Merge remote-tracking branch 'upstream/master'

This commit is contained in:
seranus 2021-08-19 15:26:02 +02:00
commit dc7512dea1
26 changed files with 676 additions and 550 deletions

View file

@ -39,6 +39,9 @@ DeepFaceLab is used by such popular youtube channels as
|![](doc/tiktok_icon.png) [deeptomcruise](https://www.tiktok.com/@deeptomcruise)|![](doc/tiktok_icon.png) [1facerussia](https://www.tiktok.com/@1facerussia)|![](doc/tiktok_icon.png) [arnoldschwarzneggar](https://www.tiktok.com/@arnoldschwarzneggar) |![](doc/tiktok_icon.png) [deeptomcruise](https://www.tiktok.com/@deeptomcruise)|![](doc/tiktok_icon.png) [1facerussia](https://www.tiktok.com/@1facerussia)|![](doc/tiktok_icon.png) [arnoldschwarzneggar](https://www.tiktok.com/@arnoldschwarzneggar)
|---|---|---| |---|---|---|
|![](doc/tiktok_icon.png) [mariahcareyathome?](https://www.tiktok.com/@mariahcareyathome?)|![](doc/tiktok_icon.png) [diepnep](https://www.tiktok.com/@diepnep)
|---|---|
|![](doc/youtube_icon.png) [Ctrl Shift Face](https://www.youtube.com/channel/UCKpH0CKltc73e4wh0_pgL3g)|![](doc/youtube_icon.png) [VFXChris Ume](https://www.youtube.com/channel/UCGf4OlX_aTt8DlrgiH3jN3g/videos)|![](doc/youtube_icon.png) [Sham00k](https://www.youtube.com/channel/UCZXbWcv7fSZFTAZV4beckyw/videos)| |![](doc/youtube_icon.png) [Ctrl Shift Face](https://www.youtube.com/channel/UCKpH0CKltc73e4wh0_pgL3g)|![](doc/youtube_icon.png) [VFXChris Ume](https://www.youtube.com/channel/UCGf4OlX_aTt8DlrgiH3jN3g/videos)|![](doc/youtube_icon.png) [Sham00k](https://www.youtube.com/channel/UCZXbWcv7fSZFTAZV4beckyw/videos)|
|---|---|---| |---|---|---|
@ -201,7 +204,7 @@ Unfortunately, there is no "make everything ok" button in DeepFaceLab. You shoul
</td></tr> </td></tr>
<tr><td align="right"> <tr><td align="right">
<a href="https://tinyurl.com/4tb2tn4w">Windows (magnet link)</a> <a href="https://tinyurl.com/2w4ppbde">Windows (magnet link)</a>
</td><td align="center">Last release. Use torrent client to download.</td></tr> </td><td align="center">Last release. Use torrent client to download.</td></tr>
<tr><td align="right"> <tr><td align="right">
@ -301,8 +304,8 @@ Unfortunately, there is no "make everything ok" button in DeepFaceLab. You shoul
</td><td align="center">Постим русские дипфейки сюда !</td></tr> </td><td align="center">Постим русские дипфейки сюда !</td></tr>
<tr><td align="right"> <tr><td align="right">
QQ 951138799 QQ群1095077489
</td><td align="center">中文 Chinese QQ group for ML/AI experts</td></tr> </td><td align="center">中文交流QQ群商务合作找群主</td></tr>
<tr><td align="right"> <tr><td align="right">
<a href="https://www.dfldata.xyz">dfldata.xyz</a> <a href="https://www.dfldata.xyz">dfldata.xyz</a>
@ -312,6 +315,25 @@ QQ 951138799
<a href="https://www.deepfaker.xyz/">deepfaker.xyz</a> <a href="https://www.deepfaker.xyz/">deepfaker.xyz</a>
</td><td align="center">中文学习站(非官方)</td></tr> </td><td align="center">中文学习站(非官方)</td></tr>
<tr><td colspan=2 align="center">
## Related works
</td></tr>
<tr><td align="right">
<a href="https://github.com/iperov/DeepFaceLive">DeepFaceLive</a>
</td><td align="center">Real-time face swap for PC streaming or video calls</td></tr>
<tr><td align="right">
<a href="https://github.com/neuralchen/SimSwap">neuralchen/SimSwap</a>
</td><td align="center">Swapping face using ONE single photo 一张图免训练换脸</td></tr>
<tr><td align="right">
<a href="https://github.com/deepfakes/faceswap">deepfakes/faceswap</a>
</td><td align="center">Something that was before DeepFaceLab and still remains in the past</td></tr>
</td></tr>
</table> </table>
<table align="center" border="0"> <table align="center" border="0">

View file

@ -1,7 +1,109 @@
import numpy as np import numpy as np
import numpy.linalg as npla
import cv2 import cv2
from core import randomex from core import randomex
def mls_rigid_deformation(vy, vx, src_pts, dst_pts, alpha=1.0, eps=1e-8):
dst_pts = dst_pts[..., ::-1].astype(np.int16)
src_pts = src_pts[..., ::-1].astype(np.int16)
src_pts, dst_pts = dst_pts, src_pts
grow = vx.shape[0]
gcol = vx.shape[1]
ctrls = src_pts.shape[0]
reshaped_p = src_pts.reshape(ctrls, 2, 1, 1)
reshaped_v = np.vstack((vx.reshape(1, grow, gcol), vy.reshape(1, grow, gcol)))
w = 1.0 / (np.sum((reshaped_p - reshaped_v).astype(np.float32) ** 2, axis=1) + eps) ** alpha
w /= np.sum(w, axis=0, keepdims=True)
pstar = np.zeros((2, grow, gcol), np.float32)
for i in range(ctrls):
pstar += w[i] * reshaped_p[i]
vpstar = reshaped_v - pstar
reshaped_mul_right = np.concatenate((vpstar[:,None,...],
np.concatenate((vpstar[1:2,None,...],-vpstar[0:1,None,...]), 0)
), axis=1).transpose(2, 3, 0, 1)
reshaped_q = dst_pts.reshape((ctrls, 2, 1, 1))
qstar = np.zeros((2, grow, gcol), np.float32)
for i in range(ctrls):
qstar += w[i] * reshaped_q[i]
temp = np.zeros((grow, gcol, 2), np.float32)
for i in range(ctrls):
phat = reshaped_p[i] - pstar
qhat = reshaped_q[i] - qstar
temp += np.matmul(qhat.reshape(1, 2, grow, gcol).transpose(2, 3, 0, 1),
np.matmul( ( w[None, i:i+1,...] *
np.concatenate((phat.reshape(1, 2, grow, gcol),
np.concatenate( (phat[None,1:2], -phat[None,0:1]), 1 )), 0)
).transpose(2, 3, 0, 1), reshaped_mul_right
)
).reshape(grow, gcol, 2)
temp = temp.transpose(2, 0, 1)
normed_temp = np.linalg.norm(temp, axis=0, keepdims=True)
normed_vpstar = np.linalg.norm(vpstar, axis=0, keepdims=True)
nan_mask = normed_temp[0]==0
transformers = np.true_divide(temp, normed_temp, out=np.zeros_like(temp), where= ~nan_mask) * normed_vpstar + qstar
nan_mask_flat = np.flatnonzero(nan_mask)
nan_mask_anti_flat = np.flatnonzero(~nan_mask)
transformers[0][nan_mask] = np.interp(nan_mask_flat, nan_mask_anti_flat, transformers[0][~nan_mask])
transformers[1][nan_mask] = np.interp(nan_mask_flat, nan_mask_anti_flat, transformers[1][~nan_mask])
return transformers
def gen_pts(W, H, rnd_state=None):
if rnd_state is None:
rnd_state = np.random
min_pts, max_pts = 4, 8
n_pts = rnd_state.randint(min_pts, max_pts)
min_radius_per = 0.00
max_radius_per = 0.10
pts = []
for i in range(n_pts):
while True:
x, y = rnd_state.randint(W), rnd_state.randint(H)
rad = min_radius_per + rnd_state.rand()*(max_radius_per-min_radius_per)
intersect = False
for px,py,prad,_,_ in pts:
dist = npla.norm([x-px, y-py])
if dist <= (rad+prad)*2:
intersect = True
break
if intersect:
continue
angle = rnd_state.rand()*(2*np.pi)
x2 = int(x+np.cos(angle)*W*rad)
y2 = int(y+np.sin(angle)*H*rad)
break
pts.append( (x,y,rad, x2,y2) )
pts1 = np.array( [ [pt[0],pt[1]] for pt in pts ] )
pts2 = np.array( [ [pt[-2],pt[-1]] for pt in pts ] )
return pts1, pts2
def gen_warp_params (w, flip=False, rotation_range=[-2,2], scale_range=[-0.5, 0.5], tx_range=[-0.05, 0.05], ty_range=[-0.05, 0.05], rnd_state=None ): def gen_warp_params (w, flip=False, rotation_range=[-2,2], scale_range=[-0.5, 0.5], tx_range=[-0.05, 0.05], ty_range=[-0.05, 0.05], rnd_state=None ):
if rnd_state is None: if rnd_state is None:
rnd_state = np.random rnd_state = np.random
@ -17,21 +119,27 @@ def gen_warp_params (w, flip=False, rotation_range=[-2,2], scale_range=[-0.5, 0.
ty = rnd_state.uniform( ty_range[0], ty_range[1] ) ty = rnd_state.uniform( ty_range[0], ty_range[1] )
p_flip = flip and rnd_state.randint(10) < 4 p_flip = flip and rnd_state.randint(10) < 4
#random warp by grid #random warp V1
cell_size = [ w // (2**i) for i in range(1,4) ] [ rnd_state.randint(3) ] cell_size = [ w // (2**i) for i in range(1,4) ] [ rnd_state.randint(3) ]
cell_count = w // cell_size + 1 cell_count = w // cell_size + 1
grid_points = np.linspace( 0, w, cell_count) grid_points = np.linspace( 0, w, cell_count)
mapx = np.broadcast_to(grid_points, (cell_count, cell_count)).copy() mapx = np.broadcast_to(grid_points, (cell_count, cell_count)).copy()
mapy = mapx.T mapy = mapx.T
mapx[1:-1,1:-1] = mapx[1:-1,1:-1] + randomex.random_normal( size=(cell_count-2, cell_count-2) )*(cell_size*0.24) mapx[1:-1,1:-1] = mapx[1:-1,1:-1] + randomex.random_normal( size=(cell_count-2, cell_count-2) )*(cell_size*0.24)
mapy[1:-1,1:-1] = mapy[1:-1,1:-1] + randomex.random_normal( size=(cell_count-2, cell_count-2) )*(cell_size*0.24) mapy[1:-1,1:-1] = mapy[1:-1,1:-1] + randomex.random_normal( size=(cell_count-2, cell_count-2) )*(cell_size*0.24)
half_cell_size = cell_size // 2 half_cell_size = cell_size // 2
mapx = cv2.resize(mapx, (w+cell_size,)*2 )[half_cell_size:-half_cell_size,half_cell_size:-half_cell_size].astype(np.float32) mapx = cv2.resize(mapx, (w+cell_size,)*2 )[half_cell_size:-half_cell_size,half_cell_size:-half_cell_size].astype(np.float32)
mapy = cv2.resize(mapy, (w+cell_size,)*2 )[half_cell_size:-half_cell_size,half_cell_size:-half_cell_size].astype(np.float32) mapy = cv2.resize(mapy, (w+cell_size,)*2 )[half_cell_size:-half_cell_size,half_cell_size:-half_cell_size].astype(np.float32)
##############
# random warp V2
# pts1, pts2 = gen_pts(w, w, rnd_state)
# gridX = np.arange(w, dtype=np.int16)
# gridY = np.arange(w, dtype=np.int16)
# vy, vx = np.meshgrid(gridX, gridY)
# drigid = mls_rigid_deformation(vy, vx, pts1, pts2)
# mapy, mapx = drigid.astype(np.float32)
################
#random transform #random transform
random_transform_mat = cv2.getRotationMatrix2D((w // 2, w // 2), rotation, scale) random_transform_mat = cv2.getRotationMatrix2D((w // 2, w // 2), rotation, scale)

View file

@ -8,12 +8,15 @@ class DeepFakeArchi(nn.ArchiBase):
mod None - default mod None - default
'quick' 'quick'
""" """
def __init__(self, resolution, mod=None, opts=None): def __init__(self, resolution, use_fp16=False, mod=None, opts=None):
super().__init__() super().__init__()
if opts is None: if opts is None:
opts = '' opts = ''
conv_dtype = tf.float16 if use_fp16 else tf.float32
if mod is None: if mod is None:
class Downscale(nn.ModelBase): class Downscale(nn.ModelBase):
def __init__(self, in_ch, out_ch, kernel_size=5, *kwargs ): def __init__(self, in_ch, out_ch, kernel_size=5, *kwargs ):
@ -23,7 +26,7 @@ class DeepFakeArchi(nn.ArchiBase):
super().__init__(*kwargs) super().__init__(*kwargs)
def on_build(self, *args, **kwargs ): def on_build(self, *args, **kwargs ):
self.conv1 = nn.Conv2D( self.in_ch, self.out_ch, kernel_size=self.kernel_size, strides=2, padding='SAME') self.conv1 = nn.Conv2D( self.in_ch, self.out_ch, kernel_size=self.kernel_size, strides=2, padding='SAME', dtype=conv_dtype)
def forward(self, x): def forward(self, x):
x = self.conv1(x) x = self.conv1(x)
@ -40,7 +43,7 @@ class DeepFakeArchi(nn.ArchiBase):
last_ch = in_ch last_ch = in_ch
for i in range(n_downscales): for i in range(n_downscales):
cur_ch = ch*( min(2**i, 8) ) cur_ch = ch*( min(2**i, 8) )
self.downs.append ( Downscale(last_ch, cur_ch, kernel_size=kernel_size) ) self.downs.append ( Downscale(last_ch, cur_ch, kernel_size=kernel_size))
last_ch = self.downs[-1].get_out_ch() last_ch = self.downs[-1].get_out_ch()
def forward(self, inp): def forward(self, inp):
@ -50,8 +53,8 @@ class DeepFakeArchi(nn.ArchiBase):
return x return x
class Upscale(nn.ModelBase): class Upscale(nn.ModelBase):
def on_build(self, in_ch, out_ch, kernel_size=3 ): def on_build(self, in_ch, out_ch, kernel_size=3):
self.conv1 = nn.Conv2D( in_ch, out_ch*4, kernel_size=kernel_size, padding='SAME') self.conv1 = nn.Conv2D( in_ch, out_ch*4, kernel_size=kernel_size, padding='SAME', dtype=conv_dtype)
def forward(self, x): def forward(self, x):
x = self.conv1(x) x = self.conv1(x)
@ -60,9 +63,9 @@ class DeepFakeArchi(nn.ArchiBase):
return x return x
class ResidualBlock(nn.ModelBase): class ResidualBlock(nn.ModelBase):
def on_build(self, ch, kernel_size=3 ): def on_build(self, ch, kernel_size=3):
self.conv1 = nn.Conv2D( ch, ch, kernel_size=kernel_size, padding='SAME') self.conv1 = nn.Conv2D( ch, ch, kernel_size=kernel_size, padding='SAME', dtype=conv_dtype)
self.conv2 = nn.Conv2D( ch, ch, kernel_size=kernel_size, padding='SAME') self.conv2 = nn.Conv2D( ch, ch, kernel_size=kernel_size, padding='SAME', dtype=conv_dtype)
def forward(self, inp): def forward(self, inp):
x = self.conv1(inp) x = self.conv1(inp)
@ -80,8 +83,13 @@ class DeepFakeArchi(nn.ArchiBase):
def on_build(self): def on_build(self):
self.down1 = DownscaleBlock(self.in_ch, self.e_ch, n_downscales=4, kernel_size=5) self.down1 = DownscaleBlock(self.in_ch, self.e_ch, n_downscales=4, kernel_size=5)
def forward(self, inp): def forward(self, x):
return nn.flatten(self.down1(inp)) if use_fp16:
x = tf.cast(x, tf.float16)
x = nn.flatten(self.down1(x))
if use_fp16:
x = tf.cast(x, tf.float32)
return x
def get_out_res(self, res): def get_out_res(self, res):
return res // (2**4) return res // (2**4)
@ -98,6 +106,7 @@ class DeepFakeArchi(nn.ArchiBase):
def on_build(self): def on_build(self):
in_ch, ae_ch, ae_out_ch = self.in_ch, self.ae_ch, self.ae_out_ch in_ch, ae_ch, ae_out_ch = self.in_ch, self.ae_ch, self.ae_out_ch
if 'u' in opts: if 'u' in opts:
self.dense_norm = nn.DenseNorm() self.dense_norm = nn.DenseNorm()
@ -112,6 +121,9 @@ class DeepFakeArchi(nn.ArchiBase):
x = self.dense1(x) x = self.dense1(x)
x = self.dense2(x) x = self.dense2(x)
x = nn.reshape_4D (x, lowest_dense_res, lowest_dense_res, self.ae_out_ch) x = nn.reshape_4D (x, lowest_dense_res, lowest_dense_res, self.ae_out_ch)
if use_fp16:
x = tf.cast(x, tf.float16)
x = self.upscale1(x) x = self.upscale1(x)
return x return x
@ -122,7 +134,7 @@ class DeepFakeArchi(nn.ArchiBase):
return self.ae_out_ch return self.ae_out_ch
class Decoder(nn.ModelBase): class Decoder(nn.ModelBase):
def on_build(self, in_ch, d_ch, d_mask_ch ): def on_build(self, in_ch, d_ch, d_mask_ch):
self.upscale0 = Upscale(in_ch, d_ch*8, kernel_size=3) self.upscale0 = Upscale(in_ch, d_ch*8, kernel_size=3)
self.upscale1 = Upscale(d_ch*8, d_ch*4, kernel_size=3) self.upscale1 = Upscale(d_ch*8, d_ch*4, kernel_size=3)
self.upscale2 = Upscale(d_ch*4, d_ch*2, kernel_size=3) self.upscale2 = Upscale(d_ch*4, d_ch*2, kernel_size=3)
@ -131,25 +143,23 @@ class DeepFakeArchi(nn.ArchiBase):
self.res1 = ResidualBlock(d_ch*4, kernel_size=3) self.res1 = ResidualBlock(d_ch*4, kernel_size=3)
self.res2 = ResidualBlock(d_ch*2, kernel_size=3) self.res2 = ResidualBlock(d_ch*2, kernel_size=3)
self.out_conv = nn.Conv2D( d_ch*2, 3, kernel_size=1, padding='SAME') self.out_conv = nn.Conv2D( d_ch*2, 3, kernel_size=1, padding='SAME', dtype=conv_dtype)
self.upscalem0 = Upscale(in_ch, d_mask_ch*8, kernel_size=3) self.upscalem0 = Upscale(in_ch, d_mask_ch*8, kernel_size=3)
self.upscalem1 = Upscale(d_mask_ch*8, d_mask_ch*4, kernel_size=3) self.upscalem1 = Upscale(d_mask_ch*8, d_mask_ch*4, kernel_size=3)
self.upscalem2 = Upscale(d_mask_ch*4, d_mask_ch*2, kernel_size=3) self.upscalem2 = Upscale(d_mask_ch*4, d_mask_ch*2, kernel_size=3)
self.out_convm = nn.Conv2D( d_mask_ch*2, 1, kernel_size=1, padding='SAME') self.out_convm = nn.Conv2D( d_mask_ch*2, 1, kernel_size=1, padding='SAME', dtype=conv_dtype)
if 'd' in opts: if 'd' in opts:
self.out_conv1 = nn.Conv2D( d_ch*2, 3, kernel_size=3, padding='SAME') self.out_conv1 = nn.Conv2D( d_ch*2, 3, kernel_size=3, padding='SAME', dtype=conv_dtype)
self.out_conv2 = nn.Conv2D( d_ch*2, 3, kernel_size=3, padding='SAME') self.out_conv2 = nn.Conv2D( d_ch*2, 3, kernel_size=3, padding='SAME', dtype=conv_dtype)
self.out_conv3 = nn.Conv2D( d_ch*2, 3, kernel_size=3, padding='SAME') self.out_conv3 = nn.Conv2D( d_ch*2, 3, kernel_size=3, padding='SAME', dtype=conv_dtype)
self.upscalem3 = Upscale(d_mask_ch*2, d_mask_ch*1, kernel_size=3) self.upscalem3 = Upscale(d_mask_ch*2, d_mask_ch*1, kernel_size=3)
self.out_convm = nn.Conv2D( d_mask_ch*1, 1, kernel_size=1, padding='SAME') self.out_convm = nn.Conv2D( d_mask_ch*1, 1, kernel_size=1, padding='SAME', dtype=conv_dtype)
else: else:
self.out_convm = nn.Conv2D( d_mask_ch*2, 1, kernel_size=1, padding='SAME') self.out_convm = nn.Conv2D( d_mask_ch*2, 1, kernel_size=1, padding='SAME', dtype=conv_dtype)
def forward(self, inp):
z = inp
def forward(self, z):
x = self.upscale0(z) x = self.upscale0(z)
x = self.res0(x) x = self.res0(x)
x = self.upscale1(x) x = self.upscale1(x)
@ -157,40 +167,11 @@ class DeepFakeArchi(nn.ArchiBase):
x = self.upscale2(x) x = self.upscale2(x)
x = self.res2(x) x = self.res2(x)
if 'd' in opts: if 'd' in opts:
x0 = tf.nn.sigmoid(self.out_conv(x)) x = tf.nn.sigmoid( nn.depth_to_space(tf.concat( (self.out_conv(x),
x0 = nn.upsample2d(x0) self.out_conv1(x),
x1 = tf.nn.sigmoid(self.out_conv1(x)) self.out_conv2(x),
x1 = nn.upsample2d(x1) self.out_conv3(x)), nn.conv2d_ch_axis), 2) )
x2 = tf.nn.sigmoid(self.out_conv2(x))
x2 = nn.upsample2d(x2)
x3 = tf.nn.sigmoid(self.out_conv3(x))
x3 = nn.upsample2d(x3)
if nn.data_format == "NHWC":
tile_cfg = ( 1, resolution // 2, resolution //2, 1)
else:
tile_cfg = ( 1, 1, resolution // 2, resolution //2 )
z0 = tf.concat ( ( tf.concat ( ( tf.ones ( (1,1,1,1) ), tf.zeros ( (1,1,1,1) ) ), axis=nn.conv2d_spatial_axes[1] ),
tf.concat ( ( tf.zeros ( (1,1,1,1) ), tf.zeros ( (1,1,1,1) ) ), axis=nn.conv2d_spatial_axes[1] ) ), axis=nn.conv2d_spatial_axes[0] )
z0 = tf.tile ( z0, tile_cfg )
z1 = tf.concat ( ( tf.concat ( ( tf.zeros ( (1,1,1,1) ), tf.ones ( (1,1,1,1) ) ), axis=nn.conv2d_spatial_axes[1] ),
tf.concat ( ( tf.zeros ( (1,1,1,1) ), tf.zeros ( (1,1,1,1) ) ), axis=nn.conv2d_spatial_axes[1] ) ), axis=nn.conv2d_spatial_axes[0] )
z1 = tf.tile ( z1, tile_cfg )
z2 = tf.concat ( ( tf.concat ( ( tf.zeros ( (1,1,1,1) ), tf.zeros ( (1,1,1,1) ) ), axis=nn.conv2d_spatial_axes[1] ),
tf.concat ( ( tf.ones ( (1,1,1,1) ), tf.zeros ( (1,1,1,1) ) ), axis=nn.conv2d_spatial_axes[1] ) ), axis=nn.conv2d_spatial_axes[0] )
z2 = tf.tile ( z2, tile_cfg )
z3 = tf.concat ( ( tf.concat ( ( tf.zeros ( (1,1,1,1) ), tf.zeros ( (1,1,1,1) ) ), axis=nn.conv2d_spatial_axes[1] ),
tf.concat ( ( tf.zeros ( (1,1,1,1) ), tf.ones ( (1,1,1,1) ) ), axis=nn.conv2d_spatial_axes[1] ) ), axis=nn.conv2d_spatial_axes[0] )
z3 = tf.tile ( z3, tile_cfg )
x = x0*z0 + x1*z1 + x2*z2 + x3*z3
else: else:
x = tf.nn.sigmoid(self.out_conv(x)) x = tf.nn.sigmoid(self.out_conv(x))
@ -202,6 +183,10 @@ class DeepFakeArchi(nn.ArchiBase):
m = self.upscalem3(m) m = self.upscalem3(m)
m = tf.nn.sigmoid(self.out_convm(m)) m = tf.nn.sigmoid(self.out_convm(m))
if use_fp16:
x = tf.cast(x, tf.float32)
m = tf.cast(m, tf.float32)
return x, m return x, m
self.Encoder = Encoder self.Encoder = Encoder

View file

@ -55,8 +55,8 @@ class Conv2D(nn.LayerBase):
if kernel_initializer is None: if kernel_initializer is None:
kernel_initializer = tf.initializers.random_normal(0, 1.0, dtype=self.dtype) kernel_initializer = tf.initializers.random_normal(0, 1.0, dtype=self.dtype)
if kernel_initializer is None: #if kernel_initializer is None:
kernel_initializer = nn.initializers.ca() # kernel_initializer = nn.initializers.ca()
self.weight = tf.get_variable("weight", (self.kernel_size,self.kernel_size,self.in_ch,self.out_ch), dtype=self.dtype, initializer=kernel_initializer, trainable=self.trainable ) self.weight = tf.get_variable("weight", (self.kernel_size,self.kernel_size,self.in_ch,self.out_ch), dtype=self.dtype, initializer=kernel_initializer, trainable=self.trainable )

View file

@ -38,8 +38,8 @@ class Conv2DTranspose(nn.LayerBase):
if kernel_initializer is None: if kernel_initializer is None:
kernel_initializer = tf.initializers.random_normal(0, 1.0, dtype=self.dtype) kernel_initializer = tf.initializers.random_normal(0, 1.0, dtype=self.dtype)
if kernel_initializer is None: #if kernel_initializer is None:
kernel_initializer = nn.initializers.ca() # kernel_initializer = nn.initializers.ca()
self.weight = tf.get_variable("weight", (self.kernel_size,self.kernel_size,self.out_ch,self.in_ch), dtype=self.dtype, initializer=kernel_initializer, trainable=self.trainable ) self.weight = tf.get_variable("weight", (self.kernel_size,self.kernel_size,self.out_ch,self.in_ch), dtype=self.dtype, initializer=kernel_initializer, trainable=self.trainable )
if self.use_bias: if self.use_bias:

View file

@ -68,8 +68,8 @@ class DepthwiseConv2D(nn.LayerBase):
if kernel_initializer is None: if kernel_initializer is None:
kernel_initializer = tf.initializers.random_normal(0, 1.0, dtype=self.dtype) kernel_initializer = tf.initializers.random_normal(0, 1.0, dtype=self.dtype)
if kernel_initializer is None: #if kernel_initializer is None:
kernel_initializer = nn.initializers.ca() # kernel_initializer = nn.initializers.ca()
self.weight = tf.get_variable("weight", (self.kernel_size,self.kernel_size,self.in_ch,self.depth_multiplier), dtype=self.dtype, initializer=kernel_initializer, trainable=self.trainable ) self.weight = tf.get_variable("weight", (self.kernel_size,self.kernel_size,self.in_ch,self.depth_multiplier), dtype=self.dtype, initializer=kernel_initializer, trainable=self.trainable )

View file

@ -130,12 +130,14 @@ class UNetPatchDiscriminator(nn.ModelBase):
q=x[np.abs(np.array(x)-target_patch_size).argmin()] q=x[np.abs(np.array(x)-target_patch_size).argmin()]
return s[q][2] return s[q][2]
def on_build(self, patch_size, in_ch, base_ch = 16): def on_build(self, patch_size, in_ch, base_ch = 16, use_fp16 = False):
self.use_fp16 = use_fp16
conv_dtype = tf.float16 if use_fp16 else tf.float32
class ResidualBlock(nn.ModelBase): class ResidualBlock(nn.ModelBase):
def on_build(self, ch, kernel_size=3 ): def on_build(self, ch, kernel_size=3 ):
self.conv1 = nn.Conv2D( ch, ch, kernel_size=kernel_size, padding='SAME') self.conv1 = nn.Conv2D( ch, ch, kernel_size=kernel_size, padding='SAME', dtype=conv_dtype)
self.conv2 = nn.Conv2D( ch, ch, kernel_size=kernel_size, padding='SAME') self.conv2 = nn.Conv2D( ch, ch, kernel_size=kernel_size, padding='SAME', dtype=conv_dtype)
def forward(self, inp): def forward(self, inp):
x = self.conv1(inp) x = self.conv1(inp)
@ -146,19 +148,15 @@ class UNetPatchDiscriminator(nn.ModelBase):
prev_ch = in_ch prev_ch = in_ch
self.convs = [] self.convs = []
self.res1 = []
self.res2 = []
self.upconvs = [] self.upconvs = []
self.upres1 = []
self.upres2 = []
layers = self.find_archi(patch_size) layers = self.find_archi(patch_size)
level_chs = { i-1:v for i,v in enumerate([ min( base_ch * (2**i), 512 ) for i in range(len(layers)+1)]) } level_chs = { i-1:v for i,v in enumerate([ min( base_ch * (2**i), 512 ) for i in range(len(layers)+1)]) }
self.in_conv = nn.Conv2D( in_ch, level_chs[-1], kernel_size=1, padding='VALID') self.in_conv = nn.Conv2D( in_ch, level_chs[-1], kernel_size=1, padding='VALID', dtype=conv_dtype)
for i, (kernel_size, strides) in enumerate(layers): for i, (kernel_size, strides) in enumerate(layers):
self.convs.append ( nn.Conv2D( level_chs[i-1], level_chs[i], kernel_size=kernel_size, strides=strides, padding='SAME') ) self.convs.append ( nn.Conv2D( level_chs[i-1], level_chs[i], kernel_size=kernel_size, strides=strides, padding='SAME', dtype=conv_dtype) )
self.res1.append ( ResidualBlock(level_chs[i]) ) self.res1.append ( ResidualBlock(level_chs[i]) )
self.res2.append ( ResidualBlock(level_chs[i]) ) self.res2.append ( ResidualBlock(level_chs[i]) )
@ -170,15 +168,23 @@ class UNetPatchDiscriminator(nn.ModelBase):
self.out_conv = nn.Conv2D( level_chs[-1]*2, 1, kernel_size=1, padding='VALID') self.out_conv = nn.Conv2D( level_chs[-1]*2, 1, kernel_size=1, padding='VALID')
self.center_out = nn.Conv2D( level_chs[len(layers)-1], 1, kernel_size=1, padding='VALID') # Used in iperovs version, iperov doesn't use above for block
self.center_conv = nn.Conv2D( level_chs[len(layers)-1], level_chs[len(layers)-1], kernel_size=1, padding='VALID') # self.upconvs.insert (0, nn.Conv2DTranspose( level_chs[i]*(2 if i != len(layers)-1 else 1), level_chs[i-1], kernel_size=kernel_size, strides=strides, padding='SAME', dtype=conv_dtype) )
self.out_conv = nn.Conv2D( level_chs[-1]*2, 1, kernel_size=1, padding='VALID', dtype=conv_dtype)
self.center_out = nn.Conv2D( level_chs[len(layers)-1], 1, kernel_size=1, padding='VALID', dtype=conv_dtype)
self.center_conv = nn.Conv2D( level_chs[len(layers)-1], level_chs[len(layers)-1], kernel_size=1, padding='VALID', dtype=conv_dtype)
def forward(self, x): def forward(self, x):
if self.use_fp16:
x = tf.cast(x, tf.float16)
x = tf.nn.leaky_relu( self.in_conv(x), 0.2 ) x = tf.nn.leaky_relu( self.in_conv(x), 0.2 )
encs = [] encs = []
for conv, res1,res2 in zip(self.convs, self.res1, self.res2): for conv in self.convs:
encs.insert(0, x) encs.insert(0, x)
x = tf.nn.leaky_relu( conv(x), 0.2 ) x = tf.nn.leaky_relu( conv(x), 0.2 )
x = res1(x) x = res1(x)
@ -186,13 +192,17 @@ class UNetPatchDiscriminator(nn.ModelBase):
center_out, x = self.center_out(x), tf.nn.leaky_relu( self.center_conv(x), 0.2 ) center_out, x = self.center_out(x), tf.nn.leaky_relu( self.center_conv(x), 0.2 )
for i, (upconv, enc, upres1, upres2 ) in enumerate(zip(self.upconvs, encs, self.upres1, self.upres2)): for i, (upconv, enc) in enumerate(zip(self.upconvs, encs)):
x = tf.nn.leaky_relu( upconv(x), 0.2 ) x = tf.nn.leaky_relu( upconv(x), 0.2 )
x = tf.concat( [enc, x], axis=nn.conv2d_ch_axis) x = tf.concat( [enc, x], axis=nn.conv2d_ch_axis)
x = upres1(x)
x = upres2(x)
return center_out, self.out_conv(x) x = self.out_conv(x)
if self.use_fp16:
center_out = tf.cast(center_out, tf.float32)
x = tf.cast(x, tf.float32)
return center_out, x
nn.UNetPatchDiscriminator = UNetPatchDiscriminator nn.UNetPatchDiscriminator = UNetPatchDiscriminator

View file

@ -90,7 +90,7 @@ class XSeg(nn.ModelBase):
self.out_conv = nn.Conv2D (base_ch, out_ch, kernel_size=3, padding='SAME') self.out_conv = nn.Conv2D (base_ch, out_ch, kernel_size=3, padding='SAME')
def forward(self, inp): def forward(self, inp, pretrain=False):
x = inp x = inp
x = self.conv01(x) x = self.conv01(x)
@ -126,29 +126,41 @@ class XSeg(nn.ModelBase):
x = nn.reshape_4D (x, 4, 4, self.base_ch*8 ) x = nn.reshape_4D (x, 4, 4, self.base_ch*8 )
x = self.up5(x) x = self.up5(x)
if pretrain:
x5 = tf.zeros_like(x5)
x = self.uconv53(tf.concat([x,x5],axis=nn.conv2d_ch_axis)) x = self.uconv53(tf.concat([x,x5],axis=nn.conv2d_ch_axis))
x = self.uconv52(x) x = self.uconv52(x)
x = self.uconv51(x) x = self.uconv51(x)
x = self.up4(x) x = self.up4(x)
if pretrain:
x4 = tf.zeros_like(x4)
x = self.uconv43(tf.concat([x,x4],axis=nn.conv2d_ch_axis)) x = self.uconv43(tf.concat([x,x4],axis=nn.conv2d_ch_axis))
x = self.uconv42(x) x = self.uconv42(x)
x = self.uconv41(x) x = self.uconv41(x)
x = self.up3(x) x = self.up3(x)
if pretrain:
x3 = tf.zeros_like(x3)
x = self.uconv33(tf.concat([x,x3],axis=nn.conv2d_ch_axis)) x = self.uconv33(tf.concat([x,x3],axis=nn.conv2d_ch_axis))
x = self.uconv32(x) x = self.uconv32(x)
x = self.uconv31(x) x = self.uconv31(x)
x = self.up2(x) x = self.up2(x)
if pretrain:
x2 = tf.zeros_like(x2)
x = self.uconv22(tf.concat([x,x2],axis=nn.conv2d_ch_axis)) x = self.uconv22(tf.concat([x,x2],axis=nn.conv2d_ch_axis))
x = self.uconv21(x) x = self.uconv21(x)
x = self.up1(x) x = self.up1(x)
if pretrain:
x1 = tf.zeros_like(x1)
x = self.uconv12(tf.concat([x,x1],axis=nn.conv2d_ch_axis)) x = self.uconv12(tf.concat([x,x1],axis=nn.conv2d_ch_axis))
x = self.uconv11(x) x = self.uconv11(x)
x = self.up0(x) x = self.up0(x)
if pretrain:
x0 = tf.zeros_like(x0)
x = self.uconv02(tf.concat([x,x0],axis=nn.conv2d_ch_axis)) x = self.uconv02(tf.concat([x,x0],axis=nn.conv2d_ch_axis))
x = self.uconv01(x) x = self.uconv01(x)

View file

@ -50,11 +50,11 @@ class AdaBelief(nn.OptimizerBase):
updates = [] updates = []
if self.clipnorm > 0.0: if self.clipnorm > 0.0:
norm = tf.sqrt( sum([tf.reduce_sum(tf.square(g)) for g,v in grads_vars])) norm = tf.sqrt( sum([tf.reduce_sum(tf.square(tf.cast(g, tf.float32))) for g,v in grads_vars]))
updates += [ state_ops.assign_add( self.iterations, 1) ] updates += [ state_ops.assign_add( self.iterations, 1) ]
for i, (g,v) in enumerate(grads_vars): for i, (g,v) in enumerate(grads_vars):
if self.clipnorm > 0.0: if self.clipnorm > 0.0:
g = self.tf_clip_norm(g, self.clipnorm, norm) g = self.tf_clip_norm(g, self.clipnorm, tf.cast(norm, g.dtype) )
ms = self.ms_dict[ v.name ] ms = self.ms_dict[ v.name ]
vs = self.vs_dict[ v.name ] vs = self.vs_dict[ v.name ]

View file

@ -47,11 +47,11 @@ class RMSprop(nn.OptimizerBase):
updates = [] updates = []
if self.clipnorm > 0.0: if self.clipnorm > 0.0:
norm = tf.sqrt( sum([tf.reduce_sum(tf.square(g)) for g,v in grads_vars])) norm = tf.sqrt( sum([tf.reduce_sum(tf.square(tf.cast(g, tf.float32))) for g,v in grads_vars]))
updates += [ state_ops.assign_add( self.iterations, 1) ] updates += [ state_ops.assign_add( self.iterations, 1) ]
for i, (g,v) in enumerate(grads_vars): for i, (g,v) in enumerate(grads_vars):
if self.clipnorm > 0.0: if self.clipnorm > 0.0:
g = self.tf_clip_norm(g, self.clipnorm, norm) g = self.tf_clip_norm(g, self.clipnorm, tf.cast(norm, g.dtype) )
a = self.accumulators_dict[ v.name ] a = self.accumulators_dict[ v.name ]

Binary file not shown.

Before

Width:  |  Height:  |  Size: 871 KiB

After

Width:  |  Height:  |  Size: 1 MiB

Before After
Before After

Binary file not shown.

View file

@ -81,8 +81,8 @@ class XSegNet(object):
def get_resolution(self): def get_resolution(self):
return self.resolution return self.resolution
def flow(self, x): def flow(self, x, pretrain=False):
return self.model(x) return self.model(x, pretrain=pretrain)
def get_weights(self): def get_weights(self):
return self.model_weights return self.model_weights

10
main.py
View file

@ -159,6 +159,16 @@ if __name__ == "__main__":
p.add_argument('--execute-program', dest="execute_program", default=[], action='append', nargs='+') p.add_argument('--execute-program', dest="execute_program", default=[], action='append', nargs='+')
p.set_defaults (func=process_train) p.set_defaults (func=process_train)
def process_exportdfm(arguments):
osex.set_process_lowest_prio()
from mainscripts import ExportDFM
ExportDFM.main(model_class_name = arguments.model_name, saved_models_path = Path(arguments.model_dir))
p = subparsers.add_parser( "exportdfm", help="Export model to use in DeepFaceLive.")
p.add_argument('--model-dir', required=True, action=fixPathAction, dest="model_dir", help="Saved models dir.")
p.add_argument('--model', required=True, dest="model_name", choices=pathex.get_all_dir_names_startswith ( Path(__file__).parent / 'models' , 'Model_'), help="Model class name.")
p.set_defaults (func=process_exportdfm)
def process_merge(arguments): def process_merge(arguments):
osex.set_process_lowest_prio() osex.set_process_lowest_prio()
from mainscripts import Merger from mainscripts import Merger

22
mainscripts/ExportDFM.py Normal file
View file

@ -0,0 +1,22 @@
import os
import sys
import traceback
import queue
import threading
import time
import numpy as np
import itertools
from pathlib import Path
from core import pathex
from core import imagelib
import cv2
import models
from core.interact import interact as io
def main(model_class_name, saved_models_path):
model = models.import_model(model_class_name)(
is_exporting=True,
saved_models_path=saved_models_path,
cpu_only=True)
model.export_dfm ()

View file

@ -166,7 +166,7 @@ class FacesetResizerSubprocessor(Subprocessor):
def process_folder ( dirpath): def process_folder ( dirpath):
image_size = io.input_int(f"New image size", 512, valid_range=[256,2048]) image_size = io.input_int(f"New image size", 512, valid_range=[128,2048])
face_type = io.input_str ("Change face type", 'same', ['h','mf','f','wf','head','same']).lower() face_type = io.input_str ("Change face type", 'same', ['h','mf','f','wf','head','same']).lower()
if face_type == 'same': if face_type == 'same':

View file

@ -49,6 +49,7 @@ def main (model_class_name=None,
model = models.import_model(model_class_name)(is_training=False, model = models.import_model(model_class_name)(is_training=False,
saved_models_path=saved_models_path, saved_models_path=saved_models_path,
force_gpu_idxs=force_gpu_idxs, force_gpu_idxs=force_gpu_idxs,
force_model_name=force_model_name,
cpu_only=cpu_only) cpu_only=cpu_only)
predictor_func, predictor_input_shape, cfg = model.get_MergerConfig() predictor_func, predictor_input_shape, cfg = model.get_MergerConfig()

View file

@ -85,11 +85,8 @@ def trainerThread (s2c, c2s, e,
if not saved_models_path.exists(): if not saved_models_path.exists():
saved_models_path.mkdir(exist_ok=True, parents=True) saved_models_path.mkdir(exist_ok=True, parents=True)
if dump_ckpt:
cpu_only=True
model = models.import_model(model_class_name)( model = models.import_model(model_class_name)(
is_training=not dump_ckpt, is_training=True,
saved_models_path=saved_models_path, saved_models_path=saved_models_path,
training_data_src_path=training_data_src_path, training_data_src_path=training_data_src_path,
training_data_dst_path=training_data_dst_path, training_data_dst_path=training_data_dst_path,
@ -102,11 +99,6 @@ def trainerThread (s2c, c2s, e,
silent_start=silent_start, silent_start=silent_start,
debug=debug) debug=debug)
if dump_ckpt:
e.set()
model.dump_ckpt()
break
is_reached_goal = model.is_reached_iter_goal() is_reached_goal = model.is_reached_iter_goal()
if tensorboard_dir is not None: if tensorboard_dir is not None:

View file

@ -23,6 +23,7 @@ from samplelib import SampleGeneratorBase
class ModelBase(object): class ModelBase(object):
def __init__(self, is_training=False, def __init__(self, is_training=False,
is_exporting=False,
saved_models_path=None, saved_models_path=None,
training_data_src_path=None, training_data_src_path=None,
training_data_dst_path=None, training_data_dst_path=None,
@ -37,6 +38,7 @@ class ModelBase(object):
silent_start=False, silent_start=False,
**kwargs): **kwargs):
self.is_training = is_training self.is_training = is_training
self.is_exporting = is_exporting
self.saved_models_path = saved_models_path self.saved_models_path = saved_models_path
self.training_data_src_path = training_data_src_path self.training_data_src_path = training_data_src_path
self.training_data_dst_path = training_data_dst_path self.training_data_dst_path = training_data_dst_path
@ -234,7 +236,7 @@ class ModelBase(object):
preview_id_counter = 0 preview_id_counter = 0
while not choosed: while not choosed:
self.sample_for_preview = self.generate_next_samples() self.sample_for_preview = self.generate_next_samples()
previews = self.get_static_previews() previews = self.get_history_previews()
io.show_image( wnd_name, ( previews[preview_id_counter % len(previews) ][1] *255).astype(np.uint8) ) io.show_image( wnd_name, ( previews[preview_id_counter % len(previews) ][1] *255).astype(np.uint8) )
@ -260,7 +262,7 @@ class ModelBase(object):
self.sample_for_preview = self.generate_next_samples() self.sample_for_preview = self.generate_next_samples()
try: try:
self.get_static_previews() self.get_history_previews()
except: except:
self.sample_for_preview = self.generate_next_samples() self.sample_for_preview = self.generate_next_samples()
@ -357,7 +359,7 @@ class ModelBase(object):
return ( ('loss_src', 0), ('loss_dst', 0) ) return ( ('loss_src', 0), ('loss_dst', 0) )
#overridable #overridable
def onGetPreview(self, sample): def onGetPreview(self, sample, for_history=False):
#you can return multiple previews #you can return multiple previews
#return [ ('preview_name',preview_rgb), ... ] #return [ ('preview_name',preview_rgb), ... ]
return [] return []
@ -387,8 +389,8 @@ class ModelBase(object):
def get_previews(self): def get_previews(self):
return self.onGetPreview ( self.last_sample ) return self.onGetPreview ( self.last_sample )
def get_static_previews(self): def get_history_previews(self):
return self.onGetPreview (self.sample_for_preview) return self.onGetPreview (self.sample_for_preview, for_history=True)
def get_preview_history_writer(self): def get_preview_history_writer(self):
if self.preview_history_writer is None: if self.preview_history_writer is None:
@ -493,7 +495,7 @@ class ModelBase(object):
plist += [ (bgr, self.get_strpath_storage_for_file('preview_%s.jpg' % (name) ) ) ] plist += [ (bgr, self.get_strpath_storage_for_file('preview_%s.jpg' % (name) ) ) ]
if self.write_preview_history: if self.write_preview_history:
previews = self.get_static_previews() previews = self.get_history_previews()
for i in range(len(previews)): for i in range(len(previews)):
name, bgr = previews[i] name, bgr = previews[i]
path = self.preview_history_path / name path = self.preview_history_path / name

View file

@ -16,32 +16,17 @@ class AMPModel(ModelBase):
#override #override
def on_initialize_options(self): def on_initialize_options(self):
device_config = nn.getCurrentDeviceConfig()
lowest_vram = 2
if len(device_config.devices) != 0:
lowest_vram = device_config.devices.get_worst_device().total_mem_gb
if lowest_vram >= 4:
suggest_batch_size = 8
else:
suggest_batch_size = 4
yn_str = {True:'y',False:'n'}
min_res = 64
max_res = 640
default_resolution = self.options['resolution'] = self.load_or_def_option('resolution', 224) default_resolution = self.options['resolution'] = self.load_or_def_option('resolution', 224)
default_face_type = self.options['face_type'] = self.load_or_def_option('face_type', 'wf') default_face_type = self.options['face_type'] = self.load_or_def_option('face_type', 'wf')
default_models_opt_on_gpu = self.options['models_opt_on_gpu'] = self.load_or_def_option('models_opt_on_gpu', True) default_models_opt_on_gpu = self.options['models_opt_on_gpu'] = self.load_or_def_option('models_opt_on_gpu', True)
default_ae_dims = self.options['ae_dims'] = self.load_or_def_option('ae_dims', 256) default_ae_dims = self.options['ae_dims'] = self.load_or_def_option('ae_dims', 256)
default_inter_dims = self.options['inter_dims'] = self.load_or_def_option('inter_dims', 1024)
default_e_dims = self.options['e_dims'] = self.load_or_def_option('e_dims', 64) default_e_dims = self.options['e_dims'] = self.load_or_def_option('e_dims', 64)
default_d_dims = self.options['d_dims'] = self.options.get('d_dims', None) default_d_dims = self.options['d_dims'] = self.options.get('d_dims', None)
default_d_mask_dims = self.options['d_mask_dims'] = self.options.get('d_mask_dims', None) default_d_mask_dims = self.options['d_mask_dims'] = self.options.get('d_mask_dims', None)
default_morph_factor = self.options['morph_factor'] = self.options.get('morph_factor', 0.33) default_morph_factor = self.options['morph_factor'] = self.options.get('morph_factor', 0.5)
default_masked_training = self.options['masked_training'] = self.load_or_def_option('masked_training', True)
default_eyes_mouth_prio = self.options['eyes_mouth_prio'] = self.load_or_def_option('eyes_mouth_prio', True)
default_uniform_yaw = self.options['uniform_yaw'] = self.load_or_def_option('uniform_yaw', False) default_uniform_yaw = self.options['uniform_yaw'] = self.load_or_def_option('uniform_yaw', False)
lr_dropout = self.load_or_def_option('lr_dropout', 'n') lr_dropout = self.load_or_def_option('lr_dropout', 'n')
@ -60,8 +45,6 @@ class AMPModel(ModelBase):
default_ct_mode = self.options['ct_mode'] = self.load_or_def_option('ct_mode', 'none') default_ct_mode = self.options['ct_mode'] = self.load_or_def_option('ct_mode', 'none')
default_random_color = self.options['random_color'] = self.load_or_def_option('random_color', False) default_random_color = self.options['random_color'] = self.load_or_def_option('random_color', False)
default_clipgrad = self.options['clipgrad'] = self.load_or_def_option('clipgrad', False) default_clipgrad = self.options['clipgrad'] = self.load_or_def_option('clipgrad', False)
default_pretrain = self.options['pretrain'] = self.load_or_def_option('pretrain', False)
ask_override = self.ask_override() ask_override = self.ask_override()
if self.is_first_run() or ask_override: if self.is_first_run() or ask_override:
@ -70,13 +53,13 @@ class AMPModel(ModelBase):
self.ask_target_iter() self.ask_target_iter()
self.ask_random_src_flip() self.ask_random_src_flip()
self.ask_random_dst_flip() self.ask_random_dst_flip()
self.ask_batch_size(suggest_batch_size) self.ask_batch_size(8)
if self.is_first_run(): if self.is_first_run():
resolution = io.input_int("Resolution", default_resolution, add_info="64-640", help_message="More resolution requires more VRAM and time to train. Value will be adjusted to multiple of 32 .") resolution = io.input_int("Resolution", default_resolution, add_info="64-640", help_message="More resolution requires more VRAM and time to train. Value will be adjusted to multiple of 32 .")
resolution = np.clip ( (resolution // 32) * 32, min_res, max_res) resolution = np.clip ( (resolution // 32) * 32, 64, 640)
self.options['resolution'] = resolution self.options['resolution'] = resolution
self.options['face_type'] = io.input_str ("Face type", default_face_type, ['wf','head'], help_message="whole face / head").lower() self.options['face_type'] = io.input_str ("Face type", default_face_type, ['f','wf','head'], help_message="whole face / head").lower()
default_d_dims = self.options['d_dims'] = self.load_or_def_option('d_dims', 64) default_d_dims = self.options['d_dims'] = self.load_or_def_option('d_dims', 64)
@ -86,7 +69,8 @@ class AMPModel(ModelBase):
default_d_mask_dims = self.options['d_mask_dims'] = self.load_or_def_option('d_mask_dims', default_d_mask_dims) default_d_mask_dims = self.options['d_mask_dims'] = self.load_or_def_option('d_mask_dims', default_d_mask_dims)
if self.is_first_run(): if self.is_first_run():
self.options['ae_dims'] = np.clip ( io.input_int("AutoEncoder dimensions", default_ae_dims, add_info="32-1024", help_message="All face information will packed to AE dims. If amount of AE dims are not enough, then for example closed eyes will not be recognized. More dims are better, but require more VRAM. You can fine-tune model size to fit your GPU." ), 32, 1024 ) self.options['ae_dims'] = np.clip ( io.input_int("AutoEncoder dimensions", default_ae_dims, add_info="32-1024", help_message="All face information will packed to AE dims. If amount of AE dims are not enough, then for example closed eyes will not be recognized. More dims are better, but require more VRAM. You can fine-tune model size to fit your GPU." ), 32, 1024 )
self.options['inter_dims'] = np.clip ( io.input_int("Inter dimensions", default_inter_dims, add_info="32-2048", help_message="Should be equal or more than AutoEncoder dimensions. More dims are better, but require more VRAM. You can fine-tune model size to fit your GPU." ), 32, 2048 )
e_dims = np.clip ( io.input_int("Encoder dimensions", default_e_dims, add_info="16-256", help_message="More dims help to recognize more facial features and achieve sharper result, but require more VRAM. You can fine-tune model size to fit your GPU." ), 16, 256 ) e_dims = np.clip ( io.input_int("Encoder dimensions", default_e_dims, add_info="16-256", help_message="More dims help to recognize more facial features and achieve sharper result, but require more VRAM. You can fine-tune model size to fit your GPU." ), 16, 256 )
self.options['e_dims'] = e_dims + e_dims % 2 self.options['e_dims'] = e_dims + e_dims % 2
@ -101,11 +85,14 @@ class AMPModel(ModelBase):
morph_factor = np.clip ( io.input_number ("Morph factor.", default_morph_factor, add_info="0.1 .. 0.5", help_message="The smaller the value, the more src-like facial expressions will appear. The larger the value, the less space there is to train a large dst faceset in the neural network. Typical fine value is 0.33"), 0.1, 0.5 ) morph_factor = np.clip ( io.input_number ("Morph factor.", default_morph_factor, add_info="0.1 .. 0.5", help_message="The smaller the value, the more src-like facial expressions will appear. The larger the value, the less space there is to train a large dst faceset in the neural network. Typical fine value is 0.33"), 0.1, 0.5 )
self.options['morph_factor'] = morph_factor self.options['morph_factor'] = morph_factor
if self.options['face_type'] == 'wf' or self.options['face_type'] == 'head': # if self.options['face_type'] == 'wf' or self.options['face_type'] == 'head':
self.options['masked_training'] = io.input_bool ("Masked training", default_masked_training, help_message="This option is available only for 'whole_face' or 'head' type. Masked training clips training area to full_face mask or XSeg mask, thus network will train the faces properly.") # self.options['masked_training'] = io.input_bool ("Masked training", default_masked_training, help_message="This option is available only for 'whole_face' or 'head' type. Masked training clips training area to full_face mask or XSeg mask, thus network will train the faces properly.")
self.options['eyes_mouth_prio'] = io.input_bool ("Eyes and mouth priority", default_eyes_mouth_prio, help_message='Helps to fix eye problems during training like "alien eyes" and wrong eyes direction. Also makes the detail of the teeth higher.') # self.options['eyes_mouth_prio'] = io.input_bool ("Eyes and mouth priority", default_eyes_mouth_prio, help_message='Helps to fix eye problems during training like "alien eyes" and wrong eyes direction. Also makes the detail of the teeth higher.')
if self.is_first_run() or ask_override:
self.options['uniform_yaw'] = io.input_bool ("Uniform yaw distribution of samples", default_uniform_yaw, help_message='Helps to fix blurry side faces due to small amount of them in the faceset.') self.options['uniform_yaw'] = io.input_bool ("Uniform yaw distribution of samples", default_uniform_yaw, help_message='Helps to fix blurry side faces due to small amount of them in the faceset.')
self.options['lr_dropout'] = io.input_str (f"Use learning rate dropout", default_lr_dropout, ['n','y','cpu'], help_message="When the face is trained enough, you can enable this option to get extra sharpness and reduce subpixel shake for less amount of iterations. Enabled it before `disable random warp` and before GAN. \nn - disabled.\ny - enabled\ncpu - enabled on CPU. This allows not to use extra VRAM, sacrificing 20% time of iteration.")
default_gan_power = self.options['gan_power'] = self.load_or_def_option('gan_power', 0.0) default_gan_power = self.options['gan_power'] = self.load_or_def_option('gan_power', 0.0)
default_gan_patch_size = self.options['gan_patch_size'] = self.load_or_def_option('gan_patch_size', self.options['resolution'] // 8) default_gan_patch_size = self.options['gan_patch_size'] = self.load_or_def_option('gan_patch_size', self.options['resolution'] // 8)
@ -132,7 +119,7 @@ class AMPModel(ModelBase):
gan_patch_size = np.clip ( io.input_int("GAN patch size", default_gan_patch_size, add_info="3-640", help_message="The higher patch size, the higher the quality, the more VRAM is required. You can get sharper edges even at the lowest setting. Typical fine value is resolution / 8." ), 3, 640 ) gan_patch_size = np.clip ( io.input_int("GAN patch size", default_gan_patch_size, add_info="3-640", help_message="The higher patch size, the higher the quality, the more VRAM is required. You can get sharper edges even at the lowest setting. Typical fine value is resolution / 8." ), 3, 640 )
self.options['gan_patch_size'] = gan_patch_size self.options['gan_patch_size'] = gan_patch_size
gan_dims = np.clip ( io.input_int("GAN dimensions", default_gan_dims, add_info="4-64", help_message="The dimensions of the GAN network. The higher dimensions, the more VRAM is required. You can get sharper edges even at the lowest setting. Typical fine value is 16." ), 4, 64 ) gan_dims = np.clip ( io.input_int("GAN dimensions", default_gan_dims, add_info="4-512", help_message="The dimensions of the GAN network. The higher dimensions, the more VRAM is required. You can get sharper edges even at the lowest setting. Typical fine value is 16." ), 4, 512 )
self.options['gan_dims'] = gan_dims self.options['gan_dims'] = gan_dims
self.options['background_power'] = np.clip ( io.input_number("Background power", default_background_power, add_info="0.0..1.0", help_message="Learn the area outside of the mask. Helps smooth out area near the mask boundaries. Can be used at any time"), 0.0, 1.0 ) self.options['background_power'] = np.clip ( io.input_number("Background power", default_background_power, add_info="0.0..1.0", help_message="Learn the area outside of the mask. Helps smooth out area near the mask boundaries. Can be used at any time"), 0.0, 1.0 )
@ -141,10 +128,7 @@ class AMPModel(ModelBase):
self.options['random_color'] = io.input_bool ("Random color", default_random_color, help_message="Samples are randomly rotated around the L axis in LAB colorspace, helps generalize training") self.options['random_color'] = io.input_bool ("Random color", default_random_color, help_message="Samples are randomly rotated around the L axis in LAB colorspace, helps generalize training")
self.options['clipgrad'] = io.input_bool ("Enable gradient clipping", default_clipgrad, help_message="Gradient clipping reduces chance of model collapse, sacrificing speed of training.") self.options['clipgrad'] = io.input_bool ("Enable gradient clipping", default_clipgrad, help_message="Gradient clipping reduces chance of model collapse, sacrificing speed of training.")
self.options['pretrain'] = io.input_bool ("Enable pretraining mode", default_pretrain, help_message="Pretrain the model with large amount of various faces. After that, model can be used to train the fakes more quickly. Forces random_warp=N, random_flips=Y, gan_power=0.0, lr_dropout=N, uniform_yaw=Y")
self.gan_model_changed = (default_gan_patch_size != self.options['gan_patch_size']) or (default_gan_dims != self.options['gan_dims']) self.gan_model_changed = (default_gan_patch_size != self.options['gan_patch_size']) or (default_gan_dims != self.options['gan_dims'])
self.pretrain_just_disabled = (default_pretrain == True and self.options['pretrain'] == False)
#override #override
def on_initialize(self): def on_initialize(self):
@ -154,42 +138,50 @@ class AMPModel(ModelBase):
nn.initialize(data_format=self.model_data_format) nn.initialize(data_format=self.model_data_format)
tf = nn.tf tf = nn.tf
self.resolution = resolution = self.options['resolution'] input_ch=3
resolution = self.resolution = self.options['resolution']
e_dims = self.options['e_dims']
ae_dims = self.options['ae_dims']
inter_dims = self.inter_dims = self.options['inter_dims']
inter_res = self.inter_res = resolution // 32
d_dims = self.options['d_dims']
d_mask_dims = self.options['d_mask_dims']
face_type = self.face_type = {'f' : FaceType.FULL,
'wf' : FaceType.WHOLE_FACE,
'head' : FaceType.HEAD}[ self.options['face_type'] ]
morph_factor = self.options['morph_factor']
gan_power = self.gan_power = self.options['gan_power']
random_warp = self.options['random_warp']
lowest_dense_res = self.lowest_dense_res = resolution // 32 ct_mode = self.options['ct_mode']
if ct_mode == 'none':
ct_mode = None
use_fp16 = False
if self.is_exporting:
use_fp16 = io.input_bool ("Export quantized?", False, help_message='Makes the exported model faster. If you have problems, disable this option.')
conv_dtype = tf.float16 if use_fp16 else tf.float32
class Downscale(nn.ModelBase): class Downscale(nn.ModelBase):
def __init__(self, in_ch, out_ch, kernel_size=5, *kwargs ): def on_build(self, in_ch, out_ch, kernel_size=5 ):
self.in_ch = in_ch self.conv1 = nn.Conv2D( in_ch, out_ch, kernel_size=kernel_size, strides=2, padding='SAME', dtype=conv_dtype)
self.out_ch = out_ch
self.kernel_size = kernel_size
super().__init__(*kwargs)
def on_build(self, *args, **kwargs ):
self.conv1 = nn.Conv2D( self.in_ch, self.out_ch, kernel_size=self.kernel_size, strides=2, padding='SAME')
def forward(self, x): def forward(self, x):
x = self.conv1(x) return tf.nn.leaky_relu(self.conv1(x), 0.1)
x = tf.nn.leaky_relu(x, 0.1)
return x
def get_out_ch(self):
return self.out_ch
class Upscale(nn.ModelBase): class Upscale(nn.ModelBase):
def on_build(self, in_ch, out_ch, kernel_size=3 ): def on_build(self, in_ch, out_ch, kernel_size=3 ):
self.conv1 = nn.Conv2D( in_ch, out_ch*4, kernel_size=kernel_size, padding='SAME') self.conv1 = nn.Conv2D(in_ch, out_ch*4, kernel_size=kernel_size, padding='SAME', dtype=conv_dtype)
def forward(self, x): def forward(self, x):
x = self.conv1(x) x = nn.depth_to_space(tf.nn.leaky_relu(self.conv1(x), 0.1), 2)
x = tf.nn.leaky_relu(x, 0.1)
x = nn.depth_to_space(x, 2)
return x return x
class ResidualBlock(nn.ModelBase): class ResidualBlock(nn.ModelBase):
def on_build(self, ch, kernel_size=3 ): def on_build(self, ch, kernel_size=3 ):
self.conv1 = nn.Conv2D( ch, ch, kernel_size=kernel_size, padding='SAME') self.conv1 = nn.Conv2D( ch, ch, kernel_size=kernel_size, padding='SAME', dtype=conv_dtype)
self.conv2 = nn.Conv2D( ch, ch, kernel_size=kernel_size, padding='SAME') self.conv2 = nn.Conv2D( ch, ch, kernel_size=kernel_size, padding='SAME', dtype=conv_dtype)
def forward(self, inp): def forward(self, inp):
x = self.conv1(inp) x = self.conv1(inp)
@ -199,18 +191,19 @@ class AMPModel(ModelBase):
return x return x
class Encoder(nn.ModelBase): class Encoder(nn.ModelBase):
def on_build(self, in_ch, e_ch, ae_ch): def on_build(self):
self.down1 = Downscale(in_ch, e_ch, kernel_size=5) self.down1 = Downscale(input_ch, e_dims, kernel_size=5)
self.res1 = ResidualBlock(e_ch) self.res1 = ResidualBlock(e_dims)
self.down2 = Downscale(e_ch, e_ch*2, kernel_size=5) self.down2 = Downscale(e_dims, e_dims*2, kernel_size=5)
self.down3 = Downscale(e_ch*2, e_ch*4, kernel_size=5) self.down3 = Downscale(e_dims*2, e_dims*4, kernel_size=5)
self.down4 = Downscale(e_ch*4, e_ch*8, kernel_size=5) self.down4 = Downscale(e_dims*4, e_dims*8, kernel_size=5)
self.down5 = Downscale(e_ch*8, e_ch*8, kernel_size=5) self.down5 = Downscale(e_dims*8, e_dims*8, kernel_size=5)
self.res5 = ResidualBlock(e_ch*8) self.res5 = ResidualBlock(e_dims*8)
self.dense1 = nn.Dense( lowest_dense_res*lowest_dense_res*e_ch*8, ae_ch ) self.dense1 = nn.Dense( (( resolution//(2**5) )**2) * e_dims*8, ae_dims )
def forward(self, inp): def forward(self, x):
x = inp if use_fp16:
x = tf.cast(x, tf.float16)
x = self.down1(x) x = self.down1(x)
x = self.res1(x) x = self.res1(x)
x = self.down2(x) x = self.down2(x)
@ -218,56 +211,51 @@ class AMPModel(ModelBase):
x = self.down4(x) x = self.down4(x)
x = self.down5(x) x = self.down5(x)
x = self.res5(x) x = self.res5(x)
x = nn.flatten(x) if use_fp16:
x = nn.pixel_norm(x, axes=-1) x = tf.cast(x, tf.float32)
x = nn.pixel_norm(nn.flatten(x), axes=-1)
x = self.dense1(x) x = self.dense1(x)
return x return x
class Inter(nn.ModelBase): class Inter(nn.ModelBase):
def __init__(self, ae_ch, ae_out_ch, **kwargs):
self.ae_ch, self.ae_out_ch = ae_ch, ae_out_ch
super().__init__(**kwargs)
def on_build(self): def on_build(self):
ae_ch, ae_out_ch = self.ae_ch, self.ae_out_ch self.dense2 = nn.Dense(ae_dims, inter_res * inter_res * inter_dims)
self.dense2 = nn.Dense( ae_ch, lowest_dense_res * lowest_dense_res * ae_out_ch )
def forward(self, inp): def forward(self, inp):
x = inp x = inp
x = self.dense2(x) x = self.dense2(x)
x = nn.reshape_4D (x, lowest_dense_res, lowest_dense_res, self.ae_out_ch) x = nn.reshape_4D (x, inter_res, inter_res, inter_dims)
return x return x
def get_out_ch(self):
return self.ae_out_ch
class Decoder(nn.ModelBase): class Decoder(nn.ModelBase):
def on_build(self, in_ch, d_ch, d_mask_ch ): def on_build(self ):
self.upscale0 = Upscale(in_ch, d_ch*8, kernel_size=3) self.upscale0 = Upscale(inter_dims, d_dims*8, kernel_size=3)
self.upscale1 = Upscale(d_ch*8, d_ch*8, kernel_size=3) self.upscale1 = Upscale(d_dims*8, d_dims*8, kernel_size=3)
self.upscale2 = Upscale(d_ch*8, d_ch*4, kernel_size=3) self.upscale2 = Upscale(d_dims*8, d_dims*4, kernel_size=3)
self.upscale3 = Upscale(d_ch*4, d_ch*2, kernel_size=3) self.upscale3 = Upscale(d_dims*4, d_dims*2, kernel_size=3)
self.res0 = ResidualBlock(d_ch*8, kernel_size=3) self.res0 = ResidualBlock(d_dims*8, kernel_size=3)
self.res1 = ResidualBlock(d_ch*8, kernel_size=3) self.res1 = ResidualBlock(d_dims*8, kernel_size=3)
self.res2 = ResidualBlock(d_ch*4, kernel_size=3) self.res2 = ResidualBlock(d_dims*4, kernel_size=3)
self.res3 = ResidualBlock(d_ch*2, kernel_size=3) self.res3 = ResidualBlock(d_dims*2, kernel_size=3)
self.upscalem0 = Upscale(in_ch, d_mask_ch*8, kernel_size=3) self.upscalem0 = Upscale(inter_dims, d_mask_dims*8, kernel_size=3)
self.upscalem1 = Upscale(d_mask_ch*8, d_mask_ch*8, kernel_size=3) self.upscalem1 = Upscale(d_mask_dims*8, d_mask_dims*8, kernel_size=3)
self.upscalem2 = Upscale(d_mask_ch*8, d_mask_ch*4, kernel_size=3) self.upscalem2 = Upscale(d_mask_dims*8, d_mask_dims*4, kernel_size=3)
self.upscalem3 = Upscale(d_mask_ch*4, d_mask_ch*2, kernel_size=3) self.upscalem3 = Upscale(d_mask_dims*4, d_mask_dims*2, kernel_size=3)
self.upscalem4 = Upscale(d_mask_ch*2, d_mask_ch*1, kernel_size=3) self.upscalem4 = Upscale(d_mask_dims*2, d_mask_dims*1, kernel_size=3)
self.out_convm = nn.Conv2D( d_mask_ch*1, 1, kernel_size=1, padding='SAME') self.out_convm = nn.Conv2D( d_mask_dims*1, 1, kernel_size=1, padding='SAME', dtype=conv_dtype)
self.out_conv = nn.Conv2D( d_ch*2, 3, kernel_size=1, padding='SAME') self.out_conv = nn.Conv2D( d_dims*2, 3, kernel_size=1, padding='SAME', dtype=conv_dtype)
self.out_conv1 = nn.Conv2D( d_ch*2, 3, kernel_size=3, padding='SAME') self.out_conv1 = nn.Conv2D( d_dims*2, 3, kernel_size=3, padding='SAME', dtype=conv_dtype)
self.out_conv2 = nn.Conv2D( d_ch*2, 3, kernel_size=3, padding='SAME') self.out_conv2 = nn.Conv2D( d_dims*2, 3, kernel_size=3, padding='SAME', dtype=conv_dtype)
self.out_conv3 = nn.Conv2D( d_ch*2, 3, kernel_size=3, padding='SAME') self.out_conv3 = nn.Conv2D( d_dims*2, 3, kernel_size=3, padding='SAME', dtype=conv_dtype)
def forward(self, inp): def forward(self, z):
z = inp if use_fp16:
z = tf.cast(z, tf.float16)
x = self.upscale0(z) x = self.upscale0(z)
x = self.res0(x) x = self.res0(x)
@ -282,54 +270,22 @@ class AMPModel(ModelBase):
self.out_conv1(x), self.out_conv1(x),
self.out_conv2(x), self.out_conv2(x),
self.out_conv3(x)), nn.conv2d_ch_axis), 2) ) self.out_conv3(x)), nn.conv2d_ch_axis), 2) )
m = self.upscalem0(z) m = self.upscalem0(z)
m = self.upscalem1(m) m = self.upscalem1(m)
m = self.upscalem2(m) m = self.upscalem2(m)
m = self.upscalem3(m) m = self.upscalem3(m)
m = self.upscalem4(m) m = self.upscalem4(m)
m = tf.nn.sigmoid(self.out_convm(m)) m = tf.nn.sigmoid(self.out_convm(m))
if use_fp16:
x = tf.cast(x, tf.float32)
m = tf.cast(m, tf.float32)
return x, m return x, m
self.face_type = {'wf' : FaceType.WHOLE_FACE,
'head' : FaceType.HEAD}[ self.options['face_type'] ]
if 'eyes_prio' in self.options:
self.options.pop('eyes_prio')
eyes_mouth_prio = self.options['eyes_mouth_prio']
ae_dims = self.ae_dims = self.options['ae_dims']
e_dims = self.options['e_dims']
d_dims = self.options['d_dims']
d_mask_dims = self.options['d_mask_dims']
morph_factor = self.options['morph_factor']
pretrain = self.pretrain = self.options['pretrain']
if self.pretrain_just_disabled:
self.set_iter(0)
self.gan_power = gan_power = 0.0 if self.pretrain else self.options['gan_power']
random_warp = False if self.pretrain else self.options['random_warp']
random_src_flip = self.random_src_flip if not self.pretrain else True
random_dst_flip = self.random_dst_flip if not self.pretrain else True
if self.pretrain:
self.options_show_override['gan_power'] = 0.0
self.options_show_override['random_warp'] = False
self.options_show_override['lr_dropout'] = 'n'
self.options_show_override['uniform_yaw'] = True
masked_training = self.options['masked_training']
ct_mode = self.options['ct_mode']
if ct_mode == 'none':
ct_mode = None
models_opt_on_gpu = False if len(devices) == 0 else self.options['models_opt_on_gpu'] models_opt_on_gpu = False if len(devices) == 0 else self.options['models_opt_on_gpu']
models_opt_device = nn.tf_default_device_name if models_opt_on_gpu and self.is_training else '/CPU:0' models_opt_device = nn.tf_default_device_name if models_opt_on_gpu and self.is_training else '/CPU:0'
optimizer_vars_on_cpu = models_opt_device=='/CPU:0' optimizer_vars_on_cpu = models_opt_device=='/CPU:0'
input_ch=3
bgr_shape = self.bgr_shape = nn.get4Dshape(resolution,resolution,input_ch) bgr_shape = self.bgr_shape = nn.get4Dshape(resolution,resolution,input_ch)
mask_shape = nn.get4Dshape(resolution,resolution,1) mask_shape = nn.get4Dshape(resolution,resolution,1)
self.model_filename_list = [] self.model_filename_list = []
@ -350,12 +306,11 @@ class AMPModel(ModelBase):
self.morph_value_t = tf.placeholder (nn.floatx, (1,), name='morph_value_t') self.morph_value_t = tf.placeholder (nn.floatx, (1,), name='morph_value_t')
# Initializing model classes # Initializing model classes
with tf.device (models_opt_device): with tf.device (models_opt_device):
self.encoder = Encoder(in_ch=input_ch, e_ch=e_dims, ae_ch=ae_dims, name='encoder') self.encoder = Encoder(name='encoder')
self.inter_src = Inter(ae_ch=ae_dims, ae_out_ch=ae_dims, name='inter_src') self.inter_src = Inter(name='inter_src')
self.inter_dst = Inter(ae_ch=ae_dims, ae_out_ch=ae_dims, name='inter_dst') self.inter_dst = Inter(name='inter_dst')
self.decoder = Decoder(in_ch=ae_dims, d_ch=d_dims, d_mask_ch=d_mask_dims, name='decoder') self.decoder = Decoder(name='decoder')
self.model_filename_list += [ [self.encoder, 'encoder.npy'], self.model_filename_list += [ [self.encoder, 'encoder.npy'],
[self.inter_src, 'inter_src.npy'], [self.inter_src, 'inter_src.npy'],
@ -363,30 +318,22 @@ class AMPModel(ModelBase):
[self.decoder , 'decoder.npy'] ] [self.decoder , 'decoder.npy'] ]
if self.is_training: if self.is_training:
if gan_power != 0:
self.GAN = nn.UNetPatchDiscriminator(patch_size=self.options['gan_patch_size'], in_ch=input_ch, base_ch=self.options['gan_dims'], name="GAN")
self.model_filename_list += [ [self.GAN, 'GAN.npy'] ]
# Initialize optimizers # Initialize optimizers
lr=5e-5
lr_dropout = 0.3 if self.options['lr_dropout'] in ['y','cpu'] and not self.pretrain else 1.0
clipnorm = 1.0 if self.options['clipgrad'] else 0.0 clipnorm = 1.0 if self.options['clipgrad'] else 0.0
lr_dropout = 0.3 if self.options['lr_dropout'] in ['y','cpu'] else 1.0
self.all_weights = self.encoder.get_weights() + self.inter_src.get_weights() + self.inter_dst.get_weights() + self.decoder.get_weights() self.all_weights = self.encoder.get_weights() + self.decoder.get_weights()
if pretrain:
self.trainable_weights = self.encoder.get_weights() + self.inter_dst.get_weights() + self.decoder.get_weights()
else:
self.trainable_weights = self.encoder.get_weights() + self.inter_src.get_weights() + self.inter_dst.get_weights() + self.decoder.get_weights()
self.src_dst_opt = nn.AdaBelief(lr=lr, lr_dropout=lr_dropout, clipnorm=clipnorm, name='src_dst_opt') self.src_dst_opt = nn.AdaBelief(lr=5e-5, lr_dropout=lr_dropout, clipnorm=clipnorm, name='src_dst_opt')
self.src_dst_opt.initialize_variables (self.all_weights, vars_on_cpu=optimizer_vars_on_cpu, lr_dropout_on_cpu=self.options['lr_dropout']=='cpu') self.src_dst_opt.initialize_variables (self.all_weights, vars_on_cpu=optimizer_vars_on_cpu)
self.model_filename_list += [ (self.src_dst_opt, 'src_dst_opt.npy') ] self.model_filename_list += [ (self.src_dst_opt, 'src_dst_opt.npy') ]
if gan_power != 0: if gan_power != 0:
self.GAN_opt = nn.AdaBelief(lr=lr, lr_dropout=lr_dropout, clipnorm=clipnorm, name='GAN_opt') self.GAN = nn.UNetPatchDiscriminator(patch_size=self.options['gan_patch_size'], in_ch=input_ch, base_ch=self.options['gan_dims'], name="GAN")
self.GAN_opt.initialize_variables ( self.GAN.get_weights(), vars_on_cpu=optimizer_vars_on_cpu, lr_dropout_on_cpu=self.options['lr_dropout']=='cpu')#+self.D_src_x2.get_weights() self.GAN_opt = nn.AdaBelief(lr=5e-5, lr_dropout=lr_dropout, clipnorm=clipnorm, name='GAN_opt')
self.model_filename_list += [ (self.GAN_opt, 'GAN_opt.npy') ] self.GAN_opt.initialize_variables ( self.GAN.get_weights(), vars_on_cpu=optimizer_vars_on_cpu)
self.model_filename_list += [ [self.GAN, 'GAN.npy'],
[self.GAN_opt, 'GAN_opt.npy'] ]
if self.is_training: if self.is_training:
# Adjust batch size for multiple GPU # Adjust batch size for multiple GPU
@ -404,10 +351,8 @@ class AMPModel(ModelBase):
gpu_src_losses = [] gpu_src_losses = []
gpu_dst_losses = [] gpu_dst_losses = []
gpu_G_loss_gvs = [] gpu_G_loss_gradients = []
gpu_GAN_loss_gvs = [] gpu_GAN_loss_grads = []
gpu_D_code_loss_gvs = []
gpu_D_src_dst_loss_gvs = []
for gpu_id in range(gpu_count): for gpu_id in range(gpu_count):
with tf.device( f'/{devices[gpu_id].tf_dev_type}:{gpu_id}' if len(devices) != 0 else f'/CPU:0' ): with tf.device( f'/{devices[gpu_id].tf_dev_type}:{gpu_id}' if len(devices) != 0 else f'/CPU:0' ):
@ -427,131 +372,66 @@ class AMPModel(ModelBase):
gpu_src_code = self.encoder (gpu_warped_src) gpu_src_code = self.encoder (gpu_warped_src)
gpu_dst_code = self.encoder (gpu_warped_dst) gpu_dst_code = self.encoder (gpu_warped_dst)
if pretrain: gpu_src_inter_src_code, gpu_src_inter_dst_code = self.inter_src (gpu_src_code), self.inter_dst (gpu_src_code)
gpu_src_inter_src_code = self.inter_src (gpu_src_code) gpu_dst_inter_src_code, gpu_dst_inter_dst_code = self.inter_src (gpu_dst_code), self.inter_dst (gpu_dst_code)
gpu_dst_inter_dst_code = self.inter_dst (gpu_dst_code)
gpu_src_code = gpu_src_inter_src_code * nn.random_binomial( [bs_per_gpu, gpu_src_inter_src_code.shape.as_list()[1], 1,1] , p=morph_factor)
gpu_dst_code = gpu_src_dst_code = gpu_dst_inter_dst_code * nn.random_binomial( [bs_per_gpu, gpu_dst_inter_dst_code.shape.as_list()[1], 1,1] , p=0.25)
else:
gpu_src_inter_src_code = self.inter_src (gpu_src_code)
gpu_src_inter_dst_code = self.inter_dst (gpu_src_code)
gpu_dst_inter_src_code = self.inter_src (gpu_dst_code)
gpu_dst_inter_dst_code = self.inter_dst (gpu_dst_code)
inter_rnd_binomial = nn.random_binomial( [bs_per_gpu, gpu_src_inter_src_code.shape.as_list()[1], 1,1] , p=morph_factor) inter_rnd_binomial = nn.random_binomial( [bs_per_gpu, gpu_src_inter_src_code.shape.as_list()[1], 1,1] , p=morph_factor)
gpu_src_code = gpu_src_inter_src_code * inter_rnd_binomial + gpu_src_inter_dst_code * (1-inter_rnd_binomial) gpu_src_code = gpu_src_inter_src_code * inter_rnd_binomial + gpu_src_inter_dst_code * (1-inter_rnd_binomial)
gpu_dst_code = gpu_dst_inter_dst_code gpu_dst_code = gpu_dst_inter_dst_code
ae_dims_slice = tf.cast(ae_dims*self.morph_value_t[0], tf.int32) inter_dims_slice = tf.cast(inter_dims*self.morph_value_t[0], tf.int32)
gpu_src_dst_code = tf.concat( (tf.slice(gpu_dst_inter_src_code, [0,0,0,0], [-1, ae_dims_slice , lowest_dense_res, lowest_dense_res]), gpu_src_dst_code = tf.concat( (tf.slice(gpu_dst_inter_src_code, [0,0,0,0], [-1, inter_dims_slice , inter_res, inter_res]),
tf.slice(gpu_dst_inter_dst_code, [0,ae_dims_slice,0,0], [-1,ae_dims-ae_dims_slice, lowest_dense_res,lowest_dense_res]) ), 1 ) tf.slice(gpu_dst_inter_dst_code, [0,inter_dims_slice,0,0], [-1,inter_dims-inter_dims_slice, inter_res,inter_res]) ), 1 )
gpu_pred_src_src, gpu_pred_src_srcm = self.decoder(gpu_src_code) gpu_pred_src_src, gpu_pred_src_srcm = self.decoder(gpu_src_code)
gpu_pred_dst_dst, gpu_pred_dst_dstm = self.decoder(gpu_dst_code) gpu_pred_dst_dst, gpu_pred_dst_dstm = self.decoder(gpu_dst_code)
gpu_pred_src_dst, gpu_pred_src_dstm = self.decoder(gpu_src_dst_code) gpu_pred_src_dst, gpu_pred_src_dstm = self.decoder(gpu_src_dst_code)
gpu_pred_src_src_list.append(gpu_pred_src_src) gpu_pred_src_src_list.append(gpu_pred_src_src), gpu_pred_src_srcm_list.append(gpu_pred_src_srcm)
gpu_pred_dst_dst_list.append(gpu_pred_dst_dst) gpu_pred_dst_dst_list.append(gpu_pred_dst_dst), gpu_pred_dst_dstm_list.append(gpu_pred_dst_dstm)
gpu_pred_src_dst_list.append(gpu_pred_src_dst) gpu_pred_src_dst_list.append(gpu_pred_src_dst), gpu_pred_src_dstm_list.append(gpu_pred_src_dstm)
gpu_pred_src_srcm_list.append(gpu_pred_src_srcm) gpu_target_srcm_blur = tf.clip_by_value( nn.gaussian_blur(gpu_target_srcm, max(1, resolution // 32) ), 0, 0.5) * 2
gpu_pred_dst_dstm_list.append(gpu_pred_dst_dstm) gpu_target_dstm_blur = tf.clip_by_value(nn.gaussian_blur(gpu_target_dstm, max(1, resolution // 32) ), 0, 0.5) * 2
gpu_pred_src_dstm_list.append(gpu_pred_src_dstm)
gpu_target_srcm_blur = nn.gaussian_blur(gpu_target_srcm, max(1, resolution // 32) ) gpu_target_srcm_anti_blur = 1.0-gpu_target_srcm_blur
gpu_target_srcm_blur = tf.clip_by_value(gpu_target_srcm_blur, 0, 0.5) * 2 gpu_target_dstm_anti_blur = 1.0-gpu_target_dstm_blur
gpu_target_dstm_blur = nn.gaussian_blur(gpu_target_dstm, max(1, resolution // 32) ) gpu_target_src_masked = gpu_target_src*gpu_target_srcm_blur
gpu_target_dstm_blur = tf.clip_by_value(gpu_target_dstm_blur, 0, 0.5) * 2 gpu_target_dst_masked = gpu_target_dst*gpu_target_dstm_blur
gpu_target_src_anti_masked = gpu_target_src*gpu_target_srcm_anti_blur
gpu_target_dst_anti_masked = gpu_target_dst*gpu_target_dstm_anti_blur
gpu_target_dst_anti_masked = gpu_target_dst*(1.0-gpu_target_dstm_blur) gpu_pred_src_src_masked = gpu_pred_src_src*gpu_target_srcm_blur
gpu_target_src_anti_masked = gpu_target_src*(1.0-gpu_target_srcm_blur) gpu_pred_dst_dst_masked = gpu_pred_dst_dst*gpu_target_dstm_blur
gpu_target_src_masked_opt = gpu_target_src*gpu_target_srcm_blur if masked_training else gpu_target_src gpu_pred_src_src_anti_masked = gpu_pred_src_src*gpu_target_srcm_anti_blur
gpu_target_dst_masked_opt = gpu_target_dst*gpu_target_dstm_blur if masked_training else gpu_target_dst gpu_pred_dst_dst_anti_masked = gpu_pred_dst_dst*gpu_target_dstm_anti_blur
gpu_pred_src_src_masked_opt = gpu_pred_src_src*gpu_target_srcm_blur if masked_training else gpu_pred_src_src # Structural loss
gpu_pred_src_src_anti_masked = gpu_pred_src_src*(1.0-gpu_target_srcm_blur) gpu_src_loss = tf.reduce_mean (5*nn.dssim(gpu_target_src_masked, gpu_pred_src_src_masked, max_val=1.0, filter_size=int(resolution/11.6)), axis=[1])
gpu_pred_dst_dst_masked_opt = gpu_pred_dst_dst*gpu_target_dstm_blur if masked_training else gpu_pred_dst_dst gpu_src_loss += tf.reduce_mean (5*nn.dssim(gpu_target_src_masked, gpu_pred_src_src_masked, max_val=1.0, filter_size=int(resolution/23.2)), axis=[1])
gpu_pred_dst_dst_anti_masked = gpu_pred_dst_dst*(1.0-gpu_target_dstm_blur) gpu_dst_loss = tf.reduce_mean (5*nn.dssim(gpu_target_dst_masked, gpu_pred_dst_dst_masked, max_val=1.0, filter_size=int(resolution/11.6) ), axis=[1])
gpu_dst_loss += tf.reduce_mean (5*nn.dssim(gpu_target_dst_masked, gpu_pred_dst_dst_masked, max_val=1.0, filter_size=int(resolution/23.2) ), axis=[1])
if self.options['loss_function'] == 'MS-SSIM': # Pixel loss
gpu_dst_loss = 10 * nn.MsSsim(bs_per_gpu, input_ch, resolution)(gpu_target_dst_masked_opt, gpu_pred_dst_dst_masked_opt, max_val=1.0) gpu_src_loss += tf.reduce_mean (10*tf.square(gpu_target_src_masked-gpu_pred_src_src_masked), axis=[1,2,3])
gpu_dst_loss += tf.reduce_mean ( 10*tf.square ( gpu_target_dst_masked_opt - gpu_pred_dst_dst_masked_opt ), axis=[1,2,3]) gpu_dst_loss += tf.reduce_mean (10*tf.square(gpu_target_dst_masked-gpu_pred_dst_dst_masked), axis=[1,2,3])
elif self.options['loss_function'] == 'MS-SSIM+L1':
gpu_dst_loss = 10 * nn.MsSsim(bs_per_gpu, input_ch, resolution, use_l1=True)(gpu_target_dst_masked_opt, gpu_pred_dst_dst_masked_opt, max_val=1.0) # Eyes+mouth prio loss
else: gpu_src_loss += tf.reduce_mean (300*tf.abs (gpu_target_src*gpu_target_srcm_em-gpu_pred_src_src*gpu_target_srcm_em), axis=[1,2,3])
if resolution < 256: gpu_dst_loss += tf.reduce_mean (300*tf.abs (gpu_target_dst*gpu_target_dstm_em-gpu_pred_dst_dst*gpu_target_dstm_em), axis=[1,2,3])
gpu_dst_loss = tf.reduce_mean ( 10*nn.dssim(gpu_target_dst_masked_opt, gpu_pred_dst_dst_masked_opt, max_val=1.0, filter_size=int(resolution/11.6) ), axis=[1])
else: # Mask loss
gpu_dst_loss = tf.reduce_mean ( 5*nn.dssim(gpu_target_dst_masked_opt, gpu_pred_dst_dst_masked_opt, max_val=1.0, filter_size=int(resolution/11.6) ), axis=[1]) gpu_src_loss += tf.reduce_mean ( 10*tf.square( gpu_target_srcm - gpu_pred_src_srcm ),axis=[1,2,3] )
gpu_dst_loss += tf.reduce_mean ( 5*nn.dssim(gpu_target_dst_masked_opt, gpu_pred_dst_dst_masked_opt, max_val=1.0, filter_size=int(resolution/23.2) ), axis=[1])
gpu_dst_loss += tf.reduce_mean ( 10*tf.square( gpu_target_dst_masked_opt- gpu_pred_dst_dst_masked_opt ), axis=[1,2,3])
if eyes_mouth_prio:
gpu_dst_loss += tf.reduce_mean ( 300*tf.abs ( gpu_target_dst*gpu_target_dstm_em - gpu_pred_dst_dst*gpu_target_dstm_em ), axis=[1,2,3])
gpu_dst_loss += tf.reduce_mean ( 10*tf.square( gpu_target_dstm - gpu_pred_dst_dstm ),axis=[1,2,3] ) gpu_dst_loss += tf.reduce_mean ( 10*tf.square( gpu_target_dstm - gpu_pred_dst_dstm ),axis=[1,2,3] )
gpu_dst_loss += 0.1*tf.reduce_mean(tf.square(gpu_pred_dst_dst_anti_masked-gpu_target_dst_anti_masked),axis=[1,2,3] )
if self.options['background_power'] > 0: # dst-dst background weak loss
bg_factor = self.options['background_power'] gpu_dst_loss += tf.reduce_mean(0.1*tf.square(gpu_pred_dst_dst_anti_masked-gpu_target_dst_anti_masked),axis=[1,2,3] )
gpu_dst_loss += 0.000001*nn.total_variation_mse(gpu_pred_dst_dst_anti_masked)
if self.options['loss_function'] == 'MS-SSIM':
gpu_dst_loss += bg_factor * 10 * nn.MsSsim(bs_per_gpu, input_ch, resolution)(gpu_target_dst, gpu_pred_dst_dst, max_val=1.0)
gpu_dst_loss += bg_factor * tf.reduce_mean ( 10*tf.square ( gpu_target_dst - gpu_pred_dst_dst ), axis=[1,2,3])
elif self.options['loss_function'] == 'MS-SSIM+L1':
gpu_dst_loss += bg_factor * 10 * nn.MsSsim(bs_per_gpu, input_ch, resolution, use_l1=True)(gpu_target_dst, gpu_pred_dst_dst, max_val=1.0)
else:
if resolution < 256:
gpu_dst_loss += bg_factor * tf.reduce_mean ( 10*nn.dssim(gpu_target_dst, gpu_pred_dst_dst, max_val=1.0, filter_size=int(resolution/11.6)), axis=[1])
else:
gpu_dst_loss += bg_factor * tf.reduce_mean ( 5*nn.dssim(gpu_target_dst, gpu_pred_dst_dst, max_val=1.0, filter_size=int(resolution/11.6)), axis=[1])
gpu_dst_loss += bg_factor * tf.reduce_mean ( 5*nn.dssim(gpu_target_dst, gpu_pred_dst_dst, max_val=1.0, filter_size=int(resolution/23.2)), axis=[1])
gpu_dst_loss += bg_factor * tf.reduce_mean ( 10*tf.square ( gpu_target_dst - gpu_pred_dst_dst ), axis=[1,2,3])
gpu_dst_losses += [gpu_dst_loss]
if not pretrain:
if self.options['loss_function'] == 'MS-SSIM':
gpu_src_loss = 10 * nn.MsSsim(bs_per_gpu, input_ch, resolution)(gpu_target_src_masked_opt, gpu_pred_src_src_masked_opt, max_val=1.0)
gpu_src_loss += tf.reduce_mean ( 10*tf.square ( gpu_target_src_masked_opt - gpu_pred_src_src_masked_opt ), axis=[1,2,3])
elif self.options['loss_function'] == 'MS-SSIM+L1':
gpu_src_loss = 10 * nn.MsSsim(bs_per_gpu, input_ch, resolution, use_l1=True)(gpu_target_src_masked_opt, gpu_pred_src_src_masked_opt, max_val=1.0)
else:
if resolution < 256:
gpu_src_loss = tf.reduce_mean ( 10*nn.dssim(gpu_target_src_masked_opt, gpu_pred_src_src_masked_opt, max_val=1.0, filter_size=int(resolution/11.6)), axis=[1])
else:
gpu_src_loss = tf.reduce_mean ( 5*nn.dssim(gpu_target_src_masked_opt, gpu_pred_src_src_masked_opt, max_val=1.0, filter_size=int(resolution/11.6)), axis=[1])
gpu_src_loss += tf.reduce_mean ( 5*nn.dssim(gpu_target_src_masked_opt, gpu_pred_src_src_masked_opt, max_val=1.0, filter_size=int(resolution/23.2)), axis=[1])
gpu_src_loss += tf.reduce_mean ( 10*tf.square ( gpu_target_src_masked_opt - gpu_pred_src_src_masked_opt ), axis=[1,2,3])
if eyes_mouth_prio:
gpu_src_loss += tf.reduce_mean ( 300*tf.abs ( gpu_target_src*gpu_target_srcm_em - gpu_pred_src_src*gpu_target_srcm_em ), axis=[1,2,3])
gpu_src_loss += tf.reduce_mean ( 10*tf.square( gpu_target_srcm - gpu_pred_src_srcm ),axis=[1,2,3] )
if self.options['background_power'] > 0:
bg_factor = self.options['background_power']
if self.options['loss_function'] == 'MS-SSIM':
gpu_src_loss += bg_factor * 10 * nn.MsSsim(bs_per_gpu, input_ch, resolution)(gpu_target_src, gpu_pred_src_src, max_val=1.0)
gpu_src_loss += bg_factor * tf.reduce_mean ( 10*tf.square ( gpu_target_src - gpu_pred_src_src ), axis=[1,2,3])
elif self.options['loss_function'] == 'MS-SSIM+L1':
gpu_src_loss += bg_factor * 10 * nn.MsSsim(bs_per_gpu, input_ch, resolution, use_l1=True)(gpu_target_src, gpu_pred_src_src, max_val=1.0)
else:
if resolution < 256:
gpu_src_loss += bg_factor * tf.reduce_mean ( 10*nn.dssim(gpu_target_src, gpu_pred_src_src, max_val=1.0, filter_size=int(resolution/11.6)), axis=[1])
else:
gpu_src_loss += bg_factor * tf.reduce_mean ( 5*nn.dssim(gpu_target_src, gpu_pred_src_src, max_val=1.0, filter_size=int(resolution/11.6)), axis=[1])
gpu_src_loss += bg_factor * tf.reduce_mean ( 5*nn.dssim(gpu_target_src, gpu_pred_src_src, max_val=1.0, filter_size=int(resolution/23.2)), axis=[1])
gpu_src_loss += bg_factor * tf.reduce_mean ( 10*tf.square ( gpu_target_src - gpu_pred_src_src ), axis=[1,2,3])
else:
gpu_src_loss = gpu_dst_loss
gpu_src_losses += [gpu_src_loss] gpu_src_losses += [gpu_src_loss]
gpu_dst_losses += [gpu_dst_loss]
if pretrain: gpu_G_loss = gpu_src_loss + gpu_dst_loss
gpu_G_loss = gpu_dst_loss
else:
gpu_G_loss = gpu_src_loss + gpu_dst_loss
def DLossOnes(logits): def DLossOnes(logits):
return tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.ones_like(logits), logits=logits), axis=[1,2,3]) return tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.ones_like(logits), logits=logits), axis=[1,2,3])
@ -560,30 +440,28 @@ class AMPModel(ModelBase):
return tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.zeros_like(logits), logits=logits), axis=[1,2,3]) return tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.zeros_like(logits), logits=logits), axis=[1,2,3])
if gan_power != 0: if gan_power != 0:
gpu_pred_src_src_d, gpu_pred_src_src_d2 = self.GAN(gpu_pred_src_src_masked_opt) gpu_pred_src_src_d, gpu_pred_src_src_d2 = self.GAN(gpu_pred_src_src_masked)
gpu_pred_dst_dst_d, gpu_pred_dst_dst_d2 = self.GAN(gpu_pred_dst_dst_masked_opt) gpu_pred_dst_dst_d, gpu_pred_dst_dst_d2 = self.GAN(gpu_pred_dst_dst_masked)
gpu_target_src_d, gpu_target_src_d2 = self.GAN(gpu_target_src_masked_opt) gpu_target_src_d, gpu_target_src_d2 = self.GAN(gpu_target_src_masked)
gpu_target_dst_d, gpu_target_dst_d2 = self.GAN(gpu_target_dst_masked_opt) gpu_target_dst_d, gpu_target_dst_d2 = self.GAN(gpu_target_dst_masked)
gpu_D_src_dst_loss = (DLossOnes (gpu_target_src_d) + DLossOnes (gpu_target_src_d2) + \ gpu_GAN_loss = (DLossOnes (gpu_target_src_d) + DLossOnes (gpu_target_src_d2) + \
DLossZeros(gpu_pred_src_src_d) + DLossZeros(gpu_pred_src_src_d2) + \ DLossZeros(gpu_pred_src_src_d) + DLossZeros(gpu_pred_src_src_d2) + \
DLossOnes (gpu_target_dst_d) + DLossOnes (gpu_target_dst_d2) + \ DLossOnes (gpu_target_dst_d) + DLossOnes (gpu_target_dst_d2) + \
DLossZeros(gpu_pred_dst_dst_d) + DLossZeros(gpu_pred_dst_dst_d2) DLossZeros(gpu_pred_dst_dst_d) + DLossZeros(gpu_pred_dst_dst_d2)
) * ( 1.0 / 8) ) * (1.0 / 8)
gpu_D_src_dst_loss_gvs += [ nn.gradients (gpu_D_src_dst_loss, self.GAN.get_weights() ) ] gpu_GAN_loss_grads += [ nn.gradients (gpu_GAN_loss, self.GAN.get_weights() ) ]
gpu_G_loss += (DLossOnes(gpu_pred_src_src_d) + DLossOnes(gpu_pred_src_src_d2) + \ gpu_G_loss += (DLossOnes(gpu_pred_src_src_d) + DLossOnes(gpu_pred_src_src_d2) + \
DLossOnes(gpu_pred_dst_dst_d) + DLossOnes(gpu_pred_dst_dst_d2) DLossOnes(gpu_pred_dst_dst_d) + DLossOnes(gpu_pred_dst_dst_d2)
) * gan_power ) * gan_power
if masked_training: # Minimal src-src-bg rec with total_variation_mse to suppress random bright dots from gan
# Minimal src-src-bg rec with total_variation_mse to suppress random bright dots from gan gpu_G_loss += 0.000001*nn.total_variation_mse(gpu_pred_src_src)
gpu_G_loss += 0.000001*nn.total_variation_mse(gpu_pred_src_src) gpu_G_loss += 0.02*tf.reduce_mean(tf.square(gpu_pred_src_src_anti_masked-gpu_target_src_anti_masked),axis=[1,2,3] )
gpu_G_loss += 0.02*tf.reduce_mean(tf.square(gpu_pred_src_src_anti_masked-gpu_target_src_anti_masked),axis=[1,2,3] )
gpu_G_loss_gvs += [ nn.gradients ( gpu_G_loss, self.trainable_weights ) ]
gpu_G_loss_gradients += [ nn.gradients ( gpu_G_loss, self.encoder.get_weights() + self.decoder.get_weights() ) ]
# Average losses and gradients, and create optimizer update ops # Average losses and gradients, and create optimizer update ops
with tf.device(f'/CPU:0'): with tf.device(f'/CPU:0'):
@ -597,17 +475,15 @@ class AMPModel(ModelBase):
with tf.device (models_opt_device): with tf.device (models_opt_device):
src_loss = tf.concat(gpu_src_losses, 0) src_loss = tf.concat(gpu_src_losses, 0)
dst_loss = tf.concat(gpu_dst_losses, 0) dst_loss = tf.concat(gpu_dst_losses, 0)
src_dst_loss_gv_op = self.src_dst_opt.get_update_op (nn.average_gv_list (gpu_G_loss_gvs)) train_op = self.src_dst_opt.get_update_op (nn.average_gv_list (gpu_G_loss_gradients))
if gan_power != 0: if gan_power != 0:
src_D_src_dst_loss_gv_op = self.GAN_opt.get_update_op (nn.average_gv_list(gpu_D_src_dst_loss_gvs) ) GAN_train_op = self.GAN_opt.get_update_op (nn.average_gv_list(gpu_GAN_loss_grads) )
#GAN_loss_gv_op = self.src_dst_opt.get_update_op (nn.average_gv_list(gpu_GAN_loss_gvs) )
# Initializing training and view functions # Initializing training and view functions
def src_dst_train(warped_src, target_src, target_srcm, target_srcm_em, \ def train(warped_src, target_src, target_srcm, target_srcm_em, \
warped_dst, target_dst, target_dstm, target_dstm_em, ): warped_dst, target_dst, target_dstm, target_dstm_em, ):
s, d, _ = nn.tf_sess.run ( [ src_loss, dst_loss, src_dst_loss_gv_op], s, d, _ = nn.tf_sess.run ([src_loss, dst_loss, train_op],
feed_dict={self.warped_src :warped_src, feed_dict={self.warped_src :warped_src,
self.target_src :target_src, self.target_src :target_src,
self.target_srcm:target_srcm, self.target_srcm:target_srcm,
@ -618,21 +494,20 @@ class AMPModel(ModelBase):
self.target_dstm_em:target_dstm_em, self.target_dstm_em:target_dstm_em,
}) })
return s, d return s, d
self.src_dst_train = src_dst_train self.train = train
if gan_power != 0: if gan_power != 0:
def D_src_dst_train(warped_src, target_src, target_srcm, target_srcm_em, \ def GAN_train(warped_src, target_src, target_srcm, target_srcm_em, \
warped_dst, target_dst, target_dstm, target_dstm_em, ): warped_dst, target_dst, target_dstm, target_dstm_em, ):
nn.tf_sess.run ([src_D_src_dst_loss_gv_op], feed_dict={self.warped_src :warped_src, nn.tf_sess.run ([GAN_train_op], feed_dict={self.warped_src :warped_src,
self.target_src :target_src, self.target_src :target_src,
self.target_srcm:target_srcm, self.target_srcm:target_srcm,
self.target_srcm_em:target_srcm_em, self.target_srcm_em:target_srcm_em,
self.warped_dst :warped_dst, self.warped_dst :warped_dst,
self.target_dst :target_dst, self.target_dst :target_dst,
self.target_dstm:target_dstm, self.target_dstm:target_dstm,
self.target_dstm_em:target_dstm_em}) self.target_dstm_em:target_dstm_em})
self.D_src_dst_train = D_src_dst_train self.GAN_train = GAN_train
def AE_view(warped_src, warped_dst, morph_value): def AE_view(warped_src, warped_dst, morph_value):
return nn.tf_sess.run ( [pred_src_src, pred_dst_dst, pred_dst_dstm, pred_src_dst, pred_src_dstm], return nn.tf_sess.run ( [pred_src_src, pred_dst_dst, pred_dst_dstm, pred_src_dst, pred_src_dstm],
@ -643,12 +518,12 @@ class AMPModel(ModelBase):
#Initializing merge function #Initializing merge function
with tf.device( nn.tf_default_device_name if len(devices) != 0 else f'/CPU:0'): with tf.device( nn.tf_default_device_name if len(devices) != 0 else f'/CPU:0'):
gpu_dst_code = self.encoder (self.warped_dst) gpu_dst_code = self.encoder (self.warped_dst)
gpu_dst_inter_src_code = self.inter_src ( gpu_dst_code) gpu_dst_inter_src_code = self.inter_src (gpu_dst_code)
gpu_dst_inter_dst_code = self.inter_dst ( gpu_dst_code) gpu_dst_inter_dst_code = self.inter_dst (gpu_dst_code)
ae_dims_slice = tf.cast(ae_dims*self.morph_value_t[0], tf.int32) inter_dims_slice = tf.cast(inter_dims*self.morph_value_t[0], tf.int32)
gpu_src_dst_code = tf.concat( ( tf.slice(gpu_dst_inter_src_code, [0,0,0,0], [-1, ae_dims_slice , lowest_dense_res, lowest_dense_res]), gpu_src_dst_code = tf.concat( ( tf.slice(gpu_dst_inter_src_code, [0,0,0,0], [-1, inter_dims_slice , inter_res, inter_res]),
tf.slice(gpu_dst_inter_dst_code, [0,ae_dims_slice,0,0], [-1,ae_dims-ae_dims_slice, lowest_dense_res,lowest_dense_res]) ), 1 ) tf.slice(gpu_dst_inter_dst_code, [0,inter_dims_slice,0,0], [-1,inter_dims-inter_dims_slice, inter_res,inter_res]) ), 1 )
gpu_pred_src_dst, gpu_pred_src_dstm = self.decoder(gpu_src_dst_code) gpu_pred_src_dst, gpu_pred_src_dstm = self.decoder(gpu_src_dst_code)
_, gpu_pred_dst_dstm = self.decoder(gpu_dst_inter_dst_code) _, gpu_pred_dst_dstm = self.decoder(gpu_dst_inter_dst_code)
@ -660,31 +535,22 @@ class AMPModel(ModelBase):
# Loading/initializing all models/optimizers weights # Loading/initializing all models/optimizers weights
for model, filename in io.progress_bar_generator(self.model_filename_list, "Initializing models"): for model, filename in io.progress_bar_generator(self.model_filename_list, "Initializing models"):
if self.pretrain_just_disabled: do_init = self.is_first_run()
do_init = False if self.is_training and gan_power != 0 and model == self.GAN:
if model == self.inter_src or model == self.inter_dst: if self.gan_model_changed:
do_init = True do_init = True
else:
do_init = self.is_first_run()
if self.is_training and gan_power != 0 and model == self.GAN:
if self.gan_model_changed:
do_init = True
if not do_init: if not do_init:
do_init = not model.load_weights( self.get_strpath_storage_for_file(filename) ) do_init = not model.load_weights( self.get_strpath_storage_for_file(filename) )
if do_init: if do_init:
model.init_weights() model.init_weights()
############### ###############
# initializing sample generators # initializing sample generators
if self.is_training: if self.is_training:
training_data_src_path = self.training_data_src_path if not self.pretrain else self.get_pretraining_data_path() training_data_src_path = self.training_data_src_path #if not self.pretrain else self.get_pretraining_data_path()
training_data_dst_path = self.training_data_dst_path if not self.pretrain else self.get_pretraining_data_path() training_data_dst_path = self.training_data_dst_path #if not self.pretrain else self.get_pretraining_data_path()
random_ct_samples_path=training_data_dst_path if ct_mode is not None and not self.pretrain else None
random_ct_samples_path=training_data_dst_path if ct_mode is not None else None #and not self.pretrain
cpu_count = min(multiprocessing.cpu_count(), 8) cpu_count = min(multiprocessing.cpu_count(), 8)
src_generators_count = cpu_count // 2 src_generators_count = cpu_count // 2
@ -712,7 +578,7 @@ class AMPModel(ModelBase):
{'sample_type': SampleProcessor.SampleType.FACE_MASK, 'warp':False , 'transform':True, 'channel_type' : SampleProcessor.ChannelType.G, 'face_mask_type' : SampleProcessor.FaceMaskType.FULL_FACE, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution}, {'sample_type': SampleProcessor.SampleType.FACE_MASK, 'warp':False , 'transform':True, 'channel_type' : SampleProcessor.ChannelType.G, 'face_mask_type' : SampleProcessor.FaceMaskType.FULL_FACE, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
{'sample_type': SampleProcessor.SampleType.FACE_MASK, 'warp':False , 'transform':True, 'channel_type' : SampleProcessor.ChannelType.G, 'face_mask_type' : SampleProcessor.FaceMaskType.FULL_FACE_EYES, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution}, {'sample_type': SampleProcessor.SampleType.FACE_MASK, 'warp':False , 'transform':True, 'channel_type' : SampleProcessor.ChannelType.G, 'face_mask_type' : SampleProcessor.FaceMaskType.FULL_FACE_EYES, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
], ],
uniform_yaw_distribution=self.options['uniform_yaw'] or self.pretrain, uniform_yaw_distribution=self.options['uniform_yaw'],# or self.pretrain,
generators_count=src_generators_count ), generators_count=src_generators_count ),
SampleGeneratorFace(training_data_dst_path, debug=self.is_debug(), batch_size=self.get_batch_size(), SampleGeneratorFace(training_data_dst_path, debug=self.is_debug(), batch_size=self.get_batch_size(),
@ -728,17 +594,18 @@ class AMPModel(ModelBase):
{'sample_type': SampleProcessor.SampleType.FACE_MASK, 'warp':False , 'transform':True, 'channel_type' : SampleProcessor.ChannelType.G, 'face_mask_type' : SampleProcessor.FaceMaskType.FULL_FACE, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution}, {'sample_type': SampleProcessor.SampleType.FACE_MASK, 'warp':False , 'transform':True, 'channel_type' : SampleProcessor.ChannelType.G, 'face_mask_type' : SampleProcessor.FaceMaskType.FULL_FACE, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
{'sample_type': SampleProcessor.SampleType.FACE_MASK, 'warp':False , 'transform':True, 'channel_type' : SampleProcessor.ChannelType.G, 'face_mask_type' : SampleProcessor.FaceMaskType.FULL_FACE_EYES, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution}, {'sample_type': SampleProcessor.SampleType.FACE_MASK, 'warp':False , 'transform':True, 'channel_type' : SampleProcessor.ChannelType.G, 'face_mask_type' : SampleProcessor.FaceMaskType.FULL_FACE_EYES, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
], ],
uniform_yaw_distribution=self.options['uniform_yaw'] or self.pretrain, uniform_yaw_distribution=self.options['uniform_yaw'],# or self.pretrain,
generators_count=dst_generators_count ) generators_count=dst_generators_count )
]) ])
self.last_src_samples_loss = [] self.last_src_samples_loss = []
self.last_dst_samples_loss = [] self.last_dst_samples_loss = []
if self.pretrain_just_disabled:
self.update_sample_for_preview(force_new=True)
def export_dfm (self):
output_path=self.get_strpath_storage_for_file('model.dfm')
io.log_info(f'Dumping .dfm to {output_path}')
def dump_ckpt(self):
tf = nn.tf tf = nn.tf
with tf.device (nn.tf_default_device_name): with tf.device (nn.tf_default_device_name):
warped_dst = tf.placeholder (nn.floatx, (None, self.resolution, self.resolution, 3), name='in_face') warped_dst = tf.placeholder (nn.floatx, (None, self.resolution, self.resolution, 3), name='in_face')
@ -749,9 +616,9 @@ class AMPModel(ModelBase):
gpu_dst_inter_src_code = self.inter_src ( gpu_dst_code) gpu_dst_inter_src_code = self.inter_src ( gpu_dst_code)
gpu_dst_inter_dst_code = self.inter_dst ( gpu_dst_code) gpu_dst_inter_dst_code = self.inter_dst ( gpu_dst_code)
ae_dims_slice = tf.cast(self.ae_dims*morph_value[0], tf.int32) inter_dims_slice = tf.cast(self.inter_dims*morph_value[0], tf.int32)
gpu_src_dst_code = tf.concat( (tf.slice(gpu_dst_inter_src_code, [0,0,0,0], [-1, ae_dims_slice , self.lowest_dense_res, self.lowest_dense_res]), gpu_src_dst_code = tf.concat( (tf.slice(gpu_dst_inter_src_code, [0,0,0,0], [-1, inter_dims_slice , self.inter_res, self.inter_res]),
tf.slice(gpu_dst_inter_dst_code, [0,ae_dims_slice,0,0], [-1,self.ae_dims-ae_dims_slice, self.lowest_dense_res,self.lowest_dense_res]) ), 1 ) tf.slice(gpu_dst_inter_dst_code, [0,inter_dims_slice,0,0], [-1,self.inter_dims-inter_dims_slice, self.inter_res,self.inter_res]) ), 1 )
gpu_pred_src_dst, gpu_pred_src_dstm = self.decoder(gpu_src_dst_code) gpu_pred_src_dst, gpu_pred_src_dstm = self.decoder(gpu_src_dst_code)
_, gpu_pred_dst_dstm = self.decoder(gpu_dst_inter_dst_code) _, gpu_pred_dst_dstm = self.decoder(gpu_dst_inter_dst_code)
@ -770,9 +637,15 @@ class AMPModel(ModelBase):
['out_face_mask','out_celeb_face','out_celeb_face_mask'] ['out_face_mask','out_celeb_face','out_celeb_face_mask']
) )
pb_filepath = self.get_strpath_storage_for_file('.pb') import tf2onnx
with tf.gfile.GFile(pb_filepath, "wb") as f: with tf.device("/CPU:0"):
f.write(output_graph_def.SerializeToString()) model_proto, _ = tf2onnx.convert._convert_common(
output_graph_def,
name='AMP',
input_names=['in_face:0','morph_value:0'],
output_names=['out_face_mask:0','out_celeb_face:0','out_celeb_face_mask:0'],
opset=13,
output_path=output_path)
#override #override
def get_model_filename_list(self): def get_model_filename_list(self):
@ -795,35 +668,35 @@ class AMPModel(ModelBase):
( (warped_src, target_src, target_srcm, target_srcm_em), \ ( (warped_src, target_src, target_srcm, target_srcm_em), \
(warped_dst, target_dst, target_dstm, target_dstm_em) ) = self.generate_next_samples() (warped_dst, target_dst, target_dstm, target_dstm_em) ) = self.generate_next_samples()
src_loss, dst_loss = self.src_dst_train (warped_src, target_src, target_srcm, target_srcm_em, warped_dst, target_dst, target_dstm, target_dstm_em) src_loss, dst_loss = self.train (warped_src, target_src, target_srcm, target_srcm_em, warped_dst, target_dst, target_dstm, target_dstm_em)
for i in range(bs): for i in range(bs):
self.last_src_samples_loss.append ( (target_src[i], target_srcm[i], target_srcm_em[i], src_loss[i] ) ) self.last_src_samples_loss.append ( (src_loss[i], target_src[i], target_srcm[i], target_srcm_em[i]) )
self.last_dst_samples_loss.append ( (target_dst[i], target_dstm[i], target_dstm_em[i], dst_loss[i] ) ) self.last_dst_samples_loss.append ( (dst_loss[i], target_dst[i], target_dstm[i], target_dstm_em[i]) )
if len(self.last_src_samples_loss) >= bs*16: if len(self.last_src_samples_loss) >= bs*16:
src_samples_loss = sorted(self.last_src_samples_loss, key=operator.itemgetter(3), reverse=True) src_samples_loss = sorted(self.last_src_samples_loss, key=operator.itemgetter(0), reverse=True)
dst_samples_loss = sorted(self.last_dst_samples_loss, key=operator.itemgetter(3), reverse=True) dst_samples_loss = sorted(self.last_dst_samples_loss, key=operator.itemgetter(0), reverse=True)
target_src = np.stack( [ x[0] for x in src_samples_loss[:bs] ] ) target_src = np.stack( [ x[1] for x in src_samples_loss[:bs] ] )
target_srcm = np.stack( [ x[1] for x in src_samples_loss[:bs] ] ) target_srcm = np.stack( [ x[2] for x in src_samples_loss[:bs] ] )
target_srcm_em = np.stack( [ x[2] for x in src_samples_loss[:bs] ] ) target_srcm_em = np.stack( [ x[3] for x in src_samples_loss[:bs] ] )
target_dst = np.stack( [ x[0] for x in dst_samples_loss[:bs] ] ) target_dst = np.stack( [ x[1] for x in dst_samples_loss[:bs] ] )
target_dstm = np.stack( [ x[1] for x in dst_samples_loss[:bs] ] ) target_dstm = np.stack( [ x[2] for x in dst_samples_loss[:bs] ] )
target_dstm_em = np.stack( [ x[2] for x in dst_samples_loss[:bs] ] ) target_dstm_em = np.stack( [ x[3] for x in dst_samples_loss[:bs] ] )
src_loss, dst_loss = self.src_dst_train (target_src, target_src, target_srcm, target_srcm_em, target_dst, target_dst, target_dstm, target_dstm_em) src_loss, dst_loss = self.train (target_src, target_src, target_srcm, target_srcm_em, target_dst, target_dst, target_dstm, target_dstm_em)
self.last_src_samples_loss = [] self.last_src_samples_loss = []
self.last_dst_samples_loss = [] self.last_dst_samples_loss = []
if self.gan_power != 0: if self.gan_power != 0:
self.D_src_dst_train (warped_src, target_src, target_srcm, target_srcm_em, warped_dst, target_dst, target_dstm, target_dstm_em) self.GAN_train (warped_src, target_src, target_srcm, target_srcm_em, warped_dst, target_dst, target_dstm, target_dstm_em)
return ( ('src_loss', np.mean(src_loss) ), ('dst_loss', np.mean(dst_loss) ), ) return ( ('src_loss', np.mean(src_loss) ), ('dst_loss', np.mean(dst_loss) ), )
#override #override
def onGetPreview(self, samples): def onGetPreview(self, samples, for_history=False):
( (warped_src, target_src, target_srcm, target_srcm_em), ( (warped_src, target_src, target_srcm, target_srcm_em),
(warped_dst, target_dst, target_dstm, target_dstm_em) ) = samples (warped_dst, target_dst, target_dstm, target_dstm_em) ) = samples
@ -853,18 +726,17 @@ class AMPModel(ModelBase):
result = [] result = []
i = np.random.randint(n_samples) i = np.random.randint(n_samples) if not for_history else 0
st = [ np.concatenate ((S[i], D[i], DD[i]*DDM_000[i]), axis=1) ] st = [ np.concatenate ((S[i], D[i], DD[i]*DDM_000[i]), axis=1) ]
st += [ np.concatenate ((SS[i], DD[i], SD_075[i] ), axis=1) ] st += [ np.concatenate ((SS[i], DD[i], SD_100[i] ), axis=1) ]
result += [ ('AMP morph 0.75', np.concatenate (st, axis=0 )), ] result += [ ('AMP morph 1.0', np.concatenate (st, axis=0 )), ]
st = [ np.concatenate ((DD[i], SD_025[i], SD_050[i]), axis=1) ] st = [ np.concatenate ((DD[i], SD_025[i], SD_050[i]), axis=1) ]
st += [ np.concatenate ((SD_065[i], SD_075[i], SD_100[i]), axis=1) ] st += [ np.concatenate ((SD_065[i], SD_075[i], SD_100[i]), axis=1) ]
result += [ ('AMP morph list', np.concatenate (st, axis=0 )), ] result += [ ('AMP morph list', np.concatenate (st, axis=0 )), ]
st = [ np.concatenate ((DD[i], SD_025[i]*DDM_025[i]*SDM_025[i], SD_050[i]*DDM_050[i]*SDM_050[i]), axis=1) ] st = [ np.concatenate ((DD[i], SD_025[i]*DDM_025[i]*SDM_025[i], SD_050[i]*DDM_050[i]*SDM_050[i]), axis=1) ]
st += [ np.concatenate ((SD_065[i]*DDM_065[i]*SDM_065[i], SD_075[i]*DDM_075[i]*SDM_075[i], SD_100[i]*DDM_100[i]*SDM_100[i]), axis=1) ] st += [ np.concatenate ((SD_065[i]*DDM_065[i]*SDM_065[i], SD_075[i]*DDM_075[i]*SDM_075[i], SD_100[i]*DDM_100[i]*SDM_100[i]), axis=1) ]
result += [ ('AMP morph list masked', np.concatenate (st, axis=0 )), ] result += [ ('AMP morph list masked', np.concatenate (st, axis=0 )), ]
@ -880,7 +752,7 @@ class AMPModel(ModelBase):
#override #override
def get_MergerConfig(self): def get_MergerConfig(self):
morph_factor = np.clip ( io.input_number ("Morph factor", 0.75, add_info="0.0 .. 1.0"), 0.0, 1.0 ) morph_factor = np.clip ( io.input_number ("Morph factor", 1.0, add_info="0.0 .. 1.0"), 0.0, 1.0 )
def predictor_morph(face): def predictor_morph(face):
return self.predictor_func(face, morph_factor) return self.predictor_func(face, morph_factor)

View file

@ -278,7 +278,7 @@ class QModel(ModelBase):
return ( ('src_loss', src_loss), ('dst_loss', dst_loss), ) return ( ('src_loss', src_loss), ('dst_loss', dst_loss), )
#override #override
def onGetPreview(self, samples): def onGetPreview(self, samples, for_history=False):
( (warped_src, target_src, target_srcm), ( (warped_src, target_src, target_srcm),
(warped_dst, target_dst, target_dstm) ) = samples (warped_dst, target_dst, target_dstm) ) = samples

View file

@ -30,6 +30,7 @@ class SAEHDModel(ModelBase):
min_res = 64 min_res = 64
max_res = 640 max_res = 640
#default_usefp16 = self.options['use_fp16'] = self.load_or_def_option('use_fp16', False)
default_resolution = self.options['resolution'] = self.load_or_def_option('resolution', 128) default_resolution = self.options['resolution'] = self.load_or_def_option('resolution', 128)
default_face_type = self.options['face_type'] = self.load_or_def_option('face_type', 'f') default_face_type = self.options['face_type'] = self.load_or_def_option('face_type', 'f')
default_models_opt_on_gpu = self.options['models_opt_on_gpu'] = self.load_or_def_option('models_opt_on_gpu', True) default_models_opt_on_gpu = self.options['models_opt_on_gpu'] = self.load_or_def_option('models_opt_on_gpu', True)
@ -80,6 +81,7 @@ class SAEHDModel(ModelBase):
self.ask_random_src_flip() self.ask_random_src_flip()
self.ask_random_dst_flip() self.ask_random_dst_flip()
self.ask_batch_size(suggest_batch_size) self.ask_batch_size(suggest_batch_size)
#self.options['use_fp16'] = io.input_bool ("Use fp16", default_usefp16, help_message='Increases training/inference speed, reduces model size. Model may crash. Enable it after 1-5k iters.')
if self.is_first_run(): if self.is_first_run():
resolution = io.input_int("Resolution", default_resolution, add_info="64-640", help_message="More resolution requires more VRAM and time to train. Value will be adjusted to multiple of 16 and 32 for -d archi.") resolution = io.input_int("Resolution", default_resolution, add_info="64-640", help_message="More resolution requires more VRAM and time to train. Value will be adjusted to multiple of 16 and 32 for -d archi.")
@ -251,6 +253,10 @@ Examples: df, liae, df-d, df-ud, liae-ud, ...
adabelief = self.options['adabelief'] adabelief = self.options['adabelief']
use_fp16 = False
if self.is_exporting:
use_fp16 = io.input_bool ("Export quantized?", False, help_message='Makes the exported model faster. If you have problems, disable this option.')
self.gan_power = gan_power = 0.0 if self.pretrain else self.options['gan_power'] self.gan_power = gan_power = 0.0 if self.pretrain else self.options['gan_power']
random_warp = False if self.pretrain else self.options['random_warp'] random_warp = False if self.pretrain else self.options['random_warp']
random_src_flip = self.random_src_flip if not self.pretrain else True random_src_flip = self.random_src_flip if not self.pretrain else True
@ -293,7 +299,7 @@ Examples: df, liae, df-d, df-ud, liae-ud, ...
self.target_dstm_em = tf.placeholder (nn.floatx, mask_shape, name='target_dstm_em') self.target_dstm_em = tf.placeholder (nn.floatx, mask_shape, name='target_dstm_em')
# Initializing model classes # Initializing model classes
model_archi = nn.DeepFakeArchi(resolution, opts=archi_opts) model_archi = nn.DeepFakeArchi(resolution, use_fp16=use_fp16, opts=archi_opts)
with tf.device (models_opt_device): with tf.device (models_opt_device):
if 'df' in archi_type: if 'df' in archi_type:
@ -578,7 +584,7 @@ Examples: df, liae, df-d, df-ud, liae-ud, ...
gpu_G_loss += self.options['true_face_power']*DLoss(gpu_src_code_d_ones, gpu_src_code_d) gpu_G_loss += self.options['true_face_power']*DLoss(gpu_src_code_d_ones, gpu_src_code_d)
gpu_D_code_loss = (DLoss(gpu_src_code_d_ones , gpu_dst_code_d) + \ gpu_D_code_loss = (DLoss(gpu_dst_code_d_ones , gpu_dst_code_d) + \
DLoss(gpu_src_code_d_zeros, gpu_src_code_d) ) * 0.5 DLoss(gpu_src_code_d_zeros, gpu_src_code_d) ) * 0.5
gpu_D_code_loss_gvs += [ nn.gradients (gpu_D_code_loss, self.code_discriminator.get_weights() ) ] gpu_D_code_loss_gvs += [ nn.gradients (gpu_D_code_loss, self.code_discriminator.get_weights() ) ]
@ -802,11 +808,15 @@ Examples: df, liae, df-d, df-ud, liae-ud, ...
if self.pretrain_just_disabled: if self.pretrain_just_disabled:
self.update_sample_for_preview(force_new=True) self.update_sample_for_preview(force_new=True)
def dump_ckpt(self): def export_dfm (self):
output_path=self.get_strpath_storage_for_file('model.dfm')
io.log_info(f'Dumping .dfm to {output_path}')
tf = nn.tf tf = nn.tf
nn.set_data_format('NCHW')
with tf.device (nn.tf_default_device_name):
with tf.device ('/CPU:0'):
warped_dst = tf.placeholder (nn.floatx, (None, self.resolution, self.resolution, 3), name='in_face') warped_dst = tf.placeholder (nn.floatx, (None, self.resolution, self.resolution, 3), name='in_face')
warped_dst = tf.transpose(warped_dst, (0,3,1,2)) warped_dst = tf.transpose(warped_dst, (0,3,1,2))
@ -830,14 +840,25 @@ Examples: df, liae, df-d, df-ud, liae-ud, ...
gpu_pred_dst_dstm = tf.transpose(gpu_pred_dst_dstm, (0,2,3,1)) gpu_pred_dst_dstm = tf.transpose(gpu_pred_dst_dstm, (0,2,3,1))
gpu_pred_src_dstm = tf.transpose(gpu_pred_src_dstm, (0,2,3,1)) gpu_pred_src_dstm = tf.transpose(gpu_pred_src_dstm, (0,2,3,1))
saver = tf.train.Saver()
tf.identity(gpu_pred_dst_dstm, name='out_face_mask') tf.identity(gpu_pred_dst_dstm, name='out_face_mask')
tf.identity(gpu_pred_src_dst, name='out_celeb_face') tf.identity(gpu_pred_src_dst, name='out_celeb_face')
tf.identity(gpu_pred_src_dstm, name='out_celeb_face_mask') tf.identity(gpu_pred_src_dstm, name='out_celeb_face_mask')
saver.save(nn.tf_sess, self.get_strpath_storage_for_file('.ckpt') ) output_graph_def = tf.graph_util.convert_variables_to_constants(
nn.tf_sess,
tf.get_default_graph().as_graph_def(),
['out_face_mask','out_celeb_face','out_celeb_face_mask']
)
import tf2onnx
with tf.device("/CPU:0"):
model_proto, _ = tf2onnx.convert._convert_common(
output_graph_def,
name='SAEHD',
input_names=['in_face:0'],
output_names=['out_face_mask:0','out_celeb_face:0','out_celeb_face_mask:0'],
opset=13,
output_path=output_path)
#override #override
def get_model_filename_list(self): def get_model_filename_list(self):
@ -894,7 +915,7 @@ Examples: df, liae, df-d, df-ud, liae-ud, ...
return ( ('src_loss', np.mean(src_loss) ), ('dst_loss', np.mean(dst_loss) ), ) return ( ('src_loss', np.mean(src_loss) ), ('dst_loss', np.mean(dst_loss) ), )
#override #override
def onGetPreview(self, samples): def onGetPreview(self, samples, for_history=False):
( (warped_src, target_src, target_srcm, target_srcm_em), ( (warped_src, target_src, target_srcm, target_srcm_em),
(warped_dst, target_dst, target_dstm, target_dstm_em) ) = samples (warped_dst, target_dst, target_dstm, target_dstm_em) ) = samples

View file

@ -25,17 +25,24 @@ class XSegModel(ModelBase):
self.set_iter(0) self.set_iter(0)
default_face_type = self.options['face_type'] = self.load_or_def_option('face_type', 'wf') default_face_type = self.options['face_type'] = self.load_or_def_option('face_type', 'wf')
default_pretrain = self.options['pretrain'] = self.load_or_def_option('pretrain', False)
if self.is_first_run(): if self.is_first_run():
self.options['face_type'] = io.input_str ("Face type", default_face_type, ['h','mf','f','wf','head'], help_message="Half / mid face / full face / whole face / head. Choose the same as your deepfake model.").lower() self.options['face_type'] = io.input_str ("Face type", default_face_type, ['h','mf','f','wf','head'], help_message="Half / mid face / full face / whole face / head. Choose the same as your deepfake model.").lower()
if self.is_first_run() or ask_override: if self.is_first_run() or ask_override:
self.ask_batch_size(4, range=[2,16]) self.ask_batch_size(4, range=[2,16])
self.options['pretrain'] = io.input_bool ("Enable pretraining mode", default_pretrain)
if not self.is_exporting and (self.options['pretrain'] and self.get_pretraining_data_path() is None):
raise Exception("pretraining_data_path is not defined")
self.pretrain_just_disabled = (default_pretrain == True and self.options['pretrain'] == False)
#override #override
def on_initialize(self): def on_initialize(self):
device_config = nn.getCurrentDeviceConfig() device_config = nn.getCurrentDeviceConfig()
self.model_data_format = "NCHW" if len(device_config.devices) != 0 and not self.is_debug() else "NHWC" self.model_data_format = "NCHW" if self.is_exporting or (len(device_config.devices) != 0 and not self.is_debug()) else "NHWC"
nn.initialize(data_format=self.model_data_format) nn.initialize(data_format=self.model_data_format)
tf = nn.tf tf = nn.tf
@ -51,6 +58,7 @@ class XSegModel(ModelBase):
'wf' : FaceType.WHOLE_FACE, 'wf' : FaceType.WHOLE_FACE,
'head' : FaceType.HEAD}[ self.options['face_type'] ] 'head' : FaceType.HEAD}[ self.options['face_type'] ]
place_model_on_cpu = len(devices) == 0 place_model_on_cpu = len(devices) == 0
models_opt_device = '/CPU:0' if place_model_on_cpu else nn.tf_default_device_name models_opt_device = '/CPU:0' if place_model_on_cpu else nn.tf_default_device_name
@ -67,13 +75,16 @@ class XSegModel(ModelBase):
optimizer=nn.RMSprop(lr=0.0001, lr_dropout=0.3, name='opt'), optimizer=nn.RMSprop(lr=0.0001, lr_dropout=0.3, name='opt'),
data_format=nn.data_format) data_format=nn.data_format)
self.pretrain = self.options['pretrain']
if self.pretrain_just_disabled:
self.set_iter(0)
if self.is_training: if self.is_training:
# Adjust batch size for multiple GPU # Adjust batch size for multiple GPU
gpu_count = max(1, len(devices) ) gpu_count = max(1, len(devices) )
bs_per_gpu = max(1, self.get_batch_size() // gpu_count) bs_per_gpu = max(1, self.get_batch_size() // gpu_count)
self.set_batch_size( gpu_count*bs_per_gpu) self.set_batch_size( gpu_count*bs_per_gpu)
# Compute losses per GPU # Compute losses per GPU
gpu_pred_list = [] gpu_pred_list = []
@ -81,8 +92,6 @@ class XSegModel(ModelBase):
gpu_loss_gvs = [] gpu_loss_gvs = []
for gpu_id in range(gpu_count): for gpu_id in range(gpu_count):
with tf.device(f'/{devices[gpu_id].tf_dev_type}:{gpu_id}' if len(devices) != 0 else f'/CPU:0' ): with tf.device(f'/{devices[gpu_id].tf_dev_type}:{gpu_id}' if len(devices) != 0 else f'/CPU:0' ):
with tf.device(f'/CPU:0'): with tf.device(f'/CPU:0'):
# slice on CPU, otherwise all batch data will be transfered to GPU first # slice on CPU, otherwise all batch data will be transfered to GPU first
@ -91,10 +100,18 @@ class XSegModel(ModelBase):
gpu_target_t = self.model.target_t [batch_slice,:,:,:] gpu_target_t = self.model.target_t [batch_slice,:,:,:]
# process model tensors # process model tensors
gpu_pred_logits_t, gpu_pred_t = self.model.flow(gpu_input_t) gpu_pred_logits_t, gpu_pred_t = self.model.flow(gpu_input_t, pretrain=self.pretrain)
gpu_pred_list.append(gpu_pred_t) gpu_pred_list.append(gpu_pred_t)
gpu_loss = tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits(labels=gpu_target_t, logits=gpu_pred_logits_t), axis=[1,2,3])
if self.pretrain:
# Structural loss
gpu_loss = tf.reduce_mean (5*nn.dssim(gpu_target_t, gpu_pred_t, max_val=1.0, filter_size=int(resolution/11.6)), axis=[1])
gpu_loss += tf.reduce_mean (5*nn.dssim(gpu_target_t, gpu_pred_t, max_val=1.0, filter_size=int(resolution/23.2)), axis=[1])
# Pixel loss
gpu_loss += tf.reduce_mean (10*tf.square(gpu_target_t-gpu_pred_t), axis=[1,2,3])
else:
gpu_loss = tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits(labels=gpu_target_t, logits=gpu_pred_logits_t), axis=[1,2,3])
gpu_losses += [gpu_loss] gpu_losses += [gpu_loss]
@ -110,9 +127,14 @@ class XSegModel(ModelBase):
# Initializing training and view functions # Initializing training and view functions
def train(input_np, target_np): if self.pretrain:
l, _ = nn.tf_sess.run ( [loss, loss_gv_op], feed_dict={self.model.input_t :input_np, self.model.target_t :target_np }) def train(input_np, target_np):
return l l, _ = nn.tf_sess.run ( [loss, loss_gv_op], feed_dict={self.model.input_t :input_np, self.model.target_t :target_np})
return l
else:
def train(input_np, target_np):
l, _ = nn.tf_sess.run ( [loss, loss_gv_op], feed_dict={self.model.input_t :input_np, self.model.target_t :target_np })
return l
self.train = train self.train = train
def view(input_np): def view(input_np):
@ -125,29 +147,38 @@ class XSegModel(ModelBase):
src_generators_count = cpu_count // 2 src_generators_count = cpu_count // 2
dst_generators_count = cpu_count // 2 dst_generators_count = cpu_count // 2
if self.pretrain:
pretrain_gen = SampleGeneratorFace(self.get_pretraining_data_path(), debug=self.is_debug(), batch_size=self.get_batch_size(),
sample_process_options=SampleProcessor.Options(random_flip=True),
output_sample_types = [ {'sample_type': SampleProcessor.SampleType.FACE_IMAGE,'warp':True, 'transform':True, 'channel_type' : SampleProcessor.ChannelType.BGR, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
{'sample_type': SampleProcessor.SampleType.FACE_IMAGE,'warp':True, 'transform':True, 'channel_type' : SampleProcessor.ChannelType.G, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
],
uniform_yaw_distribution=False,
generators_count=cpu_count )
self.set_training_data_generators ([pretrain_gen])
else:
srcdst_generator = SampleGeneratorFaceXSeg([self.training_data_src_path, self.training_data_dst_path],
debug=self.is_debug(),
batch_size=self.get_batch_size(),
resolution=resolution,
face_type=self.face_type,
generators_count=src_dst_generators_count,
data_format=nn.data_format)
srcdst_generator = SampleGeneratorFaceXSeg([self.training_data_src_path, self.training_data_dst_path], src_generator = SampleGeneratorFace(self.training_data_src_path, debug=self.is_debug(), batch_size=self.get_batch_size(),
debug=self.is_debug(), sample_process_options=SampleProcessor.Options(random_flip=False),
batch_size=self.get_batch_size(), output_sample_types = [ {'sample_type': SampleProcessor.SampleType.FACE_IMAGE, 'warp':False, 'transform':False, 'channel_type' : SampleProcessor.ChannelType.BGR, 'border_replicate':False, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
resolution=resolution, ],
face_type=self.face_type, generators_count=src_generators_count,
generators_count=src_dst_generators_count, raise_on_no_data=False )
data_format=nn.data_format) dst_generator = SampleGeneratorFace(self.training_data_dst_path, debug=self.is_debug(), batch_size=self.get_batch_size(),
sample_process_options=SampleProcessor.Options(random_flip=False),
output_sample_types = [ {'sample_type': SampleProcessor.SampleType.FACE_IMAGE, 'warp':False, 'transform':False, 'channel_type' : SampleProcessor.ChannelType.BGR, 'border_replicate':False, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
],
generators_count=dst_generators_count,
raise_on_no_data=False )
src_generator = SampleGeneratorFace(self.training_data_src_path, debug=self.is_debug(), batch_size=self.get_batch_size(), self.set_training_data_generators ([srcdst_generator, src_generator, dst_generator])
sample_process_options=SampleProcessor.Options(random_flip=False),
output_sample_types = [ {'sample_type': SampleProcessor.SampleType.FACE_IMAGE, 'warp':False, 'transform':False, 'channel_type' : SampleProcessor.ChannelType.BGR, 'border_replicate':False, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
],
generators_count=src_generators_count,
raise_on_no_data=False )
dst_generator = SampleGeneratorFace(self.training_data_dst_path, debug=self.is_debug(), batch_size=self.get_batch_size(),
sample_process_options=SampleProcessor.Options(random_flip=False),
output_sample_types = [ {'sample_type': SampleProcessor.SampleType.FACE_IMAGE, 'warp':False, 'transform':False, 'channel_type' : SampleProcessor.ChannelType.BGR, 'border_replicate':False, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution},
],
generators_count=dst_generators_count,
raise_on_no_data=False )
self.set_training_data_generators ([srcdst_generator, src_generator, dst_generator])
#override #override
def get_model_filename_list(self): def get_model_filename_list(self):
@ -159,16 +190,21 @@ class XSegModel(ModelBase):
#override #override
def onTrainOneIter(self): def onTrainOneIter(self):
image_np, mask_np = self.generate_next_samples()[0] image_np, target_np = self.generate_next_samples()[0]
loss = self.train (image_np, mask_np) loss = self.train (image_np, target_np)
return ( ('loss', np.mean(loss) ), ) return ( ('loss', np.mean(loss) ), )
#override #override
def onGetPreview(self, samples): def onGetPreview(self, samples, for_history=False):
n_samples = min(4, self.get_batch_size(), 800 // self.resolution ) n_samples = min(4, self.get_batch_size(), 800 // self.resolution )
srcdst_samples, src_samples, dst_samples = samples if self.pretrain:
image_np, mask_np = srcdst_samples srcdst_samples, = samples
image_np, mask_np = srcdst_samples
else:
srcdst_samples, src_samples, dst_samples = samples
image_np, mask_np = srcdst_samples
I, M, IM, = [ np.clip( nn.to_data_format(x,"NHWC", self.model_data_format), 0.0, 1.0) for x in ([image_np,mask_np] + self.view (image_np) ) ] I, M, IM, = [ np.clip( nn.to_data_format(x,"NHWC", self.model_data_format), 0.0, 1.0) for x in ([image_np,mask_np] + self.view (image_np) ) ]
M, IM, = [ np.repeat (x, (3,), -1) for x in [M, IM] ] M, IM, = [ np.repeat (x, (3,), -1) for x in [M, IM] ]
@ -178,11 +214,14 @@ class XSegModel(ModelBase):
result = [] result = []
st = [] st = []
for i in range(n_samples): for i in range(n_samples):
ar = I[i]*M[i]+0.5*I[i]*(1-M[i])+0.5*green_bg*(1-M[i]), IM[i], I[i]*IM[i]+0.5*I[i]*(1-IM[i]) + 0.5*green_bg*(1-IM[i]) if self.pretrain:
ar = I[i], IM[i]
else:
ar = I[i]*M[i]+0.5*I[i]*(1-M[i])+0.5*green_bg*(1-M[i]), IM[i], I[i]*IM[i]+0.5*I[i]*(1-IM[i]) + 0.5*green_bg*(1-IM[i])
st.append ( np.concatenate ( ar, axis=1) ) st.append ( np.concatenate ( ar, axis=1) )
result += [ ('XSeg training faces', np.concatenate (st, axis=0 )), ] result += [ ('XSeg training faces', np.concatenate (st, axis=0 )), ]
if len(src_samples) != 0: if not self.pretrain and len(src_samples) != 0:
src_np, = src_samples src_np, = src_samples
@ -196,7 +235,7 @@ class XSegModel(ModelBase):
result += [ ('XSeg src faces', np.concatenate (st, axis=0 )), ] result += [ ('XSeg src faces', np.concatenate (st, axis=0 )), ]
if len(dst_samples) != 0: if not self.pretrain and len(dst_samples) != 0:
dst_np, = dst_samples dst_np, = dst_samples
@ -212,4 +251,33 @@ class XSegModel(ModelBase):
return result return result
def export_dfm (self):
output_path = self.get_strpath_storage_for_file(f'model.onnx')
io.log_info(f'Dumping .onnx to {output_path}')
tf = nn.tf
with tf.device (nn.tf_default_device_name):
input_t = tf.placeholder (nn.floatx, (None, self.resolution, self.resolution, 3), name='in_face')
input_t = tf.transpose(input_t, (0,3,1,2))
_, pred_t = self.model.flow(input_t)
pred_t = tf.transpose(pred_t, (0,2,3,1))
tf.identity(pred_t, name='out_mask')
output_graph_def = tf.graph_util.convert_variables_to_constants(
nn.tf_sess,
tf.get_default_graph().as_graph_def(),
['out_mask']
)
import tf2onnx
with tf.device("/CPU:0"):
model_proto, _ = tf2onnx.convert._convert_common(
output_graph_def,
name='XSeg',
input_names=['in_face:0'],
output_names=['out_mask:0'],
opset=13,
output_path=output_path)
Model = XSegModel Model = XSegModel

View file

@ -1,9 +1,10 @@
tqdm tqdm
numpy==1.19.3 numpy==1.19.3
h5py==2.9.0 h5py==2.10.0
opencv-python==4.1.0.25 opencv-python==4.1.0.25
ffmpeg-python==0.1.17 ffmpeg-python==0.1.17
scikit-image==0.14.2 scikit-image==0.14.2
scipy==1.4.1 scipy==1.4.1
colorama colorama
tensorflow-gpu==2.4.0 tensorflow-gpu==2.4.0
tf2onnx==1.8.4

View file

@ -8,5 +8,4 @@ scipy==1.4.1
colorama colorama
tensorflow-gpu==2.4.0 tensorflow-gpu==2.4.0
pyqt5 pyqt5
Flask==1.1.1 tf2onnx==1.8.4
flask-socketio==4.2.1

View file

@ -96,7 +96,8 @@ class SampleProcessor(object):
resolution = opts.get('resolution', None) resolution = opts.get('resolution', None)
if resolution is None: if resolution is None:
continue continue
params_per_resolution[resolution] = imagelib.gen_warp_params(resolution, if resolution not in params_per_resolution:
params_per_resolution[resolution] = imagelib.gen_warp_params(resolution,
sample_process_options.random_flip, sample_process_options.random_flip,
rotation_range=sample_process_options.rotation_range, rotation_range=sample_process_options.rotation_range,
scale_range=sample_process_options.scale_range, scale_range=sample_process_options.scale_range,