 0x4F37D, 0x279BE, 0x97A6A, 0x4BD35, 0x25E9A, 0x12F4D, 0x097A6, 0x80D66, - 0xC4006, 0x62003, 0xB56B4, 0x5AB5A, 0xA9318, 0xD0F39, 0x6879C, 0xB057B, - 0x582BD, 0x2C15E, 0x160AF, 0x8F6E2, 0xC3DC4, 0xE5857, 0x72C2B, 0x39615, - 0x98DBF, 0xC806A, 0xE0680, 0x70340, 0x381A0, 0x98665, 0x4C332, 0xA272C}; + 0x4F37D, 0x279BE, 0x97A6A, 0x4BD35, 0x25E9A, 0x12F4D, 0x097A6, 0x80D66, + 0xC4006, 0x62003, 0xB56B4, 0x5AB5A, 0xA9318, 0xD0F39, 0x6879C, 0xB057B, + 0x582BD, 0x2C15E, 0x160AF, 0x8F6E2, 0xC3DC4, 0xE5857, 0x72C2B, 0x39615, + 0x98DBF, 0xC806A, 0xE0680, 0x70340, 0x381A0, 0x98665, 0x4C332, 0xA272C}; static const uint32_t T2[] = { 0x3C88B810, 0x5E445C08, 0x2982A580, 0x14C152C0, - 0x4A60A960, 0x253054B0, 0x52982A58, 0x2FEC9EA8, 0x1156C4D0, 0x08AB6268, - 0x42F53AB0, 0x217A9D58, 0x161DC528, 0x0DAE6910, 0x46D73488, 0x25CB11C0, - 0x52E588E0, 0x6972C470, 0x34B96238, 0x5CFC3A98, 0x28DE96C8, 0x12CFC0E0, - 0x4967E070, 0x64B3F038, 0x74F97398, 0x7CDC3248, 0x38CE92A0, 0x1C674950, - 0x0E33A4A8, 0x01B959D0, 0x40DCACE8, 0x26CEDDF0}; + 0x4A60A960, 0x253054B0, 0x52982A58, 0x2FEC9EA8, 0x1156C4D0, 0x08AB6268, + 0x42F53AB0, 0x217A9D58, 0x161DC528, 0x0DAE6910, 0x46D73488, 0x25CB11C0, + 0x52E588E0, 0x6972C470, 0x34B96238, 0x5CFC3A98, 0x28DE96C8, 0x12CFC0E0, + 0x4967E070, 0x64B3F038, 0x74F97398, 0x7CDC3248, 0x38CE92A0, 0x1C674950, + 0x0E33A4A8, 0x01B959D0, 0x40DCACE8, 0x26CEDDF0}; static const uint32_t C1[] = { 0x846B5, 0x4235A, 0x211AD}; static const uint32_t C2[] = { 0x1A822E0, 0x21A822E0, 0x21A822E0}; /** Reverse 64 bits of keystream into possible cipher states @@ -285,69 +285,69 @@ static const uint32_t C2[] = { 0x1A822E0, 0x21A822E0, 0x21A822E0}; */ struct Crypto1State* lfsr_recovery64(uint32_t ks2, uint32_t ks3) { - struct Crypto1State *statelist, *sl; - uint8_t oks[32], eks[32], hi[32]; - uint32_t low = 0, win = 0; - uint32_t *tail, table[1 << 16]; - int i, j; + struct Crypto1State *statelist, *sl; + uint8_t oks[32], eks[32], hi[32]; + uint32_t low = 0, win = 0; + uint32_t *tail, table[1 << 16]; + int i, j; - sl = statelist = malloc(sizeof(struct Crypto1State) << 4); - if(!sl) - return 0; - sl->odd = sl->even = 0; + sl = statelist = malloc(sizeof(struct Crypto1State) << 4); + if(!sl) + return 0; + sl->odd = sl->even = 0; - for(i = 30; i >= 0; i -= 2) { - oks[i >> 1] = BEBIT(ks2, i); - oks[16 + (i >> 1)] = BEBIT(ks3, i); - } - for(i = 31; i >= 0; i -= 2) { - eks[i >> 1] = BEBIT(ks2, i); - eks[16 + (i >> 1)] = BEBIT(ks3, i); - } + for(i = 30; i >= 0; i -= 2) { + oks[i >> 1] = BEBIT(ks2, i); + oks[16 + (i >> 1)] = BEBIT(ks3, i); + } + for(i = 31; i >= 0; i -= 2) { + eks[i >> 1] = BEBIT(ks2, i); + eks[16 + (i >> 1)] = BEBIT(ks3, i); + } - for(i = 0xfffff; i >= 0; --i) { - if (filter(i) != oks[0]) - continue; + for(i = 0xfffff; i >= 0; --i) { + if (filter(i) != oks[0]) + continue; - *(tail = table) = i; - for(j = 1; tail >= table && j < 29; ++j) - extend_table_simple(table, &tail, oks[j]); + *(tail = table) = i; + for(j = 1; tail >= table && j < 29; ++j) + extend_table_simple(table, &tail, oks[j]); - if(tail < table) - continue; + if(tail < table) + continue; - for(j = 0; j < 19; ++j) - low = low << 1 | parity(i & S1[j]); - for(j = 0; j < 32; ++j) - hi[j] = parity(i & T1[j]); + for(j = 0; j < 19; ++j) + low = low << 1 | parity(i & S1[j]); + for(j = 0; j < 32; ++j) + hi[j] = parity(i & T1[j]); - for(; tail >= table; --tail) { - for(j = 0; j < 3; ++j) { - *tail = *tail << 1; - *tail |= parity((i & C1[j]) ^ (*tail & C2[j])); - if(filter(*tail) != oks[29 + j]) - goto continue2; - } + for(; tail >= table; --tail) { + for(j = 0; j < 3; ++j) { + *tail = *tail << 1; + *tail |= parity((i & C1[j]) ^ (*tail & C2[j])); + if(filter(*tail) != oks[29 + j]) + goto continue2; + } - for(j = 0; j < 19; ++j) - win = win << 1 | parity(*tail & S2[j]); + for(j = 0; j < 19; ++j) + win = win << 1 | parity(*tail & S2[j]); - win ^= low; - for(j = 0; j < 32; ++j) { - win = win << 1 ^ hi[j] ^ parity(*tail & T2[j]); - if(filter(win) != eks[j]) - goto continue2; - } + win ^= low; + for(j = 0; j < 32; ++j) { + win = win << 1 ^ hi[j] ^ parity(*tail & T2[j]); + if(filter(win) != eks[j]) + goto continue2; + } - *tail = *tail << 1 | parity(LF_POLY_EVEN & *tail); - sl->odd = *tail ^ parity(LF_POLY_ODD & win); - sl->even = win; - ++sl; - sl->odd = sl->even = 0; - continue2:; - } - } - return statelist; + *tail = *tail << 1 | parity(LF_POLY_EVEN & *tail); + sl->odd = *tail ^ parity(LF_POLY_ODD & win); + sl->even = win; + ++sl; + sl->odd = sl->even = 0; + continue2:; + } + } + return statelist; } /** lfsr_rollback_bit @@ -355,93 +355,93 @@ struct Crypto1State* lfsr_recovery64(uint32_t ks2, uint32_t ks3) */ uint8_t lfsr_rollback_bit(struct Crypto1State *s, uint32_t in, int fb) { - int out; - uint8_t ret; - uint32_t t; + int out; + uint8_t ret; + uint32_t t; - s->odd &= 0xffffff; - t = s->odd, s->odd = s->even, s->even = t; + s->odd &= 0xffffff; + t = s->odd, s->odd = s->even, s->even = t; - out = s->even & 1; - out ^= LF_POLY_EVEN & (s->even >>= 1); - out ^= LF_POLY_ODD & s->odd; - out ^= !!in; - out ^= (ret = filter(s->odd)) & !!fb; + out = s->even & 1; + out ^= LF_POLY_EVEN & (s->even >>= 1); + out ^= LF_POLY_ODD & s->odd; + out ^= !!in; + out ^= (ret = filter(s->odd)) & !!fb; - s->even |= parity(out) << 23; - return ret; + s->even |= parity(out) << 23; + return ret; } /** lfsr_rollback_byte * Rollback the shift register in order to get previous states */ uint8_t lfsr_rollback_byte(struct Crypto1State *s, uint32_t in, int fb) { - /* - int i, ret = 0; - for (i = 7; i >= 0; --i) - ret |= lfsr_rollback_bit(s, BIT(in, i), fb) << i; + /* + int i, ret = 0; + for (i = 7; i >= 0; --i) + ret |= lfsr_rollback_bit(s, BIT(in, i), fb) << i; */ // unfold loop 20160112 - uint8_t ret = 0; - ret |= lfsr_rollback_bit(s, BIT(in, 7), fb) << 7; - ret |= lfsr_rollback_bit(s, BIT(in, 6), fb) << 6; - ret |= lfsr_rollback_bit(s, BIT(in, 5), fb) << 5; - ret |= lfsr_rollback_bit(s, BIT(in, 4), fb) << 4; - ret |= lfsr_rollback_bit(s, BIT(in, 3), fb) << 3; - ret |= lfsr_rollback_bit(s, BIT(in, 2), fb) << 2; - ret |= lfsr_rollback_bit(s, BIT(in, 1), fb) << 1; - ret |= lfsr_rollback_bit(s, BIT(in, 0), fb) << 0; - return ret; + uint8_t ret = 0; + ret |= lfsr_rollback_bit(s, BIT(in, 7), fb) << 7; + ret |= lfsr_rollback_bit(s, BIT(in, 6), fb) << 6; + ret |= lfsr_rollback_bit(s, BIT(in, 5), fb) << 5; + ret |= lfsr_rollback_bit(s, BIT(in, 4), fb) << 4; + ret |= lfsr_rollback_bit(s, BIT(in, 3), fb) << 3; + ret |= lfsr_rollback_bit(s, BIT(in, 2), fb) << 2; + ret |= lfsr_rollback_bit(s, BIT(in, 1), fb) << 1; + ret |= lfsr_rollback_bit(s, BIT(in, 0), fb) << 0; + return ret; } /** lfsr_rollback_word * Rollback the shift register in order to get previous states */ uint32_t lfsr_rollback_word(struct Crypto1State *s, uint32_t in, int fb) { - /* - int i; - uint32_t ret = 0; - for (i = 31; i >= 0; --i) - ret |= lfsr_rollback_bit(s, BEBIT(in, i), fb) << (i ^ 24); + /* + int i; + uint32_t ret = 0; + for (i = 31; i >= 0; --i) + ret |= lfsr_rollback_bit(s, BEBIT(in, i), fb) << (i ^ 24); */ // unfold loop 20160112 - uint32_t ret = 0; - ret |= lfsr_rollback_bit(s, BEBIT(in, 31), fb) << (31 ^ 24); - ret |= lfsr_rollback_bit(s, BEBIT(in, 30), fb) << (30 ^ 24); - ret |= lfsr_rollback_bit(s, BEBIT(in, 29), fb) << (29 ^ 24); - ret |= lfsr_rollback_bit(s, BEBIT(in, 28), fb) << (28 ^ 24); - ret |= lfsr_rollback_bit(s, BEBIT(in, 27), fb) << (27 ^ 24); - ret |= lfsr_rollback_bit(s, BEBIT(in, 26), fb) << (26 ^ 24); - ret |= lfsr_rollback_bit(s, BEBIT(in, 25), fb) << (25 ^ 24); - ret |= lfsr_rollback_bit(s, BEBIT(in, 24), fb) << (24 ^ 24); + uint32_t ret = 0; + ret |= lfsr_rollback_bit(s, BEBIT(in, 31), fb) << (31 ^ 24); + ret |= lfsr_rollback_bit(s, BEBIT(in, 30), fb) << (30 ^ 24); + ret |= lfsr_rollback_bit(s, BEBIT(in, 29), fb) << (29 ^ 24); + ret |= lfsr_rollback_bit(s, BEBIT(in, 28), fb) << (28 ^ 24); + ret |= lfsr_rollback_bit(s, BEBIT(in, 27), fb) << (27 ^ 24); + ret |= lfsr_rollback_bit(s, BEBIT(in, 26), fb) << (26 ^ 24); + ret |= lfsr_rollback_bit(s, BEBIT(in, 25), fb) << (25 ^ 24); + ret |= lfsr_rollback_bit(s, BEBIT(in, 24), fb) << (24 ^ 24); - ret |= lfsr_rollback_bit(s, BEBIT(in, 23), fb) << (23 ^ 24); - ret |= lfsr_rollback_bit(s, BEBIT(in, 22), fb) << (22 ^ 24); - ret |= lfsr_rollback_bit(s, BEBIT(in, 21), fb) << (21 ^ 24); - ret |= lfsr_rollback_bit(s, BEBIT(in, 20), fb) << (20 ^ 24); - ret |= lfsr_rollback_bit(s, BEBIT(in, 19), fb) << (19 ^ 24); - ret |= lfsr_rollback_bit(s, BEBIT(in, 18), fb) << (18 ^ 24); - ret |= lfsr_rollback_bit(s, BEBIT(in, 17), fb) << (17 ^ 24); - ret |= lfsr_rollback_bit(s, BEBIT(in, 16), fb) << (16 ^ 24); + ret |= lfsr_rollback_bit(s, BEBIT(in, 23), fb) << (23 ^ 24); + ret |= lfsr_rollback_bit(s, BEBIT(in, 22), fb) << (22 ^ 24); + ret |= lfsr_rollback_bit(s, BEBIT(in, 21), fb) << (21 ^ 24); + ret |= lfsr_rollback_bit(s, BEBIT(in, 20), fb) << (20 ^ 24); + ret |= lfsr_rollback_bit(s, BEBIT(in, 19), fb) << (19 ^ 24); + ret |= lfsr_rollback_bit(s, BEBIT(in, 18), fb) << (18 ^ 24); + ret |= lfsr_rollback_bit(s, BEBIT(in, 17), fb) << (17 ^ 24); + ret |= lfsr_rollback_bit(s, BEBIT(in, 16), fb) << (16 ^ 24); - ret |= lfsr_rollback_bit(s, BEBIT(in, 15), fb) << (15 ^ 24); - ret |= lfsr_rollback_bit(s, BEBIT(in, 14), fb) << (14 ^ 24); - ret |= lfsr_rollback_bit(s, BEBIT(in, 13), fb) << (13 ^ 24); - ret |= lfsr_rollback_bit(s, BEBIT(in, 12), fb) << (12 ^ 24); - ret |= lfsr_rollback_bit(s, BEBIT(in, 11), fb) << (11 ^ 24); - ret |= lfsr_rollback_bit(s, BEBIT(in, 10), fb) << (10 ^ 24); - ret |= lfsr_rollback_bit(s, BEBIT(in, 9), fb) << (9 ^ 24); - ret |= lfsr_rollback_bit(s, BEBIT(in, 8), fb) << (8 ^ 24); + ret |= lfsr_rollback_bit(s, BEBIT(in, 15), fb) << (15 ^ 24); + ret |= lfsr_rollback_bit(s, BEBIT(in, 14), fb) << (14 ^ 24); + ret |= lfsr_rollback_bit(s, BEBIT(in, 13), fb) << (13 ^ 24); + ret |= lfsr_rollback_bit(s, BEBIT(in, 12), fb) << (12 ^ 24); + ret |= lfsr_rollback_bit(s, BEBIT(in, 11), fb) << (11 ^ 24); + ret |= lfsr_rollback_bit(s, BEBIT(in, 10), fb) << (10 ^ 24); + ret |= lfsr_rollback_bit(s, BEBIT(in, 9), fb) << (9 ^ 24); + ret |= lfsr_rollback_bit(s, BEBIT(in, 8), fb) << (8 ^ 24); - ret |= lfsr_rollback_bit(s, BEBIT(in, 7), fb) << (7 ^ 24); - ret |= lfsr_rollback_bit(s, BEBIT(in, 6), fb) << (6 ^ 24); - ret |= lfsr_rollback_bit(s, BEBIT(in, 5), fb) << (5 ^ 24); - ret |= lfsr_rollback_bit(s, BEBIT(in, 4), fb) << (4 ^ 24); - ret |= lfsr_rollback_bit(s, BEBIT(in, 3), fb) << (3 ^ 24); - ret |= lfsr_rollback_bit(s, BEBIT(in, 2), fb) << (2 ^ 24); - ret |= lfsr_rollback_bit(s, BEBIT(in, 1), fb) << (1 ^ 24); - ret |= lfsr_rollback_bit(s, BEBIT(in, 0), fb) << (0 ^ 24); - return ret; + ret |= lfsr_rollback_bit(s, BEBIT(in, 7), fb) << (7 ^ 24); + ret |= lfsr_rollback_bit(s, BEBIT(in, 6), fb) << (6 ^ 24); + ret |= lfsr_rollback_bit(s, BEBIT(in, 5), fb) << (5 ^ 24); + ret |= lfsr_rollback_bit(s, BEBIT(in, 4), fb) << (4 ^ 24); + ret |= lfsr_rollback_bit(s, BEBIT(in, 3), fb) << (3 ^ 24); + ret |= lfsr_rollback_bit(s, BEBIT(in, 2), fb) << (2 ^ 24); + ret |= lfsr_rollback_bit(s, BEBIT(in, 1), fb) << (1 ^ 24); + ret |= lfsr_rollback_bit(s, BEBIT(in, 0), fb) << (0 ^ 24); + return ret; } /** nonce_distance @@ -450,23 +450,23 @@ uint32_t lfsr_rollback_word(struct Crypto1State *s, uint32_t in, int fb) static uint16_t *dist = 0; int nonce_distance(uint32_t from, uint32_t to) { - uint16_t x, i; - if(!dist) { - dist = malloc(2 << 16); - if(!dist) - return -1; - for (x = i = 1; i; ++i) { - dist[(x & 0xff) << 8 | x >> 8] = i; - x = x >> 1 | (x ^ x >> 2 ^ x >> 3 ^ x >> 5) << 15; - } - } - return (65535 + dist[to >> 16] - dist[from >> 16]) % 65535; + uint16_t x, i; + if(!dist) { + dist = malloc(2 << 16); + if(!dist) + return -1; + for (x = i = 1; i; ++i) { + dist[(x & 0xff) << 8 | x >> 8] = i; + x = x >> 1 | (x ^ x >> 2 ^ x >> 3 ^ x >> 5) << 15; + } + } + return (65535 + dist[to >> 16] - dist[from >> 16]) % 65535; } static uint32_t fastfwd[2][8] = { - { 0, 0x4BC53, 0xECB1, 0x450E2, 0x25E29, 0x6E27A, 0x2B298, 0x60ECB}, - { 0, 0x1D962, 0x4BC53, 0x56531, 0xECB1, 0x135D3, 0x450E2, 0x58980}}; + { 0, 0x4BC53, 0xECB1, 0x450E2, 0x25E29, 0x6E27A, 0x2B298, 0x60ECB}, + { 0, 0x1D962, 0x4BC53, 0x56531, 0xECB1, 0x135D3, 0x450E2, 0x58980}}; /** lfsr_prefix_ks @@ -480,25 +480,25 @@ static uint32_t fastfwd[2][8] = { */ uint32_t *lfsr_prefix_ks(uint8_t ks[8], int isodd) { - uint32_t *candidates = malloc(4 << 10); - if(!candidates) return 0; + uint32_t *candidates = malloc(4 << 10); + if(!candidates) return 0; - uint32_t c, entry; - int size = 0, i, good; + uint32_t c, entry; + int size = 0, i, good; - for(i = 0; i < 1 << 21; ++i) { - for(c = 0, good = 1; good && c < 8; ++c) { - entry = i ^ fastfwd[isodd][c]; - good &= (BIT(ks[c], isodd) == filter(entry >> 1)); - good &= (BIT(ks[c], isodd + 2) == filter(entry)); - } - if(good) - candidates[size++] = i; - } + for(i = 0; i < 1 << 21; ++i) { + for(c = 0, good = 1; good && c < 8; ++c) { + entry = i ^ fastfwd[isodd][c]; + good &= (BIT(ks[c], isodd) == filter(entry >> 1)); + good &= (BIT(ks[c], isodd + 2) == filter(entry)); + } + if(good) + candidates[size++] = i; + } - candidates[size] = -1; + candidates[size] = -1; - return candidates; + return candidates; } /** check_pfx_parity @@ -506,30 +506,30 @@ uint32_t *lfsr_prefix_ks(uint8_t ks[8], int isodd) */ static struct Crypto1State* check_pfx_parity(uint32_t prefix, uint32_t rresp, uint8_t parities[8][8], uint32_t odd, uint32_t even, struct Crypto1State* sl) { - uint32_t ks1, nr, ks2, rr, ks3, c, good = 1; + uint32_t ks1, nr, ks2, rr, ks3, c, good = 1; - for(c = 0; good && c < 8; ++c) { - sl->odd = odd ^ fastfwd[1][c]; - sl->even = even ^ fastfwd[0][c]; + for(c = 0; good && c < 8; ++c) { + sl->odd = odd ^ fastfwd[1][c]; + sl->even = even ^ fastfwd[0][c]; - lfsr_rollback_bit(sl, 0, 0); - lfsr_rollback_bit(sl, 0, 0); + lfsr_rollback_bit(sl, 0, 0); + lfsr_rollback_bit(sl, 0, 0); - ks3 = lfsr_rollback_bit(sl, 0, 0); - ks2 = lfsr_rollback_word(sl, 0, 0); - ks1 = lfsr_rollback_word(sl, prefix | c << 5, 1); + ks3 = lfsr_rollback_bit(sl, 0, 0); + ks2 = lfsr_rollback_word(sl, 0, 0); + ks1 = lfsr_rollback_word(sl, prefix | c << 5, 1); - nr = ks1 ^ (prefix | c << 5); - rr = ks2 ^ rresp; + nr = ks1 ^ (prefix | c << 5); + rr = ks2 ^ rresp; - good &= parity(nr & 0x000000ff) ^ parities[c][3] ^ BIT(ks2, 24); - good &= parity(rr & 0xff000000) ^ parities[c][4] ^ BIT(ks2, 16); - good &= parity(rr & 0x00ff0000) ^ parities[c][5] ^ BIT(ks2, 8); - good &= parity(rr & 0x0000ff00) ^ parities[c][6] ^ BIT(ks2, 0); - good &= parity(rr & 0x000000ff) ^ parities[c][7] ^ ks3; - } + good &= parity(nr & 0x000000ff) ^ parities[c][3] ^ BIT(ks2, 24); + good &= parity(rr & 0xff000000) ^ parities[c][4] ^ BIT(ks2, 16); + good &= parity(rr & 0x00ff0000) ^ parities[c][5] ^ BIT(ks2, 8); + good &= parity(rr & 0x0000ff00) ^ parities[c][6] ^ BIT(ks2, 0); + good &= parity(rr & 0x000000ff) ^ parities[c][7] ^ ks3; + } - return sl + good; + return sl + good; } /** lfsr_common_prefix @@ -544,30 +544,30 @@ static struct Crypto1State* check_pfx_parity(uint32_t prefix, uint32_t rresp, ui struct Crypto1State* lfsr_common_prefix(uint32_t pfx, uint32_t rr, uint8_t ks[8], uint8_t par[8][8]) { - struct Crypto1State *statelist, *s; - uint32_t *odd, *even, *o, *e, top; + struct Crypto1State *statelist, *s; + uint32_t *odd, *even, *o, *e, top; - odd = lfsr_prefix_ks(ks, 1); - even = lfsr_prefix_ks(ks, 0); + odd = lfsr_prefix_ks(ks, 1); + even = lfsr_prefix_ks(ks, 0); - s = statelist = malloc((sizeof *statelist) << 20); - if(!s || !odd || !even) { - free(statelist); - statelist = 0; + s = statelist = malloc((sizeof *statelist) << 20); + if(!s || !odd || !even) { + free(statelist); + statelist = 0; goto out; - } + } - for(o = odd; *o + 1; ++o) - for(e = even; *e + 1; ++e) - for(top = 0; top < 64; ++top) { - *o += 1 << 21; - *e += (!(top & 7) + 1) << 21; - s = check_pfx_parity(pfx, rr, par, *o, *e, s); - } + for(o = odd; *o + 1; ++o) + for(e = even; *e + 1; ++e) + for(top = 0; top < 64; ++top) { + *o += 1 << 21; + *e += (!(top & 7) + 1) << 21; + s = check_pfx_parity(pfx, rr, par, *o, *e, s); + } - s->odd = s->even = 0; + s->odd = s->even = 0; out: - free(odd); - free(even); - return statelist; + free(odd); + free(even); + return statelist; } diff --git a/tools/nonce2key/crapto1.h b/tools/nonce2key/crapto1.h index 2fd6600ec..4117dd6a1 100644 --- a/tools/nonce2key/crapto1.h +++ b/tools/nonce2key/crapto1.h @@ -43,18 +43,18 @@ uint8_t lfsr_rollback_byte(struct Crypto1State* s, uint32_t in, int fb); uint32_t lfsr_rollback_word(struct Crypto1State* s, uint32_t in, int fb); int nonce_distance(uint32_t from, uint32_t to); #define SWAPENDIAN(x)\ - (x = (x >> 8 & 0xff00ff) | (x & 0xff00ff) << 8, x = x >> 16 | x << 16) + (x = (x >> 8 & 0xff00ff) | (x & 0xff00ff) << 8, x = x >> 16 | x << 16) #define FOREACH_VALID_NONCE(N, FILTER, FSIZE)\ - uint32_t __n = 0,__M = 0, N = 0;\ - int __i;\ - for(; __n < 1 << 16; N = prng_successor(__M = ++__n, 16))\ - for(__i = FSIZE - 1; __i >= 0; __i--)\ - if(BIT(FILTER, __i) ^ parity(__M & 0xFF01))\ - break;\ - else if(__i)\ - __M = prng_successor(__M, (__i == 7) ? 48 : 8);\ - else + uint32_t __n = 0,__M = 0, N = 0;\ + int __i;\ + for(; __n < 1 << 16; N = prng_successor(__M = ++__n, 16))\ + for(__i = FSIZE - 1; __i >= 0; __i--)\ + if(BIT(FILTER, __i) ^ parity(__M & 0xFF01))\ + break;\ + else if(__i)\ + __M = prng_successor(__M, (__i == 7) ? 48 : 8);\ + else #define LF_POLY_ODD (0x29CE5C) #define LF_POLY_EVEN (0x870804) @@ -63,31 +63,31 @@ int nonce_distance(uint32_t from, uint32_t to); static inline int parity(uint32_t x) { #if !defined __i386__ || !defined __GNUC__ - x ^= x >> 16; - x ^= x >> 8; - x ^= x >> 4; - return BIT(0x6996, x & 0xf); + x ^= x >> 16; + x ^= x >> 8; + x ^= x >> 4; + return BIT(0x6996, x & 0xf); #else __asm__( "movl %1, %%eax\n" - "mov %%ax, %%cx\n" - "shrl $0x10, %%eax\n" - "xor %%ax, %%cx\n" + "mov %%ax, %%cx\n" + "shrl $0x10, %%eax\n" + "xor %%ax, %%cx\n" "xor %%ch, %%cl\n" "setpo %%al\n" "movzx %%al, %0\n": "=r"(x) : "r"(x): "eax","ecx"); - return x; + return x; #endif } static inline int filter(uint32_t const x) { - uint32_t f; + uint32_t f; - f = 0xf22c0 >> (x & 0xf) & 16; - f |= 0x6c9c0 >> (x >> 4 & 0xf) & 8; - f |= 0x3c8b0 >> (x >> 8 & 0xf) & 4; - f |= 0x1e458 >> (x >> 12 & 0xf) & 2; - f |= 0x0d938 >> (x >> 16 & 0xf) & 1; - return BIT(0xEC57E80A, f); + f = 0xf22c0 >> (x & 0xf) & 16; + f |= 0x6c9c0 >> (x >> 4 & 0xf) & 8; + f |= 0x3c8b0 >> (x >> 8 & 0xf) & 4; + f |= 0x1e458 >> (x >> 12 & 0xf) & 2; + f |= 0x0d938 >> (x >> 16 & 0xf) & 1; + return BIT(0xEC57E80A, f); } #ifdef __cplusplus } diff --git a/tools/nonce2key/crypto1.c b/tools/nonce2key/crypto1.c index 14e2cc829..e8384c16a 100644 --- a/tools/nonce2key/crypto1.c +++ b/tools/nonce2key/crypto1.c @@ -22,115 +22,115 @@ struct Crypto1State * crypto1_create(uint64_t key) { - struct Crypto1State *s = malloc(sizeof(*s)); - if ( !s ) return NULL; + struct Crypto1State *s = malloc(sizeof(*s)); + if ( !s ) return NULL; - s->odd = s->even = 0; + s->odd = s->even = 0; - int i; - //for(i = 47;s && i > 0; i -= 2) { - for(i = 47; i > 0; i -= 2) { - s->odd = s->odd << 1 | BIT(key, (i - 1) ^ 7); - s->even = s->even << 1 | BIT(key, i ^ 7); - } - return s; + int i; + //for(i = 47;s && i > 0; i -= 2) { + for(i = 47; i > 0; i -= 2) { + s->odd = s->odd << 1 | BIT(key, (i - 1) ^ 7); + s->even = s->even << 1 | BIT(key, i ^ 7); + } + return s; } void crypto1_destroy(struct Crypto1State *state) { - free(state); + free(state); } void crypto1_get_lfsr(struct Crypto1State *state, uint64_t *lfsr) { - int i; - for(*lfsr = 0, i = 23; i >= 0; --i) { - *lfsr = *lfsr << 1 | BIT(state->odd, i ^ 3); - *lfsr = *lfsr << 1 | BIT(state->even, i ^ 3); - } + int i; + for(*lfsr = 0, i = 23; i >= 0; --i) { + *lfsr = *lfsr << 1 | BIT(state->odd, i ^ 3); + *lfsr = *lfsr << 1 | BIT(state->even, i ^ 3); + } } uint8_t crypto1_bit(struct Crypto1State *s, uint8_t in, int is_encrypted) { - uint32_t feedin; - uint32_t tmp; - uint8_t ret = filter(s->odd); + uint32_t feedin; + uint32_t tmp; + uint8_t ret = filter(s->odd); - feedin = ret & !!is_encrypted; - feedin ^= !!in; - feedin ^= LF_POLY_ODD & s->odd; - feedin ^= LF_POLY_EVEN & s->even; - s->even = s->even << 1 | parity(feedin); + feedin = ret & !!is_encrypted; + feedin ^= !!in; + feedin ^= LF_POLY_ODD & s->odd; + feedin ^= LF_POLY_EVEN & s->even; + s->even = s->even << 1 | parity(feedin); - tmp = s->odd; - s->odd = s->even; - s->even = tmp; + tmp = s->odd; + s->odd = s->even; + s->even = tmp; - return ret; + return ret; } uint8_t crypto1_byte(struct Crypto1State *s, uint8_t in, int is_encrypted) { - /* - uint8_t i, ret = 0; + /* + uint8_t i, ret = 0; - for (i = 0; i < 8; ++i) - ret |= crypto1_bit(s, BIT(in, i), is_encrypted) << i; - */ + for (i = 0; i < 8; ++i) + ret |= crypto1_bit(s, BIT(in, i), is_encrypted) << i; + */ // unfold loop 20161012 - uint8_t ret = 0; - ret |= crypto1_bit(s, BIT(in, 0), is_encrypted) << 0; - ret |= crypto1_bit(s, BIT(in, 1), is_encrypted) << 1; - ret |= crypto1_bit(s, BIT(in, 2), is_encrypted) << 2; - ret |= crypto1_bit(s, BIT(in, 3), is_encrypted) << 3; - ret |= crypto1_bit(s, BIT(in, 4), is_encrypted) << 4; - ret |= crypto1_bit(s, BIT(in, 5), is_encrypted) << 5; - ret |= crypto1_bit(s, BIT(in, 6), is_encrypted) << 6; - ret |= crypto1_bit(s, BIT(in, 7), is_encrypted) << 7; - return ret; + uint8_t ret = 0; + ret |= crypto1_bit(s, BIT(in, 0), is_encrypted) << 0; + ret |= crypto1_bit(s, BIT(in, 1), is_encrypted) << 1; + ret |= crypto1_bit(s, BIT(in, 2), is_encrypted) << 2; + ret |= crypto1_bit(s, BIT(in, 3), is_encrypted) << 3; + ret |= crypto1_bit(s, BIT(in, 4), is_encrypted) << 4; + ret |= crypto1_bit(s, BIT(in, 5), is_encrypted) << 5; + ret |= crypto1_bit(s, BIT(in, 6), is_encrypted) << 6; + ret |= crypto1_bit(s, BIT(in, 7), is_encrypted) << 7; + return ret; } uint32_t crypto1_word(struct Crypto1State *s, uint32_t in, int is_encrypted) { - /* - uint32_t i, ret = 0; + /* + uint32_t i, ret = 0; - for (i = 0; i < 32; ++i) - ret |= crypto1_bit(s, BEBIT(in, i), is_encrypted) << (i ^ 24); + for (i = 0; i < 32; ++i) + ret |= crypto1_bit(s, BEBIT(in, i), is_encrypted) << (i ^ 24); */ //unfold loop 2016012 - uint32_t ret = 0; - ret |= crypto1_bit(s, BEBIT(in, 0), is_encrypted) << (0 ^ 24); - ret |= crypto1_bit(s, BEBIT(in, 1), is_encrypted) << (1 ^ 24); - ret |= crypto1_bit(s, BEBIT(in, 2), is_encrypted) << (2 ^ 24); - ret |= crypto1_bit(s, BEBIT(in, 3), is_encrypted) << (3 ^ 24); - ret |= crypto1_bit(s, BEBIT(in, 4), is_encrypted) << (4 ^ 24); - ret |= crypto1_bit(s, BEBIT(in, 5), is_encrypted) << (5 ^ 24); - ret |= crypto1_bit(s, BEBIT(in, 6), is_encrypted) << (6 ^ 24); - ret |= crypto1_bit(s, BEBIT(in, 7), is_encrypted) << (7 ^ 24); + uint32_t ret = 0; + ret |= crypto1_bit(s, BEBIT(in, 0), is_encrypted) << (0 ^ 24); + ret |= crypto1_bit(s, BEBIT(in, 1), is_encrypted) << (1 ^ 24); + ret |= crypto1_bit(s, BEBIT(in, 2), is_encrypted) << (2 ^ 24); + ret |= crypto1_bit(s, BEBIT(in, 3), is_encrypted) << (3 ^ 24); + ret |= crypto1_bit(s, BEBIT(in, 4), is_encrypted) << (4 ^ 24); + ret |= crypto1_bit(s, BEBIT(in, 5), is_encrypted) << (5 ^ 24); + ret |= crypto1_bit(s, BEBIT(in, 6), is_encrypted) << (6 ^ 24); + ret |= crypto1_bit(s, BEBIT(in, 7), is_encrypted) << (7 ^ 24); - ret |= crypto1_bit(s, BEBIT(in, 8), is_encrypted) << (8 ^ 24); - ret |= crypto1_bit(s, BEBIT(in, 9), is_encrypted) << (9 ^ 24); - ret |= crypto1_bit(s, BEBIT(in, 10), is_encrypted) << (10 ^ 24); - ret |= crypto1_bit(s, BEBIT(in, 11), is_encrypted) << (11 ^ 24); - ret |= crypto1_bit(s, BEBIT(in, 12), is_encrypted) << (12 ^ 24); - ret |= crypto1_bit(s, BEBIT(in, 13), is_encrypted) << (13 ^ 24); - ret |= crypto1_bit(s, BEBIT(in, 14), is_encrypted) << (14 ^ 24); - ret |= crypto1_bit(s, BEBIT(in, 15), is_encrypted) << (15 ^ 24); + ret |= crypto1_bit(s, BEBIT(in, 8), is_encrypted) << (8 ^ 24); + ret |= crypto1_bit(s, BEBIT(in, 9), is_encrypted) << (9 ^ 24); + ret |= crypto1_bit(s, BEBIT(in, 10), is_encrypted) << (10 ^ 24); + ret |= crypto1_bit(s, BEBIT(in, 11), is_encrypted) << (11 ^ 24); + ret |= crypto1_bit(s, BEBIT(in, 12), is_encrypted) << (12 ^ 24); + ret |= crypto1_bit(s, BEBIT(in, 13), is_encrypted) << (13 ^ 24); + ret |= crypto1_bit(s, BEBIT(in, 14), is_encrypted) << (14 ^ 24); + ret |= crypto1_bit(s, BEBIT(in, 15), is_encrypted) << (15 ^ 24); - ret |= crypto1_bit(s, BEBIT(in, 16), is_encrypted) << (16 ^ 24); - ret |= crypto1_bit(s, BEBIT(in, 17), is_encrypted) << (17 ^ 24); - ret |= crypto1_bit(s, BEBIT(in, 18), is_encrypted) << (18 ^ 24); - ret |= crypto1_bit(s, BEBIT(in, 19), is_encrypted) << (19 ^ 24); - ret |= crypto1_bit(s, BEBIT(in, 20), is_encrypted) << (20 ^ 24); - ret |= crypto1_bit(s, BEBIT(in, 21), is_encrypted) << (21 ^ 24); - ret |= crypto1_bit(s, BEBIT(in, 22), is_encrypted) << (22 ^ 24); - ret |= crypto1_bit(s, BEBIT(in, 23), is_encrypted) << (23 ^ 24); + ret |= crypto1_bit(s, BEBIT(in, 16), is_encrypted) << (16 ^ 24); + ret |= crypto1_bit(s, BEBIT(in, 17), is_encrypted) << (17 ^ 24); + ret |= crypto1_bit(s, BEBIT(in, 18), is_encrypted) << (18 ^ 24); + ret |= crypto1_bit(s, BEBIT(in, 19), is_encrypted) << (19 ^ 24); + ret |= crypto1_bit(s, BEBIT(in, 20), is_encrypted) << (20 ^ 24); + ret |= crypto1_bit(s, BEBIT(in, 21), is_encrypted) << (21 ^ 24); + ret |= crypto1_bit(s, BEBIT(in, 22), is_encrypted) << (22 ^ 24); + ret |= crypto1_bit(s, BEBIT(in, 23), is_encrypted) << (23 ^ 24); - ret |= crypto1_bit(s, BEBIT(in, 24), is_encrypted) << (24 ^ 24); - ret |= crypto1_bit(s, BEBIT(in, 25), is_encrypted) << (25 ^ 24); - ret |= crypto1_bit(s, BEBIT(in, 26), is_encrypted) << (26 ^ 24); - ret |= crypto1_bit(s, BEBIT(in, 27), is_encrypted) << (27 ^ 24); - ret |= crypto1_bit(s, BEBIT(in, 28), is_encrypted) << (28 ^ 24); - ret |= crypto1_bit(s, BEBIT(in, 29), is_encrypted) << (29 ^ 24); - ret |= crypto1_bit(s, BEBIT(in, 30), is_encrypted) << (30 ^ 24); - ret |= crypto1_bit(s, BEBIT(in, 31), is_encrypted) << (31 ^ 24); - return ret; + ret |= crypto1_bit(s, BEBIT(in, 24), is_encrypted) << (24 ^ 24); + ret |= crypto1_bit(s, BEBIT(in, 25), is_encrypted) << (25 ^ 24); + ret |= crypto1_bit(s, BEBIT(in, 26), is_encrypted) << (26 ^ 24); + ret |= crypto1_bit(s, BEBIT(in, 27), is_encrypted) << (27 ^ 24); + ret |= crypto1_bit(s, BEBIT(in, 28), is_encrypted) << (28 ^ 24); + ret |= crypto1_bit(s, BEBIT(in, 29), is_encrypted) << (29 ^ 24); + ret |= crypto1_bit(s, BEBIT(in, 30), is_encrypted) << (30 ^ 24); + ret |= crypto1_bit(s, BEBIT(in, 31), is_encrypted) << (31 ^ 24); + return ret; } /* prng_successor @@ -138,9 +138,9 @@ uint32_t crypto1_word(struct Crypto1State *s, uint32_t in, int is_encrypted) */ uint32_t prng_successor(uint32_t x, uint32_t n) { - SWAPENDIAN(x); - while(n--) - x = x >> 1 | (x >> 16 ^ x >> 18 ^ x >> 19 ^ x >> 21) << 31; + SWAPENDIAN(x); + while(n--) + x = x >> 1 | (x >> 16 ^ x >> 18 ^ x >> 19 ^ x >> 21) << 31; - return SWAPENDIAN(x); + return SWAPENDIAN(x); } diff --git a/tools/nonce2key/nonce2key.c b/tools/nonce2key/nonce2key.c index f7bbc43b7..52b7998ae 100644 --- a/tools/nonce2key/nonce2key.c +++ b/tools/nonce2key/nonce2key.c @@ -4,54 +4,54 @@ #include int main(const int argc, const char* argv[]) { - struct Crypto1State *state; - uint32_t pos, uid, nt, nr, rr, nr_diff; - uint8_t bt, i, ks3x[8], par[8][8]; - uint64_t key_recovered; - uint64_t par_info; - uint64_t ks_info; - nr = rr = 0; + struct Crypto1State *state; + uint32_t pos, uid, nt, nr, rr, nr_diff; + uint8_t bt, i, ks3x[8], par[8][8]; + uint64_t key_recovered; + uint64_t par_info; + uint64_t ks_info; + nr = rr = 0; - if (argc < 5) { - printf("\nsyntax: %s \n\n",argv[0]); - return 1; - } - sscanf(argv[1],"%08x", &uid); - sscanf(argv[2],"%08x", &nt); - sscanf(argv[3],"%016" SCNx64 ,&par_info); - sscanf(argv[4],"%016" SCNx64 ,&ks_info); + if (argc < 5) { + printf("\nsyntax: %s \n\n",argv[0]); + return 1; + } + sscanf(argv[1],"%08x", &uid); + sscanf(argv[2],"%08x", &nt); + sscanf(argv[3],"%016" SCNx64 ,&par_info); + sscanf(argv[4],"%016" SCNx64 ,&ks_info); - // Reset the last three significant bits of the reader nonce - nr &= 0xffffff1f; + // Reset the last three significant bits of the reader nonce + nr &= 0xffffff1f; - printf("\nuid(%08x) nt(%08x) par(%016" PRIx64 ") ks(%016" PRIx64 ")\n\n", uid, nt, par_info, ks_info); + printf("\nuid(%08x) nt(%08x) par(%016" PRIx64 ") ks(%016" PRIx64 ")\n\n", uid, nt, par_info, ks_info); - for ( pos = 0; pos < 8; pos++ ) { - ks3x[7-pos] = (ks_info >> (pos*8)) & 0x0f; - bt = (par_info >> (pos*8)) & 0xff; + for ( pos = 0; pos < 8; pos++ ) { + ks3x[7-pos] = (ks_info >> (pos*8)) & 0x0f; + bt = (par_info >> (pos*8)) & 0xff; - for ( i = 0; i < 8; i++) { - par[7-pos][i] = (bt >> i) & 0x01; - } - } + for ( i = 0; i < 8; i++) { + par[7-pos][i] = (bt >> i) & 0x01; + } + } - printf("|diff|{nr} |ks3|ks3^5|parity |\n"); - printf("+----+--------+---+-----+---------------+\n"); + printf("|diff|{nr} |ks3|ks3^5|parity |\n"); + printf("+----+--------+---+-----+---------------+\n"); - for ( i = 0; i < 8; i++) { - nr_diff = nr | i << 5; - printf("| %02x |%08x| %01x | %01x |", i << 5, nr_diff, ks3x[i], ks3x[i]^5); + for ( i = 0; i < 8; i++) { + nr_diff = nr | i << 5; + printf("| %02x |%08x| %01x | %01x |", i << 5, nr_diff, ks3x[i], ks3x[i]^5); - for ( pos = 0; pos < 7; pos++) - printf("%01x,", par[i][pos]); - printf("%01x|\n", par[i][7]); - } - printf("+----+--------+---+-----+---------------+\n"); + for ( pos = 0; pos < 7; pos++) + printf("%01x,", par[i][pos]); + printf("%01x|\n", par[i][7]); + } + printf("+----+--------+---+-----+---------------+\n"); - state = lfsr_common_prefix(nr,rr,ks3x,par); - lfsr_rollback_word(state,uid^nt,0); - crypto1_get_lfsr(state,&key_recovered); - printf("\nkey recovered: %012" PRIx64 "\n\n", key_recovered); - crypto1_destroy(state); - return 0; + state = lfsr_common_prefix(nr,rr,ks3x,par); + lfsr_rollback_word(state,uid^nt,0); + crypto1_get_lfsr(state,&key_recovered); + printf("\nkey recovered: %012" PRIx64 "\n\n", key_recovered); + crypto1_destroy(state); + return 0; }