for every batch_size*16 samples,
model collects the samples with the highest error and learns them again
therefore hard samples will be trained more often
Basic usage instruction: https://i.imgur.com/w7LkId2.jpg
'whole_face' requires skill in Adobe After Effects.
For using whole_face you have to extract whole_face's by using
4) data_src extract whole_face
and
5) data_dst extract whole_face
Images will be extracted in 512 resolution, so they can be used for regular full_face's and half_face's.
'whole_face' covers whole area of face include forehead in training square,
but training mask is still 'full_face'
therefore it requires manual final masking and composing in Adobe After Effects.
added option 'masked_training'
This option is available only for 'whole_face' type.
Default is ON.
Masked training clips training area to full_face mask,
thus network will train the faces properly.
When the face is trained enough, disable this option to train all area of the frame.
Merge with 'raw-rgb' mode, then use Adobe After Effects to manually mask, tune color, and compose whole face include forehead.
added option Eyes priority (y/n)
fix eye problems during training ( especially on HD architectures )
by forcing the neural network to train eyes with higher priority
before/after https://i.imgur.com/YQHOuSR.jpg
It does not guarantee the right eye direction.
added smooth_rect option
default is ON.
Decreases jitter of predicting rect by using temporal interpolation.
You can disable this option if you have problems with dynamic scenes.