diff --git a/README.md b/README.md index c860133..039a010 100644 --- a/README.md +++ b/README.md @@ -39,6 +39,9 @@ DeepFaceLab is used by such popular youtube channels as |![](doc/tiktok_icon.png) [deeptomcruise](https://www.tiktok.com/@deeptomcruise)|![](doc/tiktok_icon.png) [1facerussia](https://www.tiktok.com/@1facerussia)|![](doc/tiktok_icon.png) [arnoldschwarzneggar](https://www.tiktok.com/@arnoldschwarzneggar) |---|---|---| +|![](doc/tiktok_icon.png) [mariahcareyathome?](https://www.tiktok.com/@mariahcareyathome?)|![](doc/tiktok_icon.png) [diepnep](https://www.tiktok.com/@diepnep) +|---|---| + |![](doc/youtube_icon.png) [Ctrl Shift Face](https://www.youtube.com/channel/UCKpH0CKltc73e4wh0_pgL3g)|![](doc/youtube_icon.png) [VFXChris Ume](https://www.youtube.com/channel/UCGf4OlX_aTt8DlrgiH3jN3g/videos)|![](doc/youtube_icon.png) [Sham00k](https://www.youtube.com/channel/UCZXbWcv7fSZFTAZV4beckyw/videos)| |---|---|---| @@ -201,7 +204,7 @@ Unfortunately, there is no "make everything ok" button in DeepFaceLab. You shoul -Windows (magnet link) +Windows (magnet link) Last release. Use torrent client to download. @@ -301,8 +304,8 @@ Unfortunately, there is no "make everything ok" button in DeepFaceLab. You shoul Постим русские дипфейки сюда ! -QQ 951138799 -中文 Chinese QQ group for ML/AI experts +QQ群1095077489 +中文交流QQ群,商务合作找群主 dfldata.xyz @@ -312,6 +315,25 @@ QQ 951138799 deepfaker.xyz 中文学习站(非官方) + + +## Related works + + + + +DeepFaceLive +Real-time face swap for PC streaming or video calls + + +neuralchen/SimSwap +Swapping face using ONE single photo 一张图免训练换脸 + + +deepfakes/faceswap +Something that was before DeepFaceLab and still remains in the past + + diff --git a/core/imagelib/warp.py b/core/imagelib/warp.py index fd4b3a9..f654c1b 100644 --- a/core/imagelib/warp.py +++ b/core/imagelib/warp.py @@ -1,7 +1,109 @@ import numpy as np +import numpy.linalg as npla import cv2 from core import randomex +def mls_rigid_deformation(vy, vx, src_pts, dst_pts, alpha=1.0, eps=1e-8): + dst_pts = dst_pts[..., ::-1].astype(np.int16) + src_pts = src_pts[..., ::-1].astype(np.int16) + + src_pts, dst_pts = dst_pts, src_pts + + grow = vx.shape[0] + gcol = vx.shape[1] + ctrls = src_pts.shape[0] + + reshaped_p = src_pts.reshape(ctrls, 2, 1, 1) + reshaped_v = np.vstack((vx.reshape(1, grow, gcol), vy.reshape(1, grow, gcol))) + + w = 1.0 / (np.sum((reshaped_p - reshaped_v).astype(np.float32) ** 2, axis=1) + eps) ** alpha + w /= np.sum(w, axis=0, keepdims=True) + + pstar = np.zeros((2, grow, gcol), np.float32) + for i in range(ctrls): + pstar += w[i] * reshaped_p[i] + + vpstar = reshaped_v - pstar + + reshaped_mul_right = np.concatenate((vpstar[:,None,...], + np.concatenate((vpstar[1:2,None,...],-vpstar[0:1,None,...]), 0) + ), axis=1).transpose(2, 3, 0, 1) + + reshaped_q = dst_pts.reshape((ctrls, 2, 1, 1)) + + qstar = np.zeros((2, grow, gcol), np.float32) + for i in range(ctrls): + qstar += w[i] * reshaped_q[i] + + temp = np.zeros((grow, gcol, 2), np.float32) + for i in range(ctrls): + phat = reshaped_p[i] - pstar + qhat = reshaped_q[i] - qstar + + temp += np.matmul(qhat.reshape(1, 2, grow, gcol).transpose(2, 3, 0, 1), + + np.matmul( ( w[None, i:i+1,...] * + np.concatenate((phat.reshape(1, 2, grow, gcol), + np.concatenate( (phat[None,1:2], -phat[None,0:1]), 1 )), 0) + ).transpose(2, 3, 0, 1), reshaped_mul_right + ) + ).reshape(grow, gcol, 2) + + temp = temp.transpose(2, 0, 1) + + normed_temp = np.linalg.norm(temp, axis=0, keepdims=True) + normed_vpstar = np.linalg.norm(vpstar, axis=0, keepdims=True) + nan_mask = normed_temp[0]==0 + + transformers = np.true_divide(temp, normed_temp, out=np.zeros_like(temp), where= ~nan_mask) * normed_vpstar + qstar + nan_mask_flat = np.flatnonzero(nan_mask) + nan_mask_anti_flat = np.flatnonzero(~nan_mask) + + transformers[0][nan_mask] = np.interp(nan_mask_flat, nan_mask_anti_flat, transformers[0][~nan_mask]) + transformers[1][nan_mask] = np.interp(nan_mask_flat, nan_mask_anti_flat, transformers[1][~nan_mask]) + + return transformers + +def gen_pts(W, H, rnd_state=None): + + if rnd_state is None: + rnd_state = np.random + + min_pts, max_pts = 4, 8 + n_pts = rnd_state.randint(min_pts, max_pts) + + min_radius_per = 0.00 + max_radius_per = 0.10 + pts = [] + + for i in range(n_pts): + while True: + x, y = rnd_state.randint(W), rnd_state.randint(H) + rad = min_radius_per + rnd_state.rand()*(max_radius_per-min_radius_per) + + intersect = False + for px,py,prad,_,_ in pts: + + dist = npla.norm([x-px, y-py]) + if dist <= (rad+prad)*2: + intersect = True + break + if intersect: + continue + + angle = rnd_state.rand()*(2*np.pi) + x2 = int(x+np.cos(angle)*W*rad) + y2 = int(y+np.sin(angle)*H*rad) + + break + pts.append( (x,y,rad, x2,y2) ) + + pts1 = np.array( [ [pt[0],pt[1]] for pt in pts ] ) + pts2 = np.array( [ [pt[-2],pt[-1]] for pt in pts ] ) + + return pts1, pts2 + + def gen_warp_params (w, flip=False, rotation_range=[-2,2], scale_range=[-0.5, 0.5], tx_range=[-0.05, 0.05], ty_range=[-0.05, 0.05], rnd_state=None ): if rnd_state is None: rnd_state = np.random @@ -17,22 +119,28 @@ def gen_warp_params (w, flip=False, rotation_range=[-2,2], scale_range=[-0.5, 0. ty = rnd_state.uniform( ty_range[0], ty_range[1] ) p_flip = flip and rnd_state.randint(10) < 4 - #random warp by grid + #random warp V1 cell_size = [ w // (2**i) for i in range(1,4) ] [ rnd_state.randint(3) ] cell_count = w // cell_size + 1 - grid_points = np.linspace( 0, w, cell_count) mapx = np.broadcast_to(grid_points, (cell_count, cell_count)).copy() mapy = mapx.T - mapx[1:-1,1:-1] = mapx[1:-1,1:-1] + randomex.random_normal( size=(cell_count-2, cell_count-2) )*(cell_size*0.24) mapy[1:-1,1:-1] = mapy[1:-1,1:-1] + randomex.random_normal( size=(cell_count-2, cell_count-2) )*(cell_size*0.24) - half_cell_size = cell_size // 2 - mapx = cv2.resize(mapx, (w+cell_size,)*2 )[half_cell_size:-half_cell_size,half_cell_size:-half_cell_size].astype(np.float32) mapy = cv2.resize(mapy, (w+cell_size,)*2 )[half_cell_size:-half_cell_size,half_cell_size:-half_cell_size].astype(np.float32) - + ############## + + # random warp V2 + # pts1, pts2 = gen_pts(w, w, rnd_state) + # gridX = np.arange(w, dtype=np.int16) + # gridY = np.arange(w, dtype=np.int16) + # vy, vx = np.meshgrid(gridX, gridY) + # drigid = mls_rigid_deformation(vy, vx, pts1, pts2) + # mapy, mapx = drigid.astype(np.float32) + ################ + #random transform random_transform_mat = cv2.getRotationMatrix2D((w // 2, w // 2), rotation, scale) random_transform_mat[:, 2] += (tx*w, ty*w) diff --git a/core/leras/archis/DeepFakeArchi.py b/core/leras/archis/DeepFakeArchi.py index 9818ab8..38b3f87 100644 --- a/core/leras/archis/DeepFakeArchi.py +++ b/core/leras/archis/DeepFakeArchi.py @@ -8,12 +8,15 @@ class DeepFakeArchi(nn.ArchiBase): mod None - default 'quick' """ - def __init__(self, resolution, mod=None, opts=None): + def __init__(self, resolution, use_fp16=False, mod=None, opts=None): super().__init__() if opts is None: opts = '' + + conv_dtype = tf.float16 if use_fp16 else tf.float32 + if mod is None: class Downscale(nn.ModelBase): def __init__(self, in_ch, out_ch, kernel_size=5, *kwargs ): @@ -23,7 +26,7 @@ class DeepFakeArchi(nn.ArchiBase): super().__init__(*kwargs) def on_build(self, *args, **kwargs ): - self.conv1 = nn.Conv2D( self.in_ch, self.out_ch, kernel_size=self.kernel_size, strides=2, padding='SAME') + self.conv1 = nn.Conv2D( self.in_ch, self.out_ch, kernel_size=self.kernel_size, strides=2, padding='SAME', dtype=conv_dtype) def forward(self, x): x = self.conv1(x) @@ -40,7 +43,7 @@ class DeepFakeArchi(nn.ArchiBase): last_ch = in_ch for i in range(n_downscales): cur_ch = ch*( min(2**i, 8) ) - self.downs.append ( Downscale(last_ch, cur_ch, kernel_size=kernel_size) ) + self.downs.append ( Downscale(last_ch, cur_ch, kernel_size=kernel_size)) last_ch = self.downs[-1].get_out_ch() def forward(self, inp): @@ -50,8 +53,8 @@ class DeepFakeArchi(nn.ArchiBase): return x class Upscale(nn.ModelBase): - def on_build(self, in_ch, out_ch, kernel_size=3 ): - self.conv1 = nn.Conv2D( in_ch, out_ch*4, kernel_size=kernel_size, padding='SAME') + def on_build(self, in_ch, out_ch, kernel_size=3): + self.conv1 = nn.Conv2D( in_ch, out_ch*4, kernel_size=kernel_size, padding='SAME', dtype=conv_dtype) def forward(self, x): x = self.conv1(x) @@ -60,9 +63,9 @@ class DeepFakeArchi(nn.ArchiBase): return x class ResidualBlock(nn.ModelBase): - def on_build(self, ch, kernel_size=3 ): - self.conv1 = nn.Conv2D( ch, ch, kernel_size=kernel_size, padding='SAME') - self.conv2 = nn.Conv2D( ch, ch, kernel_size=kernel_size, padding='SAME') + def on_build(self, ch, kernel_size=3): + self.conv1 = nn.Conv2D( ch, ch, kernel_size=kernel_size, padding='SAME', dtype=conv_dtype) + self.conv2 = nn.Conv2D( ch, ch, kernel_size=kernel_size, padding='SAME', dtype=conv_dtype) def forward(self, inp): x = self.conv1(inp) @@ -80,8 +83,13 @@ class DeepFakeArchi(nn.ArchiBase): def on_build(self): self.down1 = DownscaleBlock(self.in_ch, self.e_ch, n_downscales=4, kernel_size=5) - def forward(self, inp): - return nn.flatten(self.down1(inp)) + def forward(self, x): + if use_fp16: + x = tf.cast(x, tf.float16) + x = nn.flatten(self.down1(x)) + if use_fp16: + x = tf.cast(x, tf.float32) + return x def get_out_res(self, res): return res // (2**4) @@ -98,9 +106,10 @@ class DeepFakeArchi(nn.ArchiBase): def on_build(self): in_ch, ae_ch, ae_out_ch = self.in_ch, self.ae_ch, self.ae_out_ch + if 'u' in opts: self.dense_norm = nn.DenseNorm() - + self.dense1 = nn.Dense( in_ch, ae_ch ) self.dense2 = nn.Dense( ae_ch, lowest_dense_res * lowest_dense_res * ae_out_ch ) self.upscale1 = Upscale(ae_out_ch, ae_out_ch) @@ -112,6 +121,9 @@ class DeepFakeArchi(nn.ArchiBase): x = self.dense1(x) x = self.dense2(x) x = nn.reshape_4D (x, lowest_dense_res, lowest_dense_res, self.ae_out_ch) + + if use_fp16: + x = tf.cast(x, tf.float16) x = self.upscale1(x) return x @@ -122,7 +134,7 @@ class DeepFakeArchi(nn.ArchiBase): return self.ae_out_ch class Decoder(nn.ModelBase): - def on_build(self, in_ch, d_ch, d_mask_ch ): + def on_build(self, in_ch, d_ch, d_mask_ch): self.upscale0 = Upscale(in_ch, d_ch*8, kernel_size=3) self.upscale1 = Upscale(d_ch*8, d_ch*4, kernel_size=3) self.upscale2 = Upscale(d_ch*4, d_ch*2, kernel_size=3) @@ -131,25 +143,23 @@ class DeepFakeArchi(nn.ArchiBase): self.res1 = ResidualBlock(d_ch*4, kernel_size=3) self.res2 = ResidualBlock(d_ch*2, kernel_size=3) - self.out_conv = nn.Conv2D( d_ch*2, 3, kernel_size=1, padding='SAME') + self.out_conv = nn.Conv2D( d_ch*2, 3, kernel_size=1, padding='SAME', dtype=conv_dtype) self.upscalem0 = Upscale(in_ch, d_mask_ch*8, kernel_size=3) self.upscalem1 = Upscale(d_mask_ch*8, d_mask_ch*4, kernel_size=3) self.upscalem2 = Upscale(d_mask_ch*4, d_mask_ch*2, kernel_size=3) - self.out_convm = nn.Conv2D( d_mask_ch*2, 1, kernel_size=1, padding='SAME') + self.out_convm = nn.Conv2D( d_mask_ch*2, 1, kernel_size=1, padding='SAME', dtype=conv_dtype) if 'd' in opts: - self.out_conv1 = nn.Conv2D( d_ch*2, 3, kernel_size=3, padding='SAME') - self.out_conv2 = nn.Conv2D( d_ch*2, 3, kernel_size=3, padding='SAME') - self.out_conv3 = nn.Conv2D( d_ch*2, 3, kernel_size=3, padding='SAME') + self.out_conv1 = nn.Conv2D( d_ch*2, 3, kernel_size=3, padding='SAME', dtype=conv_dtype) + self.out_conv2 = nn.Conv2D( d_ch*2, 3, kernel_size=3, padding='SAME', dtype=conv_dtype) + self.out_conv3 = nn.Conv2D( d_ch*2, 3, kernel_size=3, padding='SAME', dtype=conv_dtype) self.upscalem3 = Upscale(d_mask_ch*2, d_mask_ch*1, kernel_size=3) - self.out_convm = nn.Conv2D( d_mask_ch*1, 1, kernel_size=1, padding='SAME') + self.out_convm = nn.Conv2D( d_mask_ch*1, 1, kernel_size=1, padding='SAME', dtype=conv_dtype) else: - self.out_convm = nn.Conv2D( d_mask_ch*2, 1, kernel_size=1, padding='SAME') - - def forward(self, inp): - z = inp + self.out_convm = nn.Conv2D( d_mask_ch*2, 1, kernel_size=1, padding='SAME', dtype=conv_dtype) + def forward(self, z): x = self.upscale0(z) x = self.res0(x) x = self.upscale1(x) @@ -157,40 +167,11 @@ class DeepFakeArchi(nn.ArchiBase): x = self.upscale2(x) x = self.res2(x) - if 'd' in opts: - x0 = tf.nn.sigmoid(self.out_conv(x)) - x0 = nn.upsample2d(x0) - x1 = tf.nn.sigmoid(self.out_conv1(x)) - x1 = nn.upsample2d(x1) - x2 = tf.nn.sigmoid(self.out_conv2(x)) - x2 = nn.upsample2d(x2) - x3 = tf.nn.sigmoid(self.out_conv3(x)) - x3 = nn.upsample2d(x3) - - if nn.data_format == "NHWC": - tile_cfg = ( 1, resolution // 2, resolution //2, 1) - else: - tile_cfg = ( 1, 1, resolution // 2, resolution //2 ) - - z0 = tf.concat ( ( tf.concat ( ( tf.ones ( (1,1,1,1) ), tf.zeros ( (1,1,1,1) ) ), axis=nn.conv2d_spatial_axes[1] ), - tf.concat ( ( tf.zeros ( (1,1,1,1) ), tf.zeros ( (1,1,1,1) ) ), axis=nn.conv2d_spatial_axes[1] ) ), axis=nn.conv2d_spatial_axes[0] ) - - z0 = tf.tile ( z0, tile_cfg ) - - z1 = tf.concat ( ( tf.concat ( ( tf.zeros ( (1,1,1,1) ), tf.ones ( (1,1,1,1) ) ), axis=nn.conv2d_spatial_axes[1] ), - tf.concat ( ( tf.zeros ( (1,1,1,1) ), tf.zeros ( (1,1,1,1) ) ), axis=nn.conv2d_spatial_axes[1] ) ), axis=nn.conv2d_spatial_axes[0] ) - z1 = tf.tile ( z1, tile_cfg ) - - z2 = tf.concat ( ( tf.concat ( ( tf.zeros ( (1,1,1,1) ), tf.zeros ( (1,1,1,1) ) ), axis=nn.conv2d_spatial_axes[1] ), - tf.concat ( ( tf.ones ( (1,1,1,1) ), tf.zeros ( (1,1,1,1) ) ), axis=nn.conv2d_spatial_axes[1] ) ), axis=nn.conv2d_spatial_axes[0] ) - z2 = tf.tile ( z2, tile_cfg ) - - z3 = tf.concat ( ( tf.concat ( ( tf.zeros ( (1,1,1,1) ), tf.zeros ( (1,1,1,1) ) ), axis=nn.conv2d_spatial_axes[1] ), - tf.concat ( ( tf.zeros ( (1,1,1,1) ), tf.ones ( (1,1,1,1) ) ), axis=nn.conv2d_spatial_axes[1] ) ), axis=nn.conv2d_spatial_axes[0] ) - z3 = tf.tile ( z3, tile_cfg ) - - x = x0*z0 + x1*z1 + x2*z2 + x3*z3 + x = tf.nn.sigmoid( nn.depth_to_space(tf.concat( (self.out_conv(x), + self.out_conv1(x), + self.out_conv2(x), + self.out_conv3(x)), nn.conv2d_ch_axis), 2) ) else: x = tf.nn.sigmoid(self.out_conv(x)) @@ -201,7 +182,11 @@ class DeepFakeArchi(nn.ArchiBase): if 'd' in opts: m = self.upscalem3(m) m = tf.nn.sigmoid(self.out_convm(m)) - + + if use_fp16: + x = tf.cast(x, tf.float32) + m = tf.cast(m, tf.float32) + return x, m self.Encoder = Encoder diff --git a/core/leras/layers/Conv2D.py b/core/leras/layers/Conv2D.py index 7d4d444..a5febf0 100644 --- a/core/leras/layers/Conv2D.py +++ b/core/leras/layers/Conv2D.py @@ -55,8 +55,8 @@ class Conv2D(nn.LayerBase): if kernel_initializer is None: kernel_initializer = tf.initializers.random_normal(0, 1.0, dtype=self.dtype) - if kernel_initializer is None: - kernel_initializer = nn.initializers.ca() + #if kernel_initializer is None: + # kernel_initializer = nn.initializers.ca() self.weight = tf.get_variable("weight", (self.kernel_size,self.kernel_size,self.in_ch,self.out_ch), dtype=self.dtype, initializer=kernel_initializer, trainable=self.trainable ) diff --git a/core/leras/layers/Conv2DTranspose.py b/core/leras/layers/Conv2DTranspose.py index 937d624..a2e97dc 100644 --- a/core/leras/layers/Conv2DTranspose.py +++ b/core/leras/layers/Conv2DTranspose.py @@ -38,8 +38,8 @@ class Conv2DTranspose(nn.LayerBase): if kernel_initializer is None: kernel_initializer = tf.initializers.random_normal(0, 1.0, dtype=self.dtype) - if kernel_initializer is None: - kernel_initializer = nn.initializers.ca() + #if kernel_initializer is None: + # kernel_initializer = nn.initializers.ca() self.weight = tf.get_variable("weight", (self.kernel_size,self.kernel_size,self.out_ch,self.in_ch), dtype=self.dtype, initializer=kernel_initializer, trainable=self.trainable ) if self.use_bias: diff --git a/core/leras/layers/DepthwiseConv2D.py b/core/leras/layers/DepthwiseConv2D.py index 98f3a0a..2916f01 100644 --- a/core/leras/layers/DepthwiseConv2D.py +++ b/core/leras/layers/DepthwiseConv2D.py @@ -68,8 +68,8 @@ class DepthwiseConv2D(nn.LayerBase): if kernel_initializer is None: kernel_initializer = tf.initializers.random_normal(0, 1.0, dtype=self.dtype) - if kernel_initializer is None: - kernel_initializer = nn.initializers.ca() + #if kernel_initializer is None: + # kernel_initializer = nn.initializers.ca() self.weight = tf.get_variable("weight", (self.kernel_size,self.kernel_size,self.in_ch,self.depth_multiplier), dtype=self.dtype, initializer=kernel_initializer, trainable=self.trainable ) diff --git a/core/leras/models/PatchDiscriminator.py b/core/leras/models/PatchDiscriminator.py index dcaf941..853e8e3 100644 --- a/core/leras/models/PatchDiscriminator.py +++ b/core/leras/models/PatchDiscriminator.py @@ -130,12 +130,14 @@ class UNetPatchDiscriminator(nn.ModelBase): q=x[np.abs(np.array(x)-target_patch_size).argmin()] return s[q][2] - def on_build(self, patch_size, in_ch, base_ch = 16): - + def on_build(self, patch_size, in_ch, base_ch = 16, use_fp16 = False): + self.use_fp16 = use_fp16 + conv_dtype = tf.float16 if use_fp16 else tf.float32 + class ResidualBlock(nn.ModelBase): def on_build(self, ch, kernel_size=3 ): - self.conv1 = nn.Conv2D( ch, ch, kernel_size=kernel_size, padding='SAME') - self.conv2 = nn.Conv2D( ch, ch, kernel_size=kernel_size, padding='SAME') + self.conv1 = nn.Conv2D( ch, ch, kernel_size=kernel_size, padding='SAME', dtype=conv_dtype) + self.conv2 = nn.Conv2D( ch, ch, kernel_size=kernel_size, padding='SAME', dtype=conv_dtype) def forward(self, inp): x = self.conv1(inp) @@ -146,19 +148,15 @@ class UNetPatchDiscriminator(nn.ModelBase): prev_ch = in_ch self.convs = [] - self.res1 = [] - self.res2 = [] self.upconvs = [] - self.upres1 = [] - self.upres2 = [] layers = self.find_archi(patch_size) level_chs = { i-1:v for i,v in enumerate([ min( base_ch * (2**i), 512 ) for i in range(len(layers)+1)]) } - self.in_conv = nn.Conv2D( in_ch, level_chs[-1], kernel_size=1, padding='VALID') + self.in_conv = nn.Conv2D( in_ch, level_chs[-1], kernel_size=1, padding='VALID', dtype=conv_dtype) for i, (kernel_size, strides) in enumerate(layers): - self.convs.append ( nn.Conv2D( level_chs[i-1], level_chs[i], kernel_size=kernel_size, strides=strides, padding='SAME') ) + self.convs.append ( nn.Conv2D( level_chs[i-1], level_chs[i], kernel_size=kernel_size, strides=strides, padding='SAME', dtype=conv_dtype) ) self.res1.append ( ResidualBlock(level_chs[i]) ) self.res2.append ( ResidualBlock(level_chs[i]) ) @@ -169,16 +167,24 @@ class UNetPatchDiscriminator(nn.ModelBase): self.upres2.insert (0, ResidualBlock(level_chs[i-1]*2) ) self.out_conv = nn.Conv2D( level_chs[-1]*2, 1, kernel_size=1, padding='VALID') + + # Used in iperovs version, iperov doesn't use above for block + # self.upconvs.insert (0, nn.Conv2DTranspose( level_chs[i]*(2 if i != len(layers)-1 else 1), level_chs[i-1], kernel_size=kernel_size, strides=strides, padding='SAME', dtype=conv_dtype) ) - self.center_out = nn.Conv2D( level_chs[len(layers)-1], 1, kernel_size=1, padding='VALID') - self.center_conv = nn.Conv2D( level_chs[len(layers)-1], level_chs[len(layers)-1], kernel_size=1, padding='VALID') + self.out_conv = nn.Conv2D( level_chs[-1]*2, 1, kernel_size=1, padding='VALID', dtype=conv_dtype) + + self.center_out = nn.Conv2D( level_chs[len(layers)-1], 1, kernel_size=1, padding='VALID', dtype=conv_dtype) + self.center_conv = nn.Conv2D( level_chs[len(layers)-1], level_chs[len(layers)-1], kernel_size=1, padding='VALID', dtype=conv_dtype) def forward(self, x): + if self.use_fp16: + x = tf.cast(x, tf.float16) + x = tf.nn.leaky_relu( self.in_conv(x), 0.2 ) encs = [] - for conv, res1,res2 in zip(self.convs, self.res1, self.res2): + for conv in self.convs: encs.insert(0, x) x = tf.nn.leaky_relu( conv(x), 0.2 ) x = res1(x) @@ -186,13 +192,17 @@ class UNetPatchDiscriminator(nn.ModelBase): center_out, x = self.center_out(x), tf.nn.leaky_relu( self.center_conv(x), 0.2 ) - for i, (upconv, enc, upres1, upres2 ) in enumerate(zip(self.upconvs, encs, self.upres1, self.upres2)): + for i, (upconv, enc) in enumerate(zip(self.upconvs, encs)): x = tf.nn.leaky_relu( upconv(x), 0.2 ) x = tf.concat( [enc, x], axis=nn.conv2d_ch_axis) - x = upres1(x) - x = upres2(x) - return center_out, self.out_conv(x) + x = self.out_conv(x) + + if self.use_fp16: + center_out = tf.cast(center_out, tf.float32) + x = tf.cast(x, tf.float32) + + return center_out, x nn.UNetPatchDiscriminator = UNetPatchDiscriminator diff --git a/core/leras/models/XSeg.py b/core/leras/models/XSeg.py index e6bde65..f59eb8c 100644 --- a/core/leras/models/XSeg.py +++ b/core/leras/models/XSeg.py @@ -88,9 +88,9 @@ class XSeg(nn.ModelBase): self.uconv02 = ConvBlock(base_ch*2, base_ch) self.uconv01 = ConvBlock(base_ch, base_ch) self.out_conv = nn.Conv2D (base_ch, out_ch, kernel_size=3, padding='SAME') + - - def forward(self, inp): + def forward(self, inp, pretrain=False): x = inp x = self.conv01(x) @@ -126,29 +126,41 @@ class XSeg(nn.ModelBase): x = nn.reshape_4D (x, 4, 4, self.base_ch*8 ) x = self.up5(x) + if pretrain: + x5 = tf.zeros_like(x5) x = self.uconv53(tf.concat([x,x5],axis=nn.conv2d_ch_axis)) x = self.uconv52(x) x = self.uconv51(x) x = self.up4(x) + if pretrain: + x4 = tf.zeros_like(x4) x = self.uconv43(tf.concat([x,x4],axis=nn.conv2d_ch_axis)) x = self.uconv42(x) x = self.uconv41(x) x = self.up3(x) + if pretrain: + x3 = tf.zeros_like(x3) x = self.uconv33(tf.concat([x,x3],axis=nn.conv2d_ch_axis)) x = self.uconv32(x) x = self.uconv31(x) x = self.up2(x) + if pretrain: + x2 = tf.zeros_like(x2) x = self.uconv22(tf.concat([x,x2],axis=nn.conv2d_ch_axis)) x = self.uconv21(x) x = self.up1(x) + if pretrain: + x1 = tf.zeros_like(x1) x = self.uconv12(tf.concat([x,x1],axis=nn.conv2d_ch_axis)) x = self.uconv11(x) x = self.up0(x) + if pretrain: + x0 = tf.zeros_like(x0) x = self.uconv02(tf.concat([x,x0],axis=nn.conv2d_ch_axis)) x = self.uconv01(x) diff --git a/core/leras/optimizers/AdaBelief.py b/core/leras/optimizers/AdaBelief.py index aed4308..dd004f8 100644 --- a/core/leras/optimizers/AdaBelief.py +++ b/core/leras/optimizers/AdaBelief.py @@ -50,11 +50,11 @@ class AdaBelief(nn.OptimizerBase): updates = [] if self.clipnorm > 0.0: - norm = tf.sqrt( sum([tf.reduce_sum(tf.square(g)) for g,v in grads_vars])) + norm = tf.sqrt( sum([tf.reduce_sum(tf.square(tf.cast(g, tf.float32))) for g,v in grads_vars])) updates += [ state_ops.assign_add( self.iterations, 1) ] for i, (g,v) in enumerate(grads_vars): if self.clipnorm > 0.0: - g = self.tf_clip_norm(g, self.clipnorm, norm) + g = self.tf_clip_norm(g, self.clipnorm, tf.cast(norm, g.dtype) ) ms = self.ms_dict[ v.name ] vs = self.vs_dict[ v.name ] diff --git a/core/leras/optimizers/RMSprop.py b/core/leras/optimizers/RMSprop.py index 345b2a7..d2eb605 100644 --- a/core/leras/optimizers/RMSprop.py +++ b/core/leras/optimizers/RMSprop.py @@ -47,11 +47,11 @@ class RMSprop(nn.OptimizerBase): updates = [] if self.clipnorm > 0.0: - norm = tf.sqrt( sum([tf.reduce_sum(tf.square(g)) for g,v in grads_vars])) + norm = tf.sqrt( sum([tf.reduce_sum(tf.square(tf.cast(g, tf.float32))) for g,v in grads_vars])) updates += [ state_ops.assign_add( self.iterations, 1) ] for i, (g,v) in enumerate(grads_vars): if self.clipnorm > 0.0: - g = self.tf_clip_norm(g, self.clipnorm, norm) + g = self.tf_clip_norm(g, self.clipnorm, tf.cast(norm, g.dtype) ) a = self.accumulators_dict[ v.name ] diff --git a/doc/deepfake_progress.png b/doc/deepfake_progress.png index e7a14a2..32d8c7e 100644 Binary files a/doc/deepfake_progress.png and b/doc/deepfake_progress.png differ diff --git a/doc/deepfake_progress_source.psd b/doc/deepfake_progress_source.psd index d90b241..8954923 100644 Binary files a/doc/deepfake_progress_source.psd and b/doc/deepfake_progress_source.psd differ diff --git a/facelib/XSegNet.py b/facelib/XSegNet.py index 5621a65..ff2bd08 100644 --- a/facelib/XSegNet.py +++ b/facelib/XSegNet.py @@ -81,8 +81,8 @@ class XSegNet(object): def get_resolution(self): return self.resolution - def flow(self, x): - return self.model(x) + def flow(self, x, pretrain=False): + return self.model(x, pretrain=pretrain) def get_weights(self): return self.model_weights diff --git a/main.py b/main.py index f7616bb..2d2cbba 100644 --- a/main.py +++ b/main.py @@ -151,13 +151,23 @@ if __name__ == "__main__": p.add_argument('--tensorboard-logdir', action=fixPathAction, dest="tensorboard_dir", help="Directory of the tensorboard output files") p.add_argument('--start-tensorboard', action="store_true", dest="start_tensorboard", default=False, help="Automatically start the tensorboard server preconfigured to the tensorboard-logdir") - + p.add_argument('--dump-ckpt', action="store_true", dest="dump_ckpt", default=False, help="Dump the model to ckpt format.") p.add_argument('--flask-preview', action="store_true", dest="flask_preview", default=False, help="Launches a flask server to view the previews in a web browser") p.add_argument('--execute-program', dest="execute_program", default=[], action='append', nargs='+') p.set_defaults (func=process_train) + + def process_exportdfm(arguments): + osex.set_process_lowest_prio() + from mainscripts import ExportDFM + ExportDFM.main(model_class_name = arguments.model_name, saved_models_path = Path(arguments.model_dir)) + + p = subparsers.add_parser( "exportdfm", help="Export model to use in DeepFaceLive.") + p.add_argument('--model-dir', required=True, action=fixPathAction, dest="model_dir", help="Saved models dir.") + p.add_argument('--model', required=True, dest="model_name", choices=pathex.get_all_dir_names_startswith ( Path(__file__).parent / 'models' , 'Model_'), help="Model class name.") + p.set_defaults (func=process_exportdfm) def process_merge(arguments): osex.set_process_lowest_prio() diff --git a/mainscripts/ExportDFM.py b/mainscripts/ExportDFM.py new file mode 100644 index 0000000..cf7d64e --- /dev/null +++ b/mainscripts/ExportDFM.py @@ -0,0 +1,22 @@ +import os +import sys +import traceback +import queue +import threading +import time +import numpy as np +import itertools +from pathlib import Path +from core import pathex +from core import imagelib +import cv2 +import models +from core.interact import interact as io + + +def main(model_class_name, saved_models_path): + model = models.import_model(model_class_name)( + is_exporting=True, + saved_models_path=saved_models_path, + cpu_only=True) + model.export_dfm () diff --git a/mainscripts/FacesetResizer.py b/mainscripts/FacesetResizer.py index acc4ea4..4bcd1b8 100644 --- a/mainscripts/FacesetResizer.py +++ b/mainscripts/FacesetResizer.py @@ -166,7 +166,7 @@ class FacesetResizerSubprocessor(Subprocessor): def process_folder ( dirpath): - image_size = io.input_int(f"New image size", 512, valid_range=[256,2048]) + image_size = io.input_int(f"New image size", 512, valid_range=[128,2048]) face_type = io.input_str ("Change face type", 'same', ['h','mf','f','wf','head','same']).lower() if face_type == 'same': diff --git a/mainscripts/Merger.py b/mainscripts/Merger.py index fba37f1..0703dc1 100644 --- a/mainscripts/Merger.py +++ b/mainscripts/Merger.py @@ -49,6 +49,7 @@ def main (model_class_name=None, model = models.import_model(model_class_name)(is_training=False, saved_models_path=saved_models_path, force_gpu_idxs=force_gpu_idxs, + force_model_name=force_model_name, cpu_only=cpu_only) predictor_func, predictor_input_shape, cfg = model.get_MergerConfig() diff --git a/mainscripts/Trainer.py b/mainscripts/Trainer.py index 7b4b40b..732d6f9 100644 --- a/mainscripts/Trainer.py +++ b/mainscripts/Trainer.py @@ -84,12 +84,9 @@ def trainerThread (s2c, c2s, e, if not saved_models_path.exists(): saved_models_path.mkdir(exist_ok=True, parents=True) - - if dump_ckpt: - cpu_only=True - + model = models.import_model(model_class_name)( - is_training=not dump_ckpt, + is_training=True, saved_models_path=saved_models_path, training_data_src_path=training_data_src_path, training_data_dst_path=training_data_dst_path, @@ -102,11 +99,6 @@ def trainerThread (s2c, c2s, e, silent_start=silent_start, debug=debug) - if dump_ckpt: - e.set() - model.dump_ckpt() - break - is_reached_goal = model.is_reached_iter_goal() if tensorboard_dir is not None: diff --git a/models/ModelBase.py b/models/ModelBase.py index a547173..a97ebf1 100644 --- a/models/ModelBase.py +++ b/models/ModelBase.py @@ -23,6 +23,7 @@ from samplelib import SampleGeneratorBase class ModelBase(object): def __init__(self, is_training=False, + is_exporting=False, saved_models_path=None, training_data_src_path=None, training_data_dst_path=None, @@ -37,6 +38,7 @@ class ModelBase(object): silent_start=False, **kwargs): self.is_training = is_training + self.is_exporting = is_exporting self.saved_models_path = saved_models_path self.training_data_src_path = training_data_src_path self.training_data_dst_path = training_data_dst_path @@ -234,7 +236,7 @@ class ModelBase(object): preview_id_counter = 0 while not choosed: self.sample_for_preview = self.generate_next_samples() - previews = self.get_static_previews() + previews = self.get_history_previews() io.show_image( wnd_name, ( previews[preview_id_counter % len(previews) ][1] *255).astype(np.uint8) ) @@ -260,7 +262,7 @@ class ModelBase(object): self.sample_for_preview = self.generate_next_samples() try: - self.get_static_previews() + self.get_history_previews() except: self.sample_for_preview = self.generate_next_samples() @@ -357,7 +359,7 @@ class ModelBase(object): return ( ('loss_src', 0), ('loss_dst', 0) ) #overridable - def onGetPreview(self, sample): + def onGetPreview(self, sample, for_history=False): #you can return multiple previews #return [ ('preview_name',preview_rgb), ... ] return [] @@ -387,8 +389,8 @@ class ModelBase(object): def get_previews(self): return self.onGetPreview ( self.last_sample ) - def get_static_previews(self): - return self.onGetPreview (self.sample_for_preview) + def get_history_previews(self): + return self.onGetPreview (self.sample_for_preview, for_history=True) def get_preview_history_writer(self): if self.preview_history_writer is None: @@ -493,7 +495,7 @@ class ModelBase(object): plist += [ (bgr, self.get_strpath_storage_for_file('preview_%s.jpg' % (name) ) ) ] if self.write_preview_history: - previews = self.get_static_previews() + previews = self.get_history_previews() for i in range(len(previews)): name, bgr = previews[i] path = self.preview_history_path / name diff --git a/models/Model_AMP/Model.py b/models/Model_AMP/Model.py index edbe795..8214c72 100644 --- a/models/Model_AMP/Model.py +++ b/models/Model_AMP/Model.py @@ -16,32 +16,17 @@ class AMPModel(ModelBase): #override def on_initialize_options(self): - device_config = nn.getCurrentDeviceConfig() - - lowest_vram = 2 - if len(device_config.devices) != 0: - lowest_vram = device_config.devices.get_worst_device().total_mem_gb - - if lowest_vram >= 4: - suggest_batch_size = 8 - else: - suggest_batch_size = 4 - - yn_str = {True:'y',False:'n'} - min_res = 64 - max_res = 640 - default_resolution = self.options['resolution'] = self.load_or_def_option('resolution', 224) default_face_type = self.options['face_type'] = self.load_or_def_option('face_type', 'wf') default_models_opt_on_gpu = self.options['models_opt_on_gpu'] = self.load_or_def_option('models_opt_on_gpu', True) default_ae_dims = self.options['ae_dims'] = self.load_or_def_option('ae_dims', 256) + default_inter_dims = self.options['inter_dims'] = self.load_or_def_option('inter_dims', 1024) + default_e_dims = self.options['e_dims'] = self.load_or_def_option('e_dims', 64) default_d_dims = self.options['d_dims'] = self.options.get('d_dims', None) default_d_mask_dims = self.options['d_mask_dims'] = self.options.get('d_mask_dims', None) - default_morph_factor = self.options['morph_factor'] = self.options.get('morph_factor', 0.33) - default_masked_training = self.options['masked_training'] = self.load_or_def_option('masked_training', True) - default_eyes_mouth_prio = self.options['eyes_mouth_prio'] = self.load_or_def_option('eyes_mouth_prio', True) + default_morph_factor = self.options['morph_factor'] = self.options.get('morph_factor', 0.5) default_uniform_yaw = self.options['uniform_yaw'] = self.load_or_def_option('uniform_yaw', False) lr_dropout = self.load_or_def_option('lr_dropout', 'n') @@ -60,8 +45,6 @@ class AMPModel(ModelBase): default_ct_mode = self.options['ct_mode'] = self.load_or_def_option('ct_mode', 'none') default_random_color = self.options['random_color'] = self.load_or_def_option('random_color', False) default_clipgrad = self.options['clipgrad'] = self.load_or_def_option('clipgrad', False) - default_pretrain = self.options['pretrain'] = self.load_or_def_option('pretrain', False) - ask_override = self.ask_override() if self.is_first_run() or ask_override: @@ -70,13 +53,13 @@ class AMPModel(ModelBase): self.ask_target_iter() self.ask_random_src_flip() self.ask_random_dst_flip() - self.ask_batch_size(suggest_batch_size) + self.ask_batch_size(8) if self.is_first_run(): resolution = io.input_int("Resolution", default_resolution, add_info="64-640", help_message="More resolution requires more VRAM and time to train. Value will be adjusted to multiple of 32 .") - resolution = np.clip ( (resolution // 32) * 32, min_res, max_res) + resolution = np.clip ( (resolution // 32) * 32, 64, 640) self.options['resolution'] = resolution - self.options['face_type'] = io.input_str ("Face type", default_face_type, ['wf','head'], help_message="whole face / head").lower() + self.options['face_type'] = io.input_str ("Face type", default_face_type, ['f','wf','head'], help_message="whole face / head").lower() default_d_dims = self.options['d_dims'] = self.load_or_def_option('d_dims', 64) @@ -86,7 +69,8 @@ class AMPModel(ModelBase): default_d_mask_dims = self.options['d_mask_dims'] = self.load_or_def_option('d_mask_dims', default_d_mask_dims) if self.is_first_run(): - self.options['ae_dims'] = np.clip ( io.input_int("AutoEncoder dimensions", default_ae_dims, add_info="32-1024", help_message="All face information will packed to AE dims. If amount of AE dims are not enough, then for example closed eyes will not be recognized. More dims are better, but require more VRAM. You can fine-tune model size to fit your GPU." ), 32, 1024 ) + self.options['ae_dims'] = np.clip ( io.input_int("AutoEncoder dimensions", default_ae_dims, add_info="32-1024", help_message="All face information will packed to AE dims. If amount of AE dims are not enough, then for example closed eyes will not be recognized. More dims are better, but require more VRAM. You can fine-tune model size to fit your GPU." ), 32, 1024 ) + self.options['inter_dims'] = np.clip ( io.input_int("Inter dimensions", default_inter_dims, add_info="32-2048", help_message="Should be equal or more than AutoEncoder dimensions. More dims are better, but require more VRAM. You can fine-tune model size to fit your GPU." ), 32, 2048 ) e_dims = np.clip ( io.input_int("Encoder dimensions", default_e_dims, add_info="16-256", help_message="More dims help to recognize more facial features and achieve sharper result, but require more VRAM. You can fine-tune model size to fit your GPU." ), 16, 256 ) self.options['e_dims'] = e_dims + e_dims % 2 @@ -101,11 +85,14 @@ class AMPModel(ModelBase): morph_factor = np.clip ( io.input_number ("Morph factor.", default_morph_factor, add_info="0.1 .. 0.5", help_message="The smaller the value, the more src-like facial expressions will appear. The larger the value, the less space there is to train a large dst faceset in the neural network. Typical fine value is 0.33"), 0.1, 0.5 ) self.options['morph_factor'] = morph_factor - if self.options['face_type'] == 'wf' or self.options['face_type'] == 'head': - self.options['masked_training'] = io.input_bool ("Masked training", default_masked_training, help_message="This option is available only for 'whole_face' or 'head' type. Masked training clips training area to full_face mask or XSeg mask, thus network will train the faces properly.") + # if self.options['face_type'] == 'wf' or self.options['face_type'] == 'head': + # self.options['masked_training'] = io.input_bool ("Masked training", default_masked_training, help_message="This option is available only for 'whole_face' or 'head' type. Masked training clips training area to full_face mask or XSeg mask, thus network will train the faces properly.") - self.options['eyes_mouth_prio'] = io.input_bool ("Eyes and mouth priority", default_eyes_mouth_prio, help_message='Helps to fix eye problems during training like "alien eyes" and wrong eyes direction. Also makes the detail of the teeth higher.') + # self.options['eyes_mouth_prio'] = io.input_bool ("Eyes and mouth priority", default_eyes_mouth_prio, help_message='Helps to fix eye problems during training like "alien eyes" and wrong eyes direction. Also makes the detail of the teeth higher.') + + if self.is_first_run() or ask_override: self.options['uniform_yaw'] = io.input_bool ("Uniform yaw distribution of samples", default_uniform_yaw, help_message='Helps to fix blurry side faces due to small amount of them in the faceset.') + self.options['lr_dropout'] = io.input_str (f"Use learning rate dropout", default_lr_dropout, ['n','y','cpu'], help_message="When the face is trained enough, you can enable this option to get extra sharpness and reduce subpixel shake for less amount of iterations. Enabled it before `disable random warp` and before GAN. \nn - disabled.\ny - enabled\ncpu - enabled on CPU. This allows not to use extra VRAM, sacrificing 20% time of iteration.") default_gan_power = self.options['gan_power'] = self.load_or_def_option('gan_power', 0.0) default_gan_patch_size = self.options['gan_patch_size'] = self.load_or_def_option('gan_patch_size', self.options['resolution'] // 8) @@ -132,7 +119,7 @@ class AMPModel(ModelBase): gan_patch_size = np.clip ( io.input_int("GAN patch size", default_gan_patch_size, add_info="3-640", help_message="The higher patch size, the higher the quality, the more VRAM is required. You can get sharper edges even at the lowest setting. Typical fine value is resolution / 8." ), 3, 640 ) self.options['gan_patch_size'] = gan_patch_size - gan_dims = np.clip ( io.input_int("GAN dimensions", default_gan_dims, add_info="4-64", help_message="The dimensions of the GAN network. The higher dimensions, the more VRAM is required. You can get sharper edges even at the lowest setting. Typical fine value is 16." ), 4, 64 ) + gan_dims = np.clip ( io.input_int("GAN dimensions", default_gan_dims, add_info="4-512", help_message="The dimensions of the GAN network. The higher dimensions, the more VRAM is required. You can get sharper edges even at the lowest setting. Typical fine value is 16." ), 4, 512 ) self.options['gan_dims'] = gan_dims self.options['background_power'] = np.clip ( io.input_number("Background power", default_background_power, add_info="0.0..1.0", help_message="Learn the area outside of the mask. Helps smooth out area near the mask boundaries. Can be used at any time"), 0.0, 1.0 ) @@ -140,11 +127,8 @@ class AMPModel(ModelBase): self.options['ct_mode'] = io.input_str (f"Color transfer for src faceset", default_ct_mode, ['none','rct','lct','mkl','idt','sot', 'fs-aug'], help_message="Change color distribution of src samples close to dst samples. Try all modes to find the best.") self.options['random_color'] = io.input_bool ("Random color", default_random_color, help_message="Samples are randomly rotated around the L axis in LAB colorspace, helps generalize training") self.options['clipgrad'] = io.input_bool ("Enable gradient clipping", default_clipgrad, help_message="Gradient clipping reduces chance of model collapse, sacrificing speed of training.") - - self.options['pretrain'] = io.input_bool ("Enable pretraining mode", default_pretrain, help_message="Pretrain the model with large amount of various faces. After that, model can be used to train the fakes more quickly. Forces random_warp=N, random_flips=Y, gan_power=0.0, lr_dropout=N, uniform_yaw=Y") - + self.gan_model_changed = (default_gan_patch_size != self.options['gan_patch_size']) or (default_gan_dims != self.options['gan_dims']) - self.pretrain_just_disabled = (default_pretrain == True and self.options['pretrain'] == False) #override def on_initialize(self): @@ -154,42 +138,50 @@ class AMPModel(ModelBase): nn.initialize(data_format=self.model_data_format) tf = nn.tf - self.resolution = resolution = self.options['resolution'] + input_ch=3 + resolution = self.resolution = self.options['resolution'] + e_dims = self.options['e_dims'] + ae_dims = self.options['ae_dims'] + inter_dims = self.inter_dims = self.options['inter_dims'] + inter_res = self.inter_res = resolution // 32 + d_dims = self.options['d_dims'] + d_mask_dims = self.options['d_mask_dims'] + face_type = self.face_type = {'f' : FaceType.FULL, + 'wf' : FaceType.WHOLE_FACE, + 'head' : FaceType.HEAD}[ self.options['face_type'] ] + morph_factor = self.options['morph_factor'] + gan_power = self.gan_power = self.options['gan_power'] + random_warp = self.options['random_warp'] - lowest_dense_res = self.lowest_dense_res = resolution // 32 + ct_mode = self.options['ct_mode'] + if ct_mode == 'none': + ct_mode = None + + use_fp16 = False + if self.is_exporting: + use_fp16 = io.input_bool ("Export quantized?", False, help_message='Makes the exported model faster. If you have problems, disable this option.') + + conv_dtype = tf.float16 if use_fp16 else tf.float32 class Downscale(nn.ModelBase): - def __init__(self, in_ch, out_ch, kernel_size=5, *kwargs ): - self.in_ch = in_ch - self.out_ch = out_ch - self.kernel_size = kernel_size - super().__init__(*kwargs) - - def on_build(self, *args, **kwargs ): - self.conv1 = nn.Conv2D( self.in_ch, self.out_ch, kernel_size=self.kernel_size, strides=2, padding='SAME') + def on_build(self, in_ch, out_ch, kernel_size=5 ): + self.conv1 = nn.Conv2D( in_ch, out_ch, kernel_size=kernel_size, strides=2, padding='SAME', dtype=conv_dtype) def forward(self, x): - x = self.conv1(x) - x = tf.nn.leaky_relu(x, 0.1) - return x - - def get_out_ch(self): - return self.out_ch + return tf.nn.leaky_relu(self.conv1(x), 0.1) class Upscale(nn.ModelBase): def on_build(self, in_ch, out_ch, kernel_size=3 ): - self.conv1 = nn.Conv2D( in_ch, out_ch*4, kernel_size=kernel_size, padding='SAME') + self.conv1 = nn.Conv2D(in_ch, out_ch*4, kernel_size=kernel_size, padding='SAME', dtype=conv_dtype) def forward(self, x): - x = self.conv1(x) - x = tf.nn.leaky_relu(x, 0.1) - x = nn.depth_to_space(x, 2) + x = nn.depth_to_space(tf.nn.leaky_relu(self.conv1(x), 0.1), 2) return x class ResidualBlock(nn.ModelBase): def on_build(self, ch, kernel_size=3 ): - self.conv1 = nn.Conv2D( ch, ch, kernel_size=kernel_size, padding='SAME') - self.conv2 = nn.Conv2D( ch, ch, kernel_size=kernel_size, padding='SAME') + self.conv1 = nn.Conv2D( ch, ch, kernel_size=kernel_size, padding='SAME', dtype=conv_dtype) + self.conv2 = nn.Conv2D( ch, ch, kernel_size=kernel_size, padding='SAME', dtype=conv_dtype) def forward(self, inp): x = self.conv1(inp) @@ -199,18 +191,19 @@ class AMPModel(ModelBase): return x class Encoder(nn.ModelBase): - def on_build(self, in_ch, e_ch, ae_ch): - self.down1 = Downscale(in_ch, e_ch, kernel_size=5) - self.res1 = ResidualBlock(e_ch) - self.down2 = Downscale(e_ch, e_ch*2, kernel_size=5) - self.down3 = Downscale(e_ch*2, e_ch*4, kernel_size=5) - self.down4 = Downscale(e_ch*4, e_ch*8, kernel_size=5) - self.down5 = Downscale(e_ch*8, e_ch*8, kernel_size=5) - self.res5 = ResidualBlock(e_ch*8) - self.dense1 = nn.Dense( lowest_dense_res*lowest_dense_res*e_ch*8, ae_ch ) + def on_build(self): + self.down1 = Downscale(input_ch, e_dims, kernel_size=5) + self.res1 = ResidualBlock(e_dims) + self.down2 = Downscale(e_dims, e_dims*2, kernel_size=5) + self.down3 = Downscale(e_dims*2, e_dims*4, kernel_size=5) + self.down4 = Downscale(e_dims*4, e_dims*8, kernel_size=5) + self.down5 = Downscale(e_dims*8, e_dims*8, kernel_size=5) + self.res5 = ResidualBlock(e_dims*8) + self.dense1 = nn.Dense( (( resolution//(2**5) )**2) * e_dims*8, ae_dims ) - def forward(self, inp): - x = inp + def forward(self, x): + if use_fp16: + x = tf.cast(x, tf.float16) x = self.down1(x) x = self.res1(x) x = self.down2(x) @@ -218,56 +211,51 @@ class AMPModel(ModelBase): x = self.down4(x) x = self.down5(x) x = self.res5(x) - x = nn.flatten(x) - x = nn.pixel_norm(x, axes=-1) + if use_fp16: + x = tf.cast(x, tf.float32) + x = nn.pixel_norm(nn.flatten(x), axes=-1) x = self.dense1(x) return x class Inter(nn.ModelBase): - def __init__(self, ae_ch, ae_out_ch, **kwargs): - self.ae_ch, self.ae_out_ch = ae_ch, ae_out_ch - super().__init__(**kwargs) - def on_build(self): - ae_ch, ae_out_ch = self.ae_ch, self.ae_out_ch - self.dense2 = nn.Dense( ae_ch, lowest_dense_res * lowest_dense_res * ae_out_ch ) + self.dense2 = nn.Dense(ae_dims, inter_res * inter_res * inter_dims) def forward(self, inp): x = inp x = self.dense2(x) - x = nn.reshape_4D (x, lowest_dense_res, lowest_dense_res, self.ae_out_ch) + x = nn.reshape_4D (x, inter_res, inter_res, inter_dims) return x - def get_out_ch(self): - return self.ae_out_ch class Decoder(nn.ModelBase): - def on_build(self, in_ch, d_ch, d_mask_ch ): - self.upscale0 = Upscale(in_ch, d_ch*8, kernel_size=3) - self.upscale1 = Upscale(d_ch*8, d_ch*8, kernel_size=3) - self.upscale2 = Upscale(d_ch*8, d_ch*4, kernel_size=3) - self.upscale3 = Upscale(d_ch*4, d_ch*2, kernel_size=3) + def on_build(self ): + self.upscale0 = Upscale(inter_dims, d_dims*8, kernel_size=3) + self.upscale1 = Upscale(d_dims*8, d_dims*8, kernel_size=3) + self.upscale2 = Upscale(d_dims*8, d_dims*4, kernel_size=3) + self.upscale3 = Upscale(d_dims*4, d_dims*2, kernel_size=3) - self.res0 = ResidualBlock(d_ch*8, kernel_size=3) - self.res1 = ResidualBlock(d_ch*8, kernel_size=3) - self.res2 = ResidualBlock(d_ch*4, kernel_size=3) - self.res3 = ResidualBlock(d_ch*2, kernel_size=3) + self.res0 = ResidualBlock(d_dims*8, kernel_size=3) + self.res1 = ResidualBlock(d_dims*8, kernel_size=3) + self.res2 = ResidualBlock(d_dims*4, kernel_size=3) + self.res3 = ResidualBlock(d_dims*2, kernel_size=3) - self.upscalem0 = Upscale(in_ch, d_mask_ch*8, kernel_size=3) - self.upscalem1 = Upscale(d_mask_ch*8, d_mask_ch*8, kernel_size=3) - self.upscalem2 = Upscale(d_mask_ch*8, d_mask_ch*4, kernel_size=3) - self.upscalem3 = Upscale(d_mask_ch*4, d_mask_ch*2, kernel_size=3) - self.upscalem4 = Upscale(d_mask_ch*2, d_mask_ch*1, kernel_size=3) - self.out_convm = nn.Conv2D( d_mask_ch*1, 1, kernel_size=1, padding='SAME') + self.upscalem0 = Upscale(inter_dims, d_mask_dims*8, kernel_size=3) + self.upscalem1 = Upscale(d_mask_dims*8, d_mask_dims*8, kernel_size=3) + self.upscalem2 = Upscale(d_mask_dims*8, d_mask_dims*4, kernel_size=3) + self.upscalem3 = Upscale(d_mask_dims*4, d_mask_dims*2, kernel_size=3) + self.upscalem4 = Upscale(d_mask_dims*2, d_mask_dims*1, kernel_size=3) + self.out_convm = nn.Conv2D( d_mask_dims*1, 1, kernel_size=1, padding='SAME', dtype=conv_dtype) - self.out_conv = nn.Conv2D( d_ch*2, 3, kernel_size=1, padding='SAME') - self.out_conv1 = nn.Conv2D( d_ch*2, 3, kernel_size=3, padding='SAME') - self.out_conv2 = nn.Conv2D( d_ch*2, 3, kernel_size=3, padding='SAME') - self.out_conv3 = nn.Conv2D( d_ch*2, 3, kernel_size=3, padding='SAME') + self.out_conv = nn.Conv2D( d_dims*2, 3, kernel_size=1, padding='SAME', dtype=conv_dtype) + self.out_conv1 = nn.Conv2D( d_dims*2, 3, kernel_size=3, padding='SAME', dtype=conv_dtype) + self.out_conv2 = nn.Conv2D( d_dims*2, 3, kernel_size=3, padding='SAME', dtype=conv_dtype) + self.out_conv3 = nn.Conv2D( d_dims*2, 3, kernel_size=3, padding='SAME', dtype=conv_dtype) - def forward(self, inp): - z = inp + def forward(self, z): + if use_fp16: + z = tf.cast(z, tf.float16) x = self.upscale0(z) x = self.res0(x) @@ -282,54 +270,22 @@ class AMPModel(ModelBase): self.out_conv1(x), self.out_conv2(x), self.out_conv3(x)), nn.conv2d_ch_axis), 2) ) - m = self.upscalem0(z) m = self.upscalem1(m) m = self.upscalem2(m) m = self.upscalem3(m) m = self.upscalem4(m) m = tf.nn.sigmoid(self.out_convm(m)) + + if use_fp16: + x = tf.cast(x, tf.float32) + m = tf.cast(m, tf.float32) return x, m - self.face_type = {'wf' : FaceType.WHOLE_FACE, - 'head' : FaceType.HEAD}[ self.options['face_type'] ] - - if 'eyes_prio' in self.options: - self.options.pop('eyes_prio') - - eyes_mouth_prio = self.options['eyes_mouth_prio'] - - ae_dims = self.ae_dims = self.options['ae_dims'] - e_dims = self.options['e_dims'] - d_dims = self.options['d_dims'] - d_mask_dims = self.options['d_mask_dims'] - morph_factor = self.options['morph_factor'] - - pretrain = self.pretrain = self.options['pretrain'] - if self.pretrain_just_disabled: - self.set_iter(0) - - self.gan_power = gan_power = 0.0 if self.pretrain else self.options['gan_power'] - random_warp = False if self.pretrain else self.options['random_warp'] - random_src_flip = self.random_src_flip if not self.pretrain else True - random_dst_flip = self.random_dst_flip if not self.pretrain else True - - if self.pretrain: - self.options_show_override['gan_power'] = 0.0 - self.options_show_override['random_warp'] = False - self.options_show_override['lr_dropout'] = 'n' - self.options_show_override['uniform_yaw'] = True - - masked_training = self.options['masked_training'] - ct_mode = self.options['ct_mode'] - if ct_mode == 'none': - ct_mode = None - models_opt_on_gpu = False if len(devices) == 0 else self.options['models_opt_on_gpu'] models_opt_device = nn.tf_default_device_name if models_opt_on_gpu and self.is_training else '/CPU:0' optimizer_vars_on_cpu = models_opt_device=='/CPU:0' - input_ch=3 bgr_shape = self.bgr_shape = nn.get4Dshape(resolution,resolution,input_ch) mask_shape = nn.get4Dshape(resolution,resolution,1) self.model_filename_list = [] @@ -350,12 +306,11 @@ class AMPModel(ModelBase): self.morph_value_t = tf.placeholder (nn.floatx, (1,), name='morph_value_t') # Initializing model classes - with tf.device (models_opt_device): - self.encoder = Encoder(in_ch=input_ch, e_ch=e_dims, ae_ch=ae_dims, name='encoder') - self.inter_src = Inter(ae_ch=ae_dims, ae_out_ch=ae_dims, name='inter_src') - self.inter_dst = Inter(ae_ch=ae_dims, ae_out_ch=ae_dims, name='inter_dst') - self.decoder = Decoder(in_ch=ae_dims, d_ch=d_dims, d_mask_ch=d_mask_dims, name='decoder') + self.encoder = Encoder(name='encoder') + self.inter_src = Inter(name='inter_src') + self.inter_dst = Inter(name='inter_dst') + self.decoder = Decoder(name='decoder') self.model_filename_list += [ [self.encoder, 'encoder.npy'], [self.inter_src, 'inter_src.npy'], @@ -363,30 +318,22 @@ class AMPModel(ModelBase): [self.decoder , 'decoder.npy'] ] if self.is_training: - if gan_power != 0: - self.GAN = nn.UNetPatchDiscriminator(patch_size=self.options['gan_patch_size'], in_ch=input_ch, base_ch=self.options['gan_dims'], name="GAN") - self.model_filename_list += [ [self.GAN, 'GAN.npy'] ] - # Initialize optimizers - lr=5e-5 - lr_dropout = 0.3 if self.options['lr_dropout'] in ['y','cpu'] and not self.pretrain else 1.0 - clipnorm = 1.0 if self.options['clipgrad'] else 0.0 + lr_dropout = 0.3 if self.options['lr_dropout'] in ['y','cpu'] else 1.0 + + self.all_weights = self.encoder.get_weights() + self.decoder.get_weights() - self.all_weights = self.encoder.get_weights() + self.inter_src.get_weights() + self.inter_dst.get_weights() + self.decoder.get_weights() - if pretrain: - self.trainable_weights = self.encoder.get_weights() + self.inter_dst.get_weights() + self.decoder.get_weights() - else: - self.trainable_weights = self.encoder.get_weights() + self.inter_src.get_weights() + self.inter_dst.get_weights() + self.decoder.get_weights() - - self.src_dst_opt = nn.AdaBelief(lr=lr, lr_dropout=lr_dropout, clipnorm=clipnorm, name='src_dst_opt') - self.src_dst_opt.initialize_variables (self.all_weights, vars_on_cpu=optimizer_vars_on_cpu, lr_dropout_on_cpu=self.options['lr_dropout']=='cpu') + self.src_dst_opt = nn.AdaBelief(lr=5e-5, lr_dropout=lr_dropout, clipnorm=clipnorm, name='src_dst_opt') + self.src_dst_opt.initialize_variables (self.all_weights, vars_on_cpu=optimizer_vars_on_cpu) self.model_filename_list += [ (self.src_dst_opt, 'src_dst_opt.npy') ] if gan_power != 0: - self.GAN_opt = nn.AdaBelief(lr=lr, lr_dropout=lr_dropout, clipnorm=clipnorm, name='GAN_opt') - self.GAN_opt.initialize_variables ( self.GAN.get_weights(), vars_on_cpu=optimizer_vars_on_cpu, lr_dropout_on_cpu=self.options['lr_dropout']=='cpu')#+self.D_src_x2.get_weights() - self.model_filename_list += [ (self.GAN_opt, 'GAN_opt.npy') ] + self.GAN = nn.UNetPatchDiscriminator(patch_size=self.options['gan_patch_size'], in_ch=input_ch, base_ch=self.options['gan_dims'], name="GAN") + self.GAN_opt = nn.AdaBelief(lr=5e-5, lr_dropout=lr_dropout, clipnorm=clipnorm, name='GAN_opt') + self.GAN_opt.initialize_variables ( self.GAN.get_weights(), vars_on_cpu=optimizer_vars_on_cpu) + self.model_filename_list += [ [self.GAN, 'GAN.npy'], + [self.GAN_opt, 'GAN_opt.npy'] ] if self.is_training: # Adjust batch size for multiple GPU @@ -404,10 +351,8 @@ class AMPModel(ModelBase): gpu_src_losses = [] gpu_dst_losses = [] - gpu_G_loss_gvs = [] - gpu_GAN_loss_gvs = [] - gpu_D_code_loss_gvs = [] - gpu_D_src_dst_loss_gvs = [] + gpu_G_loss_gradients = [] + gpu_GAN_loss_grads = [] for gpu_id in range(gpu_count): with tf.device( f'/{devices[gpu_id].tf_dev_type}:{gpu_id}' if len(devices) != 0 else f'/CPU:0' ): @@ -426,132 +371,67 @@ class AMPModel(ModelBase): # process model tensors gpu_src_code = self.encoder (gpu_warped_src) gpu_dst_code = self.encoder (gpu_warped_dst) - - if pretrain: - gpu_src_inter_src_code = self.inter_src (gpu_src_code) - gpu_dst_inter_dst_code = self.inter_dst (gpu_dst_code) - gpu_src_code = gpu_src_inter_src_code * nn.random_binomial( [bs_per_gpu, gpu_src_inter_src_code.shape.as_list()[1], 1,1] , p=morph_factor) - gpu_dst_code = gpu_src_dst_code = gpu_dst_inter_dst_code * nn.random_binomial( [bs_per_gpu, gpu_dst_inter_dst_code.shape.as_list()[1], 1,1] , p=0.25) - else: - gpu_src_inter_src_code = self.inter_src (gpu_src_code) - gpu_src_inter_dst_code = self.inter_dst (gpu_src_code) - gpu_dst_inter_src_code = self.inter_src (gpu_dst_code) - gpu_dst_inter_dst_code = self.inter_dst (gpu_dst_code) - inter_rnd_binomial = nn.random_binomial( [bs_per_gpu, gpu_src_inter_src_code.shape.as_list()[1], 1,1] , p=morph_factor) - gpu_src_code = gpu_src_inter_src_code * inter_rnd_binomial + gpu_src_inter_dst_code * (1-inter_rnd_binomial) - gpu_dst_code = gpu_dst_inter_dst_code + gpu_src_inter_src_code, gpu_src_inter_dst_code = self.inter_src (gpu_src_code), self.inter_dst (gpu_src_code) + gpu_dst_inter_src_code, gpu_dst_inter_dst_code = self.inter_src (gpu_dst_code), self.inter_dst (gpu_dst_code) - ae_dims_slice = tf.cast(ae_dims*self.morph_value_t[0], tf.int32) - gpu_src_dst_code = tf.concat( (tf.slice(gpu_dst_inter_src_code, [0,0,0,0], [-1, ae_dims_slice , lowest_dense_res, lowest_dense_res]), - tf.slice(gpu_dst_inter_dst_code, [0,ae_dims_slice,0,0], [-1,ae_dims-ae_dims_slice, lowest_dense_res,lowest_dense_res]) ), 1 ) + inter_rnd_binomial = nn.random_binomial( [bs_per_gpu, gpu_src_inter_src_code.shape.as_list()[1], 1,1] , p=morph_factor) + gpu_src_code = gpu_src_inter_src_code * inter_rnd_binomial + gpu_src_inter_dst_code * (1-inter_rnd_binomial) + gpu_dst_code = gpu_dst_inter_dst_code + + inter_dims_slice = tf.cast(inter_dims*self.morph_value_t[0], tf.int32) + gpu_src_dst_code = tf.concat( (tf.slice(gpu_dst_inter_src_code, [0,0,0,0], [-1, inter_dims_slice , inter_res, inter_res]), + tf.slice(gpu_dst_inter_dst_code, [0,inter_dims_slice,0,0], [-1,inter_dims-inter_dims_slice, inter_res,inter_res]) ), 1 ) gpu_pred_src_src, gpu_pred_src_srcm = self.decoder(gpu_src_code) gpu_pred_dst_dst, gpu_pred_dst_dstm = self.decoder(gpu_dst_code) gpu_pred_src_dst, gpu_pred_src_dstm = self.decoder(gpu_src_dst_code) - gpu_pred_src_src_list.append(gpu_pred_src_src) - gpu_pred_dst_dst_list.append(gpu_pred_dst_dst) - gpu_pred_src_dst_list.append(gpu_pred_src_dst) + gpu_pred_src_src_list.append(gpu_pred_src_src), gpu_pred_src_srcm_list.append(gpu_pred_src_srcm) + gpu_pred_dst_dst_list.append(gpu_pred_dst_dst), gpu_pred_dst_dstm_list.append(gpu_pred_dst_dstm) + gpu_pred_src_dst_list.append(gpu_pred_src_dst), gpu_pred_src_dstm_list.append(gpu_pred_src_dstm) - gpu_pred_src_srcm_list.append(gpu_pred_src_srcm) - gpu_pred_dst_dstm_list.append(gpu_pred_dst_dstm) - gpu_pred_src_dstm_list.append(gpu_pred_src_dstm) + gpu_target_srcm_blur = tf.clip_by_value( nn.gaussian_blur(gpu_target_srcm, max(1, resolution // 32) ), 0, 0.5) * 2 + gpu_target_dstm_blur = tf.clip_by_value(nn.gaussian_blur(gpu_target_dstm, max(1, resolution // 32) ), 0, 0.5) * 2 - gpu_target_srcm_blur = nn.gaussian_blur(gpu_target_srcm, max(1, resolution // 32) ) - gpu_target_srcm_blur = tf.clip_by_value(gpu_target_srcm_blur, 0, 0.5) * 2 + gpu_target_srcm_anti_blur = 1.0-gpu_target_srcm_blur + gpu_target_dstm_anti_blur = 1.0-gpu_target_dstm_blur - gpu_target_dstm_blur = nn.gaussian_blur(gpu_target_dstm, max(1, resolution // 32) ) - gpu_target_dstm_blur = tf.clip_by_value(gpu_target_dstm_blur, 0, 0.5) * 2 + gpu_target_src_masked = gpu_target_src*gpu_target_srcm_blur + gpu_target_dst_masked = gpu_target_dst*gpu_target_dstm_blur + gpu_target_src_anti_masked = gpu_target_src*gpu_target_srcm_anti_blur + gpu_target_dst_anti_masked = gpu_target_dst*gpu_target_dstm_anti_blur - gpu_target_dst_anti_masked = gpu_target_dst*(1.0-gpu_target_dstm_blur) - gpu_target_src_anti_masked = gpu_target_src*(1.0-gpu_target_srcm_blur) - gpu_target_src_masked_opt = gpu_target_src*gpu_target_srcm_blur if masked_training else gpu_target_src - gpu_target_dst_masked_opt = gpu_target_dst*gpu_target_dstm_blur if masked_training else gpu_target_dst + gpu_pred_src_src_masked = gpu_pred_src_src*gpu_target_srcm_blur + gpu_pred_dst_dst_masked = gpu_pred_dst_dst*gpu_target_dstm_blur + gpu_pred_src_src_anti_masked = gpu_pred_src_src*gpu_target_srcm_anti_blur + gpu_pred_dst_dst_anti_masked = gpu_pred_dst_dst*gpu_target_dstm_anti_blur - gpu_pred_src_src_masked_opt = gpu_pred_src_src*gpu_target_srcm_blur if masked_training else gpu_pred_src_src - gpu_pred_src_src_anti_masked = gpu_pred_src_src*(1.0-gpu_target_srcm_blur) - gpu_pred_dst_dst_masked_opt = gpu_pred_dst_dst*gpu_target_dstm_blur if masked_training else gpu_pred_dst_dst - gpu_pred_dst_dst_anti_masked = gpu_pred_dst_dst*(1.0-gpu_target_dstm_blur) + # Structural loss + gpu_src_loss = tf.reduce_mean (5*nn.dssim(gpu_target_src_masked, gpu_pred_src_src_masked, max_val=1.0, filter_size=int(resolution/11.6)), axis=[1]) + gpu_src_loss += tf.reduce_mean (5*nn.dssim(gpu_target_src_masked, gpu_pred_src_src_masked, max_val=1.0, filter_size=int(resolution/23.2)), axis=[1]) + gpu_dst_loss = tf.reduce_mean (5*nn.dssim(gpu_target_dst_masked, gpu_pred_dst_dst_masked, max_val=1.0, filter_size=int(resolution/11.6) ), axis=[1]) + gpu_dst_loss += tf.reduce_mean (5*nn.dssim(gpu_target_dst_masked, gpu_pred_dst_dst_masked, max_val=1.0, filter_size=int(resolution/23.2) ), axis=[1]) - if self.options['loss_function'] == 'MS-SSIM': - gpu_dst_loss = 10 * nn.MsSsim(bs_per_gpu, input_ch, resolution)(gpu_target_dst_masked_opt, gpu_pred_dst_dst_masked_opt, max_val=1.0) - gpu_dst_loss += tf.reduce_mean ( 10*tf.square ( gpu_target_dst_masked_opt - gpu_pred_dst_dst_masked_opt ), axis=[1,2,3]) - elif self.options['loss_function'] == 'MS-SSIM+L1': - gpu_dst_loss = 10 * nn.MsSsim(bs_per_gpu, input_ch, resolution, use_l1=True)(gpu_target_dst_masked_opt, gpu_pred_dst_dst_masked_opt, max_val=1.0) - else: - if resolution < 256: - gpu_dst_loss = tf.reduce_mean ( 10*nn.dssim(gpu_target_dst_masked_opt, gpu_pred_dst_dst_masked_opt, max_val=1.0, filter_size=int(resolution/11.6) ), axis=[1]) - else: - gpu_dst_loss = tf.reduce_mean ( 5*nn.dssim(gpu_target_dst_masked_opt, gpu_pred_dst_dst_masked_opt, max_val=1.0, filter_size=int(resolution/11.6) ), axis=[1]) - gpu_dst_loss += tf.reduce_mean ( 5*nn.dssim(gpu_target_dst_masked_opt, gpu_pred_dst_dst_masked_opt, max_val=1.0, filter_size=int(resolution/23.2) ), axis=[1]) - gpu_dst_loss += tf.reduce_mean ( 10*tf.square( gpu_target_dst_masked_opt- gpu_pred_dst_dst_masked_opt ), axis=[1,2,3]) - if eyes_mouth_prio: - gpu_dst_loss += tf.reduce_mean ( 300*tf.abs ( gpu_target_dst*gpu_target_dstm_em - gpu_pred_dst_dst*gpu_target_dstm_em ), axis=[1,2,3]) + # Pixel loss + gpu_src_loss += tf.reduce_mean (10*tf.square(gpu_target_src_masked-gpu_pred_src_src_masked), axis=[1,2,3]) + gpu_dst_loss += tf.reduce_mean (10*tf.square(gpu_target_dst_masked-gpu_pred_dst_dst_masked), axis=[1,2,3]) + + # Eyes+mouth prio loss + gpu_src_loss += tf.reduce_mean (300*tf.abs (gpu_target_src*gpu_target_srcm_em-gpu_pred_src_src*gpu_target_srcm_em), axis=[1,2,3]) + gpu_dst_loss += tf.reduce_mean (300*tf.abs (gpu_target_dst*gpu_target_dstm_em-gpu_pred_dst_dst*gpu_target_dstm_em), axis=[1,2,3]) + + # Mask loss + gpu_src_loss += tf.reduce_mean ( 10*tf.square( gpu_target_srcm - gpu_pred_src_srcm ),axis=[1,2,3] ) gpu_dst_loss += tf.reduce_mean ( 10*tf.square( gpu_target_dstm - gpu_pred_dst_dstm ),axis=[1,2,3] ) - gpu_dst_loss += 0.1*tf.reduce_mean(tf.square(gpu_pred_dst_dst_anti_masked-gpu_target_dst_anti_masked),axis=[1,2,3] ) - if self.options['background_power'] > 0: - bg_factor = self.options['background_power'] + # dst-dst background weak loss + gpu_dst_loss += tf.reduce_mean(0.1*tf.square(gpu_pred_dst_dst_anti_masked-gpu_target_dst_anti_masked),axis=[1,2,3] ) + gpu_dst_loss += 0.000001*nn.total_variation_mse(gpu_pred_dst_dst_anti_masked) - if self.options['loss_function'] == 'MS-SSIM': - gpu_dst_loss += bg_factor * 10 * nn.MsSsim(bs_per_gpu, input_ch, resolution)(gpu_target_dst, gpu_pred_dst_dst, max_val=1.0) - gpu_dst_loss += bg_factor * tf.reduce_mean ( 10*tf.square ( gpu_target_dst - gpu_pred_dst_dst ), axis=[1,2,3]) - elif self.options['loss_function'] == 'MS-SSIM+L1': - gpu_dst_loss += bg_factor * 10 * nn.MsSsim(bs_per_gpu, input_ch, resolution, use_l1=True)(gpu_target_dst, gpu_pred_dst_dst, max_val=1.0) - else: - if resolution < 256: - gpu_dst_loss += bg_factor * tf.reduce_mean ( 10*nn.dssim(gpu_target_dst, gpu_pred_dst_dst, max_val=1.0, filter_size=int(resolution/11.6)), axis=[1]) - else: - gpu_dst_loss += bg_factor * tf.reduce_mean ( 5*nn.dssim(gpu_target_dst, gpu_pred_dst_dst, max_val=1.0, filter_size=int(resolution/11.6)), axis=[1]) - gpu_dst_loss += bg_factor * tf.reduce_mean ( 5*nn.dssim(gpu_target_dst, gpu_pred_dst_dst, max_val=1.0, filter_size=int(resolution/23.2)), axis=[1]) - gpu_dst_loss += bg_factor * tf.reduce_mean ( 10*tf.square ( gpu_target_dst - gpu_pred_dst_dst ), axis=[1,2,3]) - - gpu_dst_losses += [gpu_dst_loss] - - if not pretrain: - if self.options['loss_function'] == 'MS-SSIM': - gpu_src_loss = 10 * nn.MsSsim(bs_per_gpu, input_ch, resolution)(gpu_target_src_masked_opt, gpu_pred_src_src_masked_opt, max_val=1.0) - gpu_src_loss += tf.reduce_mean ( 10*tf.square ( gpu_target_src_masked_opt - gpu_pred_src_src_masked_opt ), axis=[1,2,3]) - elif self.options['loss_function'] == 'MS-SSIM+L1': - gpu_src_loss = 10 * nn.MsSsim(bs_per_gpu, input_ch, resolution, use_l1=True)(gpu_target_src_masked_opt, gpu_pred_src_src_masked_opt, max_val=1.0) - else: - if resolution < 256: - gpu_src_loss = tf.reduce_mean ( 10*nn.dssim(gpu_target_src_masked_opt, gpu_pred_src_src_masked_opt, max_val=1.0, filter_size=int(resolution/11.6)), axis=[1]) - else: - gpu_src_loss = tf.reduce_mean ( 5*nn.dssim(gpu_target_src_masked_opt, gpu_pred_src_src_masked_opt, max_val=1.0, filter_size=int(resolution/11.6)), axis=[1]) - gpu_src_loss += tf.reduce_mean ( 5*nn.dssim(gpu_target_src_masked_opt, gpu_pred_src_src_masked_opt, max_val=1.0, filter_size=int(resolution/23.2)), axis=[1]) - gpu_src_loss += tf.reduce_mean ( 10*tf.square ( gpu_target_src_masked_opt - gpu_pred_src_src_masked_opt ), axis=[1,2,3]) - - if eyes_mouth_prio: - gpu_src_loss += tf.reduce_mean ( 300*tf.abs ( gpu_target_src*gpu_target_srcm_em - gpu_pred_src_src*gpu_target_srcm_em ), axis=[1,2,3]) - - gpu_src_loss += tf.reduce_mean ( 10*tf.square( gpu_target_srcm - gpu_pred_src_srcm ),axis=[1,2,3] ) - - if self.options['background_power'] > 0: - bg_factor = self.options['background_power'] - - if self.options['loss_function'] == 'MS-SSIM': - gpu_src_loss += bg_factor * 10 * nn.MsSsim(bs_per_gpu, input_ch, resolution)(gpu_target_src, gpu_pred_src_src, max_val=1.0) - gpu_src_loss += bg_factor * tf.reduce_mean ( 10*tf.square ( gpu_target_src - gpu_pred_src_src ), axis=[1,2,3]) - elif self.options['loss_function'] == 'MS-SSIM+L1': - gpu_src_loss += bg_factor * 10 * nn.MsSsim(bs_per_gpu, input_ch, resolution, use_l1=True)(gpu_target_src, gpu_pred_src_src, max_val=1.0) - else: - if resolution < 256: - gpu_src_loss += bg_factor * tf.reduce_mean ( 10*nn.dssim(gpu_target_src, gpu_pred_src_src, max_val=1.0, filter_size=int(resolution/11.6)), axis=[1]) - else: - gpu_src_loss += bg_factor * tf.reduce_mean ( 5*nn.dssim(gpu_target_src, gpu_pred_src_src, max_val=1.0, filter_size=int(resolution/11.6)), axis=[1]) - gpu_src_loss += bg_factor * tf.reduce_mean ( 5*nn.dssim(gpu_target_src, gpu_pred_src_src, max_val=1.0, filter_size=int(resolution/23.2)), axis=[1]) - gpu_src_loss += bg_factor * tf.reduce_mean ( 10*tf.square ( gpu_target_src - gpu_pred_src_src ), axis=[1,2,3]) - else: - gpu_src_loss = gpu_dst_loss - gpu_src_losses += [gpu_src_loss] - - if pretrain: - gpu_G_loss = gpu_dst_loss - else: - gpu_G_loss = gpu_src_loss + gpu_dst_loss + gpu_dst_losses += [gpu_dst_loss] + gpu_G_loss = gpu_src_loss + gpu_dst_loss def DLossOnes(logits): return tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.ones_like(logits), logits=logits), axis=[1,2,3]) @@ -560,30 +440,28 @@ class AMPModel(ModelBase): return tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits(labels=tf.zeros_like(logits), logits=logits), axis=[1,2,3]) if gan_power != 0: - gpu_pred_src_src_d, gpu_pred_src_src_d2 = self.GAN(gpu_pred_src_src_masked_opt) - gpu_pred_dst_dst_d, gpu_pred_dst_dst_d2 = self.GAN(gpu_pred_dst_dst_masked_opt) - gpu_target_src_d, gpu_target_src_d2 = self.GAN(gpu_target_src_masked_opt) - gpu_target_dst_d, gpu_target_dst_d2 = self.GAN(gpu_target_dst_masked_opt) + gpu_pred_src_src_d, gpu_pred_src_src_d2 = self.GAN(gpu_pred_src_src_masked) + gpu_pred_dst_dst_d, gpu_pred_dst_dst_d2 = self.GAN(gpu_pred_dst_dst_masked) + gpu_target_src_d, gpu_target_src_d2 = self.GAN(gpu_target_src_masked) + gpu_target_dst_d, gpu_target_dst_d2 = self.GAN(gpu_target_dst_masked) - gpu_D_src_dst_loss = (DLossOnes (gpu_target_src_d) + DLossOnes (gpu_target_src_d2) + \ - DLossZeros(gpu_pred_src_src_d) + DLossZeros(gpu_pred_src_src_d2) + \ - DLossOnes (gpu_target_dst_d) + DLossOnes (gpu_target_dst_d2) + \ - DLossZeros(gpu_pred_dst_dst_d) + DLossZeros(gpu_pred_dst_dst_d2) - ) * ( 1.0 / 8) + gpu_GAN_loss = (DLossOnes (gpu_target_src_d) + DLossOnes (gpu_target_src_d2) + \ + DLossZeros(gpu_pred_src_src_d) + DLossZeros(gpu_pred_src_src_d2) + \ + DLossOnes (gpu_target_dst_d) + DLossOnes (gpu_target_dst_d2) + \ + DLossZeros(gpu_pred_dst_dst_d) + DLossZeros(gpu_pred_dst_dst_d2) + ) * (1.0 / 8) - gpu_D_src_dst_loss_gvs += [ nn.gradients (gpu_D_src_dst_loss, self.GAN.get_weights() ) ] + gpu_GAN_loss_grads += [ nn.gradients (gpu_GAN_loss, self.GAN.get_weights() ) ] gpu_G_loss += (DLossOnes(gpu_pred_src_src_d) + DLossOnes(gpu_pred_src_src_d2) + \ DLossOnes(gpu_pred_dst_dst_d) + DLossOnes(gpu_pred_dst_dst_d2) ) * gan_power - if masked_training: - # Minimal src-src-bg rec with total_variation_mse to suppress random bright dots from gan - gpu_G_loss += 0.000001*nn.total_variation_mse(gpu_pred_src_src) - gpu_G_loss += 0.02*tf.reduce_mean(tf.square(gpu_pred_src_src_anti_masked-gpu_target_src_anti_masked),axis=[1,2,3] ) - - gpu_G_loss_gvs += [ nn.gradients ( gpu_G_loss, self.trainable_weights ) ] + # Minimal src-src-bg rec with total_variation_mse to suppress random bright dots from gan + gpu_G_loss += 0.000001*nn.total_variation_mse(gpu_pred_src_src) + gpu_G_loss += 0.02*tf.reduce_mean(tf.square(gpu_pred_src_src_anti_masked-gpu_target_src_anti_masked),axis=[1,2,3] ) + gpu_G_loss_gradients += [ nn.gradients ( gpu_G_loss, self.encoder.get_weights() + self.decoder.get_weights() ) ] # Average losses and gradients, and create optimizer update ops with tf.device(f'/CPU:0'): @@ -597,17 +475,15 @@ class AMPModel(ModelBase): with tf.device (models_opt_device): src_loss = tf.concat(gpu_src_losses, 0) dst_loss = tf.concat(gpu_dst_losses, 0) - src_dst_loss_gv_op = self.src_dst_opt.get_update_op (nn.average_gv_list (gpu_G_loss_gvs)) + train_op = self.src_dst_opt.get_update_op (nn.average_gv_list (gpu_G_loss_gradients)) if gan_power != 0: - src_D_src_dst_loss_gv_op = self.GAN_opt.get_update_op (nn.average_gv_list(gpu_D_src_dst_loss_gvs) ) - #GAN_loss_gv_op = self.src_dst_opt.get_update_op (nn.average_gv_list(gpu_GAN_loss_gvs) ) - + GAN_train_op = self.GAN_opt.get_update_op (nn.average_gv_list(gpu_GAN_loss_grads) ) # Initializing training and view functions - def src_dst_train(warped_src, target_src, target_srcm, target_srcm_em, \ + def train(warped_src, target_src, target_srcm, target_srcm_em, \ warped_dst, target_dst, target_dstm, target_dstm_em, ): - s, d, _ = nn.tf_sess.run ( [ src_loss, dst_loss, src_dst_loss_gv_op], + s, d, _ = nn.tf_sess.run ([src_loss, dst_loss, train_op], feed_dict={self.warped_src :warped_src, self.target_src :target_src, self.target_srcm:target_srcm, @@ -618,21 +494,20 @@ class AMPModel(ModelBase): self.target_dstm_em:target_dstm_em, }) return s, d - self.src_dst_train = src_dst_train + self.train = train if gan_power != 0: - def D_src_dst_train(warped_src, target_src, target_srcm, target_srcm_em, \ - warped_dst, target_dst, target_dstm, target_dstm_em, ): - nn.tf_sess.run ([src_D_src_dst_loss_gv_op], feed_dict={self.warped_src :warped_src, - self.target_src :target_src, - self.target_srcm:target_srcm, - self.target_srcm_em:target_srcm_em, - self.warped_dst :warped_dst, - self.target_dst :target_dst, - self.target_dstm:target_dstm, - self.target_dstm_em:target_dstm_em}) - self.D_src_dst_train = D_src_dst_train - + def GAN_train(warped_src, target_src, target_srcm, target_srcm_em, \ + warped_dst, target_dst, target_dstm, target_dstm_em, ): + nn.tf_sess.run ([GAN_train_op], feed_dict={self.warped_src :warped_src, + self.target_src :target_src, + self.target_srcm:target_srcm, + self.target_srcm_em:target_srcm_em, + self.warped_dst :warped_dst, + self.target_dst :target_dst, + self.target_dstm:target_dstm, + self.target_dstm_em:target_dstm_em}) + self.GAN_train = GAN_train def AE_view(warped_src, warped_dst, morph_value): return nn.tf_sess.run ( [pred_src_src, pred_dst_dst, pred_dst_dstm, pred_src_dst, pred_src_dstm], @@ -643,12 +518,12 @@ class AMPModel(ModelBase): #Initializing merge function with tf.device( nn.tf_default_device_name if len(devices) != 0 else f'/CPU:0'): gpu_dst_code = self.encoder (self.warped_dst) - gpu_dst_inter_src_code = self.inter_src ( gpu_dst_code) - gpu_dst_inter_dst_code = self.inter_dst ( gpu_dst_code) + gpu_dst_inter_src_code = self.inter_src (gpu_dst_code) + gpu_dst_inter_dst_code = self.inter_dst (gpu_dst_code) - ae_dims_slice = tf.cast(ae_dims*self.morph_value_t[0], tf.int32) - gpu_src_dst_code = tf.concat( ( tf.slice(gpu_dst_inter_src_code, [0,0,0,0], [-1, ae_dims_slice , lowest_dense_res, lowest_dense_res]), - tf.slice(gpu_dst_inter_dst_code, [0,ae_dims_slice,0,0], [-1,ae_dims-ae_dims_slice, lowest_dense_res,lowest_dense_res]) ), 1 ) + inter_dims_slice = tf.cast(inter_dims*self.morph_value_t[0], tf.int32) + gpu_src_dst_code = tf.concat( ( tf.slice(gpu_dst_inter_src_code, [0,0,0,0], [-1, inter_dims_slice , inter_res, inter_res]), + tf.slice(gpu_dst_inter_dst_code, [0,inter_dims_slice,0,0], [-1,inter_dims-inter_dims_slice, inter_res,inter_res]) ), 1 ) gpu_pred_src_dst, gpu_pred_src_dstm = self.decoder(gpu_src_dst_code) _, gpu_pred_dst_dstm = self.decoder(gpu_dst_inter_dst_code) @@ -660,31 +535,22 @@ class AMPModel(ModelBase): # Loading/initializing all models/optimizers weights for model, filename in io.progress_bar_generator(self.model_filename_list, "Initializing models"): - if self.pretrain_just_disabled: - do_init = False - if model == self.inter_src or model == self.inter_dst: + do_init = self.is_first_run() + if self.is_training and gan_power != 0 and model == self.GAN: + if self.gan_model_changed: do_init = True - else: - do_init = self.is_first_run() - if self.is_training and gan_power != 0 and model == self.GAN: - if self.gan_model_changed: - do_init = True - if not do_init: do_init = not model.load_weights( self.get_strpath_storage_for_file(filename) ) if do_init: model.init_weights() - - ############### # initializing sample generators if self.is_training: - training_data_src_path = self.training_data_src_path if not self.pretrain else self.get_pretraining_data_path() - training_data_dst_path = self.training_data_dst_path if not self.pretrain else self.get_pretraining_data_path() - - random_ct_samples_path=training_data_dst_path if ct_mode is not None and not self.pretrain else None + training_data_src_path = self.training_data_src_path #if not self.pretrain else self.get_pretraining_data_path() + training_data_dst_path = self.training_data_dst_path #if not self.pretrain else self.get_pretraining_data_path() + random_ct_samples_path=training_data_dst_path if ct_mode is not None else None #and not self.pretrain cpu_count = min(multiprocessing.cpu_count(), 8) src_generators_count = cpu_count // 2 @@ -712,7 +578,7 @@ class AMPModel(ModelBase): {'sample_type': SampleProcessor.SampleType.FACE_MASK, 'warp':False , 'transform':True, 'channel_type' : SampleProcessor.ChannelType.G, 'face_mask_type' : SampleProcessor.FaceMaskType.FULL_FACE, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution}, {'sample_type': SampleProcessor.SampleType.FACE_MASK, 'warp':False , 'transform':True, 'channel_type' : SampleProcessor.ChannelType.G, 'face_mask_type' : SampleProcessor.FaceMaskType.FULL_FACE_EYES, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution}, ], - uniform_yaw_distribution=self.options['uniform_yaw'] or self.pretrain, + uniform_yaw_distribution=self.options['uniform_yaw'],# or self.pretrain, generators_count=src_generators_count ), SampleGeneratorFace(training_data_dst_path, debug=self.is_debug(), batch_size=self.get_batch_size(), @@ -728,17 +594,18 @@ class AMPModel(ModelBase): {'sample_type': SampleProcessor.SampleType.FACE_MASK, 'warp':False , 'transform':True, 'channel_type' : SampleProcessor.ChannelType.G, 'face_mask_type' : SampleProcessor.FaceMaskType.FULL_FACE, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution}, {'sample_type': SampleProcessor.SampleType.FACE_MASK, 'warp':False , 'transform':True, 'channel_type' : SampleProcessor.ChannelType.G, 'face_mask_type' : SampleProcessor.FaceMaskType.FULL_FACE_EYES, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution}, ], - uniform_yaw_distribution=self.options['uniform_yaw'] or self.pretrain, + uniform_yaw_distribution=self.options['uniform_yaw'],# or self.pretrain, generators_count=dst_generators_count ) ]) self.last_src_samples_loss = [] self.last_dst_samples_loss = [] - if self.pretrain_just_disabled: - self.update_sample_for_preview(force_new=True) - - def dump_ckpt(self): + def export_dfm (self): + output_path=self.get_strpath_storage_for_file('model.dfm') + + io.log_info(f'Dumping .dfm to {output_path}') + tf = nn.tf with tf.device (nn.tf_default_device_name): warped_dst = tf.placeholder (nn.floatx, (None, self.resolution, self.resolution, 3), name='in_face') @@ -749,9 +616,9 @@ class AMPModel(ModelBase): gpu_dst_inter_src_code = self.inter_src ( gpu_dst_code) gpu_dst_inter_dst_code = self.inter_dst ( gpu_dst_code) - ae_dims_slice = tf.cast(self.ae_dims*morph_value[0], tf.int32) - gpu_src_dst_code = tf.concat( (tf.slice(gpu_dst_inter_src_code, [0,0,0,0], [-1, ae_dims_slice , self.lowest_dense_res, self.lowest_dense_res]), - tf.slice(gpu_dst_inter_dst_code, [0,ae_dims_slice,0,0], [-1,self.ae_dims-ae_dims_slice, self.lowest_dense_res,self.lowest_dense_res]) ), 1 ) + inter_dims_slice = tf.cast(self.inter_dims*morph_value[0], tf.int32) + gpu_src_dst_code = tf.concat( (tf.slice(gpu_dst_inter_src_code, [0,0,0,0], [-1, inter_dims_slice , self.inter_res, self.inter_res]), + tf.slice(gpu_dst_inter_dst_code, [0,inter_dims_slice,0,0], [-1,self.inter_dims-inter_dims_slice, self.inter_res,self.inter_res]) ), 1 ) gpu_pred_src_dst, gpu_pred_src_dstm = self.decoder(gpu_src_dst_code) _, gpu_pred_dst_dstm = self.decoder(gpu_dst_inter_dst_code) @@ -763,16 +630,22 @@ class AMPModel(ModelBase): tf.identity(gpu_pred_dst_dstm, name='out_face_mask') tf.identity(gpu_pred_src_dst, name='out_celeb_face') tf.identity(gpu_pred_src_dstm, name='out_celeb_face_mask') - + output_graph_def = tf.graph_util.convert_variables_to_constants( - nn.tf_sess, - tf.get_default_graph().as_graph_def(), + nn.tf_sess, + tf.get_default_graph().as_graph_def(), ['out_face_mask','out_celeb_face','out_celeb_face_mask'] - ) - - pb_filepath = self.get_strpath_storage_for_file('.pb') - with tf.gfile.GFile(pb_filepath, "wb") as f: - f.write(output_graph_def.SerializeToString()) + ) + + import tf2onnx + with tf.device("/CPU:0"): + model_proto, _ = tf2onnx.convert._convert_common( + output_graph_def, + name='AMP', + input_names=['in_face:0','morph_value:0'], + output_names=['out_face_mask:0','out_celeb_face:0','out_celeb_face_mask:0'], + opset=13, + output_path=output_path) #override def get_model_filename_list(self): @@ -795,35 +668,35 @@ class AMPModel(ModelBase): ( (warped_src, target_src, target_srcm, target_srcm_em), \ (warped_dst, target_dst, target_dstm, target_dstm_em) ) = self.generate_next_samples() - src_loss, dst_loss = self.src_dst_train (warped_src, target_src, target_srcm, target_srcm_em, warped_dst, target_dst, target_dstm, target_dstm_em) + src_loss, dst_loss = self.train (warped_src, target_src, target_srcm, target_srcm_em, warped_dst, target_dst, target_dstm, target_dstm_em) for i in range(bs): - self.last_src_samples_loss.append ( (target_src[i], target_srcm[i], target_srcm_em[i], src_loss[i] ) ) - self.last_dst_samples_loss.append ( (target_dst[i], target_dstm[i], target_dstm_em[i], dst_loss[i] ) ) + self.last_src_samples_loss.append ( (src_loss[i], target_src[i], target_srcm[i], target_srcm_em[i]) ) + self.last_dst_samples_loss.append ( (dst_loss[i], target_dst[i], target_dstm[i], target_dstm_em[i]) ) if len(self.last_src_samples_loss) >= bs*16: - src_samples_loss = sorted(self.last_src_samples_loss, key=operator.itemgetter(3), reverse=True) - dst_samples_loss = sorted(self.last_dst_samples_loss, key=operator.itemgetter(3), reverse=True) + src_samples_loss = sorted(self.last_src_samples_loss, key=operator.itemgetter(0), reverse=True) + dst_samples_loss = sorted(self.last_dst_samples_loss, key=operator.itemgetter(0), reverse=True) - target_src = np.stack( [ x[0] for x in src_samples_loss[:bs] ] ) - target_srcm = np.stack( [ x[1] for x in src_samples_loss[:bs] ] ) - target_srcm_em = np.stack( [ x[2] for x in src_samples_loss[:bs] ] ) + target_src = np.stack( [ x[1] for x in src_samples_loss[:bs] ] ) + target_srcm = np.stack( [ x[2] for x in src_samples_loss[:bs] ] ) + target_srcm_em = np.stack( [ x[3] for x in src_samples_loss[:bs] ] ) - target_dst = np.stack( [ x[0] for x in dst_samples_loss[:bs] ] ) - target_dstm = np.stack( [ x[1] for x in dst_samples_loss[:bs] ] ) - target_dstm_em = np.stack( [ x[2] for x in dst_samples_loss[:bs] ] ) + target_dst = np.stack( [ x[1] for x in dst_samples_loss[:bs] ] ) + target_dstm = np.stack( [ x[2] for x in dst_samples_loss[:bs] ] ) + target_dstm_em = np.stack( [ x[3] for x in dst_samples_loss[:bs] ] ) - src_loss, dst_loss = self.src_dst_train (target_src, target_src, target_srcm, target_srcm_em, target_dst, target_dst, target_dstm, target_dstm_em) + src_loss, dst_loss = self.train (target_src, target_src, target_srcm, target_srcm_em, target_dst, target_dst, target_dstm, target_dstm_em) self.last_src_samples_loss = [] self.last_dst_samples_loss = [] if self.gan_power != 0: - self.D_src_dst_train (warped_src, target_src, target_srcm, target_srcm_em, warped_dst, target_dst, target_dstm, target_dstm_em) + self.GAN_train (warped_src, target_src, target_srcm, target_srcm_em, warped_dst, target_dst, target_dstm, target_dstm_em) return ( ('src_loss', np.mean(src_loss) ), ('dst_loss', np.mean(dst_loss) ), ) #override - def onGetPreview(self, samples): + def onGetPreview(self, samples, for_history=False): ( (warped_src, target_src, target_srcm, target_srcm_em), (warped_dst, target_dst, target_dstm, target_dstm_em) ) = samples @@ -853,18 +726,17 @@ class AMPModel(ModelBase): result = [] - i = np.random.randint(n_samples) + i = np.random.randint(n_samples) if not for_history else 0 st = [ np.concatenate ((S[i], D[i], DD[i]*DDM_000[i]), axis=1) ] - st += [ np.concatenate ((SS[i], DD[i], SD_075[i] ), axis=1) ] + st += [ np.concatenate ((SS[i], DD[i], SD_100[i] ), axis=1) ] - result += [ ('AMP morph 0.75', np.concatenate (st, axis=0 )), ] + result += [ ('AMP morph 1.0', np.concatenate (st, axis=0 )), ] st = [ np.concatenate ((DD[i], SD_025[i], SD_050[i]), axis=1) ] st += [ np.concatenate ((SD_065[i], SD_075[i], SD_100[i]), axis=1) ] result += [ ('AMP morph list', np.concatenate (st, axis=0 )), ] - st = [ np.concatenate ((DD[i], SD_025[i]*DDM_025[i]*SDM_025[i], SD_050[i]*DDM_050[i]*SDM_050[i]), axis=1) ] st += [ np.concatenate ((SD_065[i]*DDM_065[i]*SDM_065[i], SD_075[i]*DDM_075[i]*SDM_075[i], SD_100[i]*DDM_100[i]*SDM_100[i]), axis=1) ] result += [ ('AMP morph list masked', np.concatenate (st, axis=0 )), ] @@ -873,20 +745,20 @@ class AMPModel(ModelBase): def predictor_func (self, face, morph_value): face = nn.to_data_format(face[None,...], self.model_data_format, "NHWC") - + bgr, mask_dst_dstm, mask_src_dstm = [ nn.to_data_format(x,"NHWC", self.model_data_format).astype(np.float32) for x in self.AE_merge (face, morph_value) ] return bgr[0], mask_src_dstm[0][...,0], mask_dst_dstm[0][...,0] #override def get_MergerConfig(self): - morph_factor = np.clip ( io.input_number ("Morph factor", 0.75, add_info="0.0 .. 1.0"), 0.0, 1.0 ) + morph_factor = np.clip ( io.input_number ("Morph factor", 1.0, add_info="0.0 .. 1.0"), 0.0, 1.0 ) def predictor_morph(face): return self.predictor_func(face, morph_factor) - - import merger + + import merger return predictor_morph, (self.options['resolution'], self.options['resolution'], 3), merger.MergerConfigMasked(face_type=self.face_type, default_mode = 'overlay') Model = AMPModel diff --git a/models/Model_Quick96/Model.py b/models/Model_Quick96/Model.py index fa139e5..fa9e215 100644 --- a/models/Model_Quick96/Model.py +++ b/models/Model_Quick96/Model.py @@ -278,7 +278,7 @@ class QModel(ModelBase): return ( ('src_loss', src_loss), ('dst_loss', dst_loss), ) #override - def onGetPreview(self, samples): + def onGetPreview(self, samples, for_history=False): ( (warped_src, target_src, target_srcm), (warped_dst, target_dst, target_dstm) ) = samples diff --git a/models/Model_SAEHD/Model.py b/models/Model_SAEHD/Model.py index ecac22b..c6a9beb 100644 --- a/models/Model_SAEHD/Model.py +++ b/models/Model_SAEHD/Model.py @@ -29,7 +29,8 @@ class SAEHDModel(ModelBase): yn_str = {True:'y',False:'n'} min_res = 64 max_res = 640 - + + #default_usefp16 = self.options['use_fp16'] = self.load_or_def_option('use_fp16', False) default_resolution = self.options['resolution'] = self.load_or_def_option('resolution', 128) default_face_type = self.options['face_type'] = self.load_or_def_option('face_type', 'f') default_models_opt_on_gpu = self.options['models_opt_on_gpu'] = self.load_or_def_option('models_opt_on_gpu', True) @@ -80,7 +81,8 @@ class SAEHDModel(ModelBase): self.ask_random_src_flip() self.ask_random_dst_flip() self.ask_batch_size(suggest_batch_size) - + #self.options['use_fp16'] = io.input_bool ("Use fp16", default_usefp16, help_message='Increases training/inference speed, reduces model size. Model may crash. Enable it after 1-5k iters.') + if self.is_first_run(): resolution = io.input_int("Resolution", default_resolution, add_info="64-640", help_message="More resolution requires more VRAM and time to train. Value will be adjusted to multiple of 16 and 32 for -d archi.") resolution = np.clip ( (resolution // 16) * 16, min_res, max_res) @@ -250,7 +252,11 @@ Examples: df, liae, df-d, df-ud, liae-ud, ... self.set_iter(0) adabelief = self.options['adabelief'] - + + use_fp16 = False + if self.is_exporting: + use_fp16 = io.input_bool ("Export quantized?", False, help_message='Makes the exported model faster. If you have problems, disable this option.') + self.gan_power = gan_power = 0.0 if self.pretrain else self.options['gan_power'] random_warp = False if self.pretrain else self.options['random_warp'] random_src_flip = self.random_src_flip if not self.pretrain else True @@ -293,7 +299,7 @@ Examples: df, liae, df-d, df-ud, liae-ud, ... self.target_dstm_em = tf.placeholder (nn.floatx, mask_shape, name='target_dstm_em') # Initializing model classes - model_archi = nn.DeepFakeArchi(resolution, opts=archi_opts) + model_archi = nn.DeepFakeArchi(resolution, use_fp16=use_fp16, opts=archi_opts) with tf.device (models_opt_device): if 'df' in archi_type: @@ -578,7 +584,7 @@ Examples: df, liae, df-d, df-ud, liae-ud, ... gpu_G_loss += self.options['true_face_power']*DLoss(gpu_src_code_d_ones, gpu_src_code_d) - gpu_D_code_loss = (DLoss(gpu_src_code_d_ones , gpu_dst_code_d) + \ + gpu_D_code_loss = (DLoss(gpu_dst_code_d_ones , gpu_dst_code_d) + \ DLoss(gpu_src_code_d_zeros, gpu_src_code_d) ) * 0.5 gpu_D_code_loss_gvs += [ nn.gradients (gpu_D_code_loss, self.code_discriminator.get_weights() ) ] @@ -802,11 +808,15 @@ Examples: df, liae, df-d, df-ud, liae-ud, ... if self.pretrain_just_disabled: self.update_sample_for_preview(force_new=True) - def dump_ckpt(self): + def export_dfm (self): + output_path=self.get_strpath_storage_for_file('model.dfm') + + io.log_info(f'Dumping .dfm to {output_path}') + tf = nn.tf + nn.set_data_format('NCHW') - - with tf.device ('/CPU:0'): + with tf.device (nn.tf_default_device_name): warped_dst = tf.placeholder (nn.floatx, (None, self.resolution, self.resolution, 3), name='in_face') warped_dst = tf.transpose(warped_dst, (0,3,1,2)) @@ -830,15 +840,26 @@ Examples: df, liae, df-d, df-ud, liae-ud, ... gpu_pred_dst_dstm = tf.transpose(gpu_pred_dst_dstm, (0,2,3,1)) gpu_pred_src_dstm = tf.transpose(gpu_pred_src_dstm, (0,2,3,1)) - - saver = tf.train.Saver() tf.identity(gpu_pred_dst_dstm, name='out_face_mask') tf.identity(gpu_pred_src_dst, name='out_celeb_face') tf.identity(gpu_pred_src_dstm, name='out_celeb_face_mask') - saver.save(nn.tf_sess, self.get_strpath_storage_for_file('.ckpt') ) - + output_graph_def = tf.graph_util.convert_variables_to_constants( + nn.tf_sess, + tf.get_default_graph().as_graph_def(), + ['out_face_mask','out_celeb_face','out_celeb_face_mask'] + ) + import tf2onnx + with tf.device("/CPU:0"): + model_proto, _ = tf2onnx.convert._convert_common( + output_graph_def, + name='SAEHD', + input_names=['in_face:0'], + output_names=['out_face_mask:0','out_celeb_face:0','out_celeb_face_mask:0'], + opset=13, + output_path=output_path) + #override def get_model_filename_list(self): return self.model_filename_list @@ -894,7 +915,7 @@ Examples: df, liae, df-d, df-ud, liae-ud, ... return ( ('src_loss', np.mean(src_loss) ), ('dst_loss', np.mean(dst_loss) ), ) #override - def onGetPreview(self, samples): + def onGetPreview(self, samples, for_history=False): ( (warped_src, target_src, target_srcm, target_srcm_em), (warped_dst, target_dst, target_dstm, target_dstm_em) ) = samples diff --git a/models/Model_XSeg/Model.py b/models/Model_XSeg/Model.py index 567a1f2..b0addfd 100644 --- a/models/Model_XSeg/Model.py +++ b/models/Model_XSeg/Model.py @@ -25,17 +25,24 @@ class XSegModel(ModelBase): self.set_iter(0) default_face_type = self.options['face_type'] = self.load_or_def_option('face_type', 'wf') + default_pretrain = self.options['pretrain'] = self.load_or_def_option('pretrain', False) if self.is_first_run(): self.options['face_type'] = io.input_str ("Face type", default_face_type, ['h','mf','f','wf','head'], help_message="Half / mid face / full face / whole face / head. Choose the same as your deepfake model.").lower() if self.is_first_run() or ask_override: self.ask_batch_size(4, range=[2,16]) - + self.options['pretrain'] = io.input_bool ("Enable pretraining mode", default_pretrain) + + if not self.is_exporting and (self.options['pretrain'] and self.get_pretraining_data_path() is None): + raise Exception("pretraining_data_path is not defined") + + self.pretrain_just_disabled = (default_pretrain == True and self.options['pretrain'] == False) + #override def on_initialize(self): device_config = nn.getCurrentDeviceConfig() - self.model_data_format = "NCHW" if len(device_config.devices) != 0 and not self.is_debug() else "NHWC" + self.model_data_format = "NCHW" if self.is_exporting or (len(device_config.devices) != 0 and not self.is_debug()) else "NHWC" nn.initialize(data_format=self.model_data_format) tf = nn.tf @@ -50,7 +57,8 @@ class XSegModel(ModelBase): 'f' : FaceType.FULL, 'wf' : FaceType.WHOLE_FACE, 'head' : FaceType.HEAD}[ self.options['face_type'] ] - + + place_model_on_cpu = len(devices) == 0 models_opt_device = '/CPU:0' if place_model_on_cpu else nn.tf_default_device_name @@ -66,14 +74,17 @@ class XSegModel(ModelBase): place_model_on_cpu=place_model_on_cpu, optimizer=nn.RMSprop(lr=0.0001, lr_dropout=0.3, name='opt'), data_format=nn.data_format) - + + self.pretrain = self.options['pretrain'] + if self.pretrain_just_disabled: + self.set_iter(0) + if self.is_training: # Adjust batch size for multiple GPU gpu_count = max(1, len(devices) ) bs_per_gpu = max(1, self.get_batch_size() // gpu_count) self.set_batch_size( gpu_count*bs_per_gpu) - # Compute losses per GPU gpu_pred_list = [] @@ -81,8 +92,6 @@ class XSegModel(ModelBase): gpu_loss_gvs = [] for gpu_id in range(gpu_count): - - with tf.device(f'/{devices[gpu_id].tf_dev_type}:{gpu_id}' if len(devices) != 0 else f'/CPU:0' ): with tf.device(f'/CPU:0'): # slice on CPU, otherwise all batch data will be transfered to GPU first @@ -91,10 +100,18 @@ class XSegModel(ModelBase): gpu_target_t = self.model.target_t [batch_slice,:,:,:] # process model tensors - gpu_pred_logits_t, gpu_pred_t = self.model.flow(gpu_input_t) + gpu_pred_logits_t, gpu_pred_t = self.model.flow(gpu_input_t, pretrain=self.pretrain) gpu_pred_list.append(gpu_pred_t) - - gpu_loss = tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits(labels=gpu_target_t, logits=gpu_pred_logits_t), axis=[1,2,3]) + + + if self.pretrain: + # Structural loss + gpu_loss = tf.reduce_mean (5*nn.dssim(gpu_target_t, gpu_pred_t, max_val=1.0, filter_size=int(resolution/11.6)), axis=[1]) + gpu_loss += tf.reduce_mean (5*nn.dssim(gpu_target_t, gpu_pred_t, max_val=1.0, filter_size=int(resolution/23.2)), axis=[1]) + # Pixel loss + gpu_loss += tf.reduce_mean (10*tf.square(gpu_target_t-gpu_pred_t), axis=[1,2,3]) + else: + gpu_loss = tf.reduce_mean( tf.nn.sigmoid_cross_entropy_with_logits(labels=gpu_target_t, logits=gpu_pred_logits_t), axis=[1,2,3]) gpu_losses += [gpu_loss] @@ -110,9 +127,14 @@ class XSegModel(ModelBase): # Initializing training and view functions - def train(input_np, target_np): - l, _ = nn.tf_sess.run ( [loss, loss_gv_op], feed_dict={self.model.input_t :input_np, self.model.target_t :target_np }) - return l + if self.pretrain: + def train(input_np, target_np): + l, _ = nn.tf_sess.run ( [loss, loss_gv_op], feed_dict={self.model.input_t :input_np, self.model.target_t :target_np}) + return l + else: + def train(input_np, target_np): + l, _ = nn.tf_sess.run ( [loss, loss_gv_op], feed_dict={self.model.input_t :input_np, self.model.target_t :target_np }) + return l self.train = train def view(input_np): @@ -124,30 +146,39 @@ class XSegModel(ModelBase): src_dst_generators_count = cpu_count // 2 src_generators_count = cpu_count // 2 dst_generators_count = cpu_count // 2 + + if self.pretrain: + pretrain_gen = SampleGeneratorFace(self.get_pretraining_data_path(), debug=self.is_debug(), batch_size=self.get_batch_size(), + sample_process_options=SampleProcessor.Options(random_flip=True), + output_sample_types = [ {'sample_type': SampleProcessor.SampleType.FACE_IMAGE,'warp':True, 'transform':True, 'channel_type' : SampleProcessor.ChannelType.BGR, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution}, + {'sample_type': SampleProcessor.SampleType.FACE_IMAGE,'warp':True, 'transform':True, 'channel_type' : SampleProcessor.ChannelType.G, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution}, + ], + uniform_yaw_distribution=False, + generators_count=cpu_count ) + self.set_training_data_generators ([pretrain_gen]) + else: + srcdst_generator = SampleGeneratorFaceXSeg([self.training_data_src_path, self.training_data_dst_path], + debug=self.is_debug(), + batch_size=self.get_batch_size(), + resolution=resolution, + face_type=self.face_type, + generators_count=src_dst_generators_count, + data_format=nn.data_format) + src_generator = SampleGeneratorFace(self.training_data_src_path, debug=self.is_debug(), batch_size=self.get_batch_size(), + sample_process_options=SampleProcessor.Options(random_flip=False), + output_sample_types = [ {'sample_type': SampleProcessor.SampleType.FACE_IMAGE, 'warp':False, 'transform':False, 'channel_type' : SampleProcessor.ChannelType.BGR, 'border_replicate':False, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution}, + ], + generators_count=src_generators_count, + raise_on_no_data=False ) + dst_generator = SampleGeneratorFace(self.training_data_dst_path, debug=self.is_debug(), batch_size=self.get_batch_size(), + sample_process_options=SampleProcessor.Options(random_flip=False), + output_sample_types = [ {'sample_type': SampleProcessor.SampleType.FACE_IMAGE, 'warp':False, 'transform':False, 'channel_type' : SampleProcessor.ChannelType.BGR, 'border_replicate':False, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution}, + ], + generators_count=dst_generators_count, + raise_on_no_data=False ) - srcdst_generator = SampleGeneratorFaceXSeg([self.training_data_src_path, self.training_data_dst_path], - debug=self.is_debug(), - batch_size=self.get_batch_size(), - resolution=resolution, - face_type=self.face_type, - generators_count=src_dst_generators_count, - data_format=nn.data_format) - - src_generator = SampleGeneratorFace(self.training_data_src_path, debug=self.is_debug(), batch_size=self.get_batch_size(), - sample_process_options=SampleProcessor.Options(random_flip=False), - output_sample_types = [ {'sample_type': SampleProcessor.SampleType.FACE_IMAGE, 'warp':False, 'transform':False, 'channel_type' : SampleProcessor.ChannelType.BGR, 'border_replicate':False, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution}, - ], - generators_count=src_generators_count, - raise_on_no_data=False ) - dst_generator = SampleGeneratorFace(self.training_data_dst_path, debug=self.is_debug(), batch_size=self.get_batch_size(), - sample_process_options=SampleProcessor.Options(random_flip=False), - output_sample_types = [ {'sample_type': SampleProcessor.SampleType.FACE_IMAGE, 'warp':False, 'transform':False, 'channel_type' : SampleProcessor.ChannelType.BGR, 'border_replicate':False, 'face_type':self.face_type, 'data_format':nn.data_format, 'resolution': resolution}, - ], - generators_count=dst_generators_count, - raise_on_no_data=False ) - - self.set_training_data_generators ([srcdst_generator, src_generator, dst_generator]) + self.set_training_data_generators ([srcdst_generator, src_generator, dst_generator]) #override def get_model_filename_list(self): @@ -159,16 +190,21 @@ class XSegModel(ModelBase): #override def onTrainOneIter(self): - image_np, mask_np = self.generate_next_samples()[0] - loss = self.train (image_np, mask_np) + image_np, target_np = self.generate_next_samples()[0] + loss = self.train (image_np, target_np) + return ( ('loss', np.mean(loss) ), ) #override - def onGetPreview(self, samples): + def onGetPreview(self, samples, for_history=False): n_samples = min(4, self.get_batch_size(), 800 // self.resolution ) - - srcdst_samples, src_samples, dst_samples = samples - image_np, mask_np = srcdst_samples + + if self.pretrain: + srcdst_samples, = samples + image_np, mask_np = srcdst_samples + else: + srcdst_samples, src_samples, dst_samples = samples + image_np, mask_np = srcdst_samples I, M, IM, = [ np.clip( nn.to_data_format(x,"NHWC", self.model_data_format), 0.0, 1.0) for x in ([image_np,mask_np] + self.view (image_np) ) ] M, IM, = [ np.repeat (x, (3,), -1) for x in [M, IM] ] @@ -178,11 +214,14 @@ class XSegModel(ModelBase): result = [] st = [] for i in range(n_samples): - ar = I[i]*M[i]+0.5*I[i]*(1-M[i])+0.5*green_bg*(1-M[i]), IM[i], I[i]*IM[i]+0.5*I[i]*(1-IM[i]) + 0.5*green_bg*(1-IM[i]) + if self.pretrain: + ar = I[i], IM[i] + else: + ar = I[i]*M[i]+0.5*I[i]*(1-M[i])+0.5*green_bg*(1-M[i]), IM[i], I[i]*IM[i]+0.5*I[i]*(1-IM[i]) + 0.5*green_bg*(1-IM[i]) st.append ( np.concatenate ( ar, axis=1) ) result += [ ('XSeg training faces', np.concatenate (st, axis=0 )), ] - if len(src_samples) != 0: + if not self.pretrain and len(src_samples) != 0: src_np, = src_samples @@ -196,7 +235,7 @@ class XSegModel(ModelBase): result += [ ('XSeg src faces', np.concatenate (st, axis=0 )), ] - if len(dst_samples) != 0: + if not self.pretrain and len(dst_samples) != 0: dst_np, = dst_samples @@ -211,5 +250,34 @@ class XSegModel(ModelBase): result += [ ('XSeg dst faces', np.concatenate (st, axis=0 )), ] return result - + + def export_dfm (self): + output_path = self.get_strpath_storage_for_file(f'model.onnx') + io.log_info(f'Dumping .onnx to {output_path}') + tf = nn.tf + + with tf.device (nn.tf_default_device_name): + input_t = tf.placeholder (nn.floatx, (None, self.resolution, self.resolution, 3), name='in_face') + input_t = tf.transpose(input_t, (0,3,1,2)) + _, pred_t = self.model.flow(input_t) + pred_t = tf.transpose(pred_t, (0,2,3,1)) + + tf.identity(pred_t, name='out_mask') + + output_graph_def = tf.graph_util.convert_variables_to_constants( + nn.tf_sess, + tf.get_default_graph().as_graph_def(), + ['out_mask'] + ) + + import tf2onnx + with tf.device("/CPU:0"): + model_proto, _ = tf2onnx.convert._convert_common( + output_graph_def, + name='XSeg', + input_names=['in_face:0'], + output_names=['out_mask:0'], + opset=13, + output_path=output_path) + Model = XSegModel \ No newline at end of file diff --git a/requirements-colab.txt b/requirements-colab.txt index 2c35b2d..06e29e2 100644 --- a/requirements-colab.txt +++ b/requirements-colab.txt @@ -1,9 +1,10 @@ tqdm numpy==1.19.3 -h5py==2.9.0 +h5py==2.10.0 opencv-python==4.1.0.25 ffmpeg-python==0.1.17 scikit-image==0.14.2 scipy==1.4.1 colorama -tensorflow-gpu==2.4.0 \ No newline at end of file +tensorflow-gpu==2.4.0 +tf2onnx==1.8.4 diff --git a/requirements-cuda.txt b/requirements-cuda.txt index 8833aca..5b28a29 100644 --- a/requirements-cuda.txt +++ b/requirements-cuda.txt @@ -8,5 +8,4 @@ scipy==1.4.1 colorama tensorflow-gpu==2.4.0 pyqt5 -Flask==1.1.1 -flask-socketio==4.2.1 +tf2onnx==1.8.4 diff --git a/samplelib/SampleProcessor.py b/samplelib/SampleProcessor.py index 3b657d7..26a5497 100644 --- a/samplelib/SampleProcessor.py +++ b/samplelib/SampleProcessor.py @@ -89,21 +89,22 @@ class SampleProcessor(object): if debug and is_face_sample: LandmarksProcessor.draw_landmarks (sample_bgr, sample_landmarks, (0, 1, 0)) - - params_per_resolution = {} - warp_rnd_state = np.random.RandomState (sample_rnd_seed-1) + + params_per_resolution = {} + warp_rnd_state = np.random.RandomState (sample_rnd_seed-1) for opts in output_sample_types: resolution = opts.get('resolution', None) if resolution is None: continue - params_per_resolution[resolution] = imagelib.gen_warp_params(resolution, - sample_process_options.random_flip, - rotation_range=sample_process_options.rotation_range, - scale_range=sample_process_options.scale_range, - tx_range=sample_process_options.tx_range, - ty_range=sample_process_options.ty_range, + if resolution not in params_per_resolution: + params_per_resolution[resolution] = imagelib.gen_warp_params(resolution, + sample_process_options.random_flip, + rotation_range=sample_process_options.rotation_range, + scale_range=sample_process_options.scale_range, + tx_range=sample_process_options.tx_range, + ty_range=sample_process_options.ty_range, rnd_state=warp_rnd_state) - + outputs_sample = [] for opts in output_sample_types: sample_type = opts.get('sample_type', SPST.NONE)