now you have 3 ways:
1) define light directions manually (not for google colab)
watch demo https://youtu.be/79xz7yEO5Jw
2) relight faceset with one random direction
3) relight faceset with predefined 8 directions
Synthesize new faces from existing ones by relighting them using DeepPortraitRelighter network.
With the relighted faces neural network will better reproduce face shadows.
Therefore you can synthsize shadowed faces from fully lit faceset.
https://i.imgur.com/wxcmQoi.jpg
as a result, better fakes on dark faces:
https://i.imgur.com/5xXIbz5.jpg
in OpenCL build Relighter runs on CPU,
install pytorch directly via pip install, look at requirements
This is the fastest model for low-end cards.
Model has zero options and trains a 96pix fullface.
It is good for quick deepfake demo.
Example of the preview trained in 15 minutes on RTX2080Ti:
https://i.imgur.com/oRMvZFP.jpg
fixed crashes
removed useless 'ebs' color transfer
changed keys for color degrade
added image degrade via denoise - same as denoise extracted data_dst.bat ,
but you can control this option directly in the interactive converter
added image degrade via bicubic downscale and upscale
SAEHD: default ae_dims for df now 256.
removed option 'apply random ct'
added option
Color transfer mode apply to src faceset. ( none/rct/lct/mkl/idt, ?:help skip: none )
Change color distribution of src samples close to dst samples. Try all modes to find the best.
before was lct mode, but sometime it does not work properly for some facesets.
* Restore mask functionality
Once mask is saved (using 'c'), mask tool can apply same modifications to the next alignment (by pressing 'r'). Thus some routine work is decreased.
* Mask edit added function to re-apply changes