Scale previews

This commit is contained in:
Jeremy Hummel 2019-09-11 22:04:15 -07:00
commit d8c5e42a55
2 changed files with 76 additions and 36 deletions

View file

@ -3,6 +3,8 @@ import traceback
import queue
import threading
import time
from enum import Enum
import numpy as np
import itertools
from pathlib import Path
@ -181,48 +183,88 @@ def trainerThread (s2c, c2s, e, args, device_args):
c2s.put ( {'op':'close'} )
def scale_previews(previews, preview_min_height, preview_max_height):
preview_height = max((h for h, w, c in (im.shape for name, im in previews)))
class Zoom(Enum):
ZOOM_25 = (1/4, '25%')
ZOOM_33 = (1/3, '33%')
ZOOM_50 = (1/2, '50%')
ZOOM_67 = (2/3, '67%')
ZOOM_75 = (3/4, '75%')
ZOOM_80 = (4/5, '80%')
ZOOM_90 = (9/10, '90%')
ZOOM_100 = (1, '100%')
ZOOM_110 = (11/10, '110%')
ZOOM_125 = (5/4, '125%')
ZOOM_150 = (3/2, '150%')
ZOOM_175 = (7/4, '175%')
ZOOM_200 = (2, '200%')
ZOOM_250 = (5/2, '250%')
ZOOM_300 = (3, '300%')
ZOOM_400 = (4, '400%')
ZOOM_500 = (5, '500%')
if preview_height > preview_max_height:
preview_height = preview_max_height
elif preview_height < preview_min_height:
preview_height = preview_min_height
def __init__(self, scale, label):
self.scale = scale
self.label = label
# make all previews size equal
def prev(self):
cls = self.__class__
members = list(cls)
index = members.index(self) - 1
if index < 0:
return self
return members[index]
def next(self):
cls = self.__class__
members = list(cls)
index = members.index(self) + 1
if index >= len(members):
return self
return members[index]
def scale_previews(previews, zoom=Zoom.ZOOM_100):
# Zoom previews
for preview in previews[:]:
(preview_name, preview_rgb) = preview
(h, w, c) = preview_rgb.shape
if h != preview_height:
scale_factor = preview_height / float(h)
preview_name, preview_rgb = preview
h, w, c = preview_rgb.shape
scale_factor = zoom.scale * float(h)
if scale_factor < 1:
previews.remove(preview)
previews.append((preview_name, cv2.resize(preview_rgb, (0, 0),
fx=scale_factor,
fy=scale_factor,
interpolation=cv2.INTER_AREA)))
elif scale_factor > 1:
previews.remove(preview)
previews.append((preview_name, cv2.resize(preview_rgb, (0, 0),
fx=scale_factor,
fy=scale_factor,
interpolation=cv2.INTER_LANCZOS4)))
return previews
def create_preview_pane_image(previews, selected_preview, loss_history,
show_last_history_iters_count, batch_size):
show_last_history_iters_count, iteration, batch_size, zoom=Zoom.ZOOM_100):
previews = scale_previews(previews, zoom)
selected_preview_name = previews[selected_preview][0]
selected_preview_rgb = previews[selected_preview][1]
(h,w,c) = selected_preview_rgb.shape
h, w, c = selected_preview_rgb.shape
# HEAD
head_lines = [
'[s]:save [enter]:exit',
'[s]:save [enter]:exit [-/+]:zoom: %s' % zoom.label,
'[p]:update [space]:next preview [l]:change history range',
'Preview: "%s" [%d/%d]' % (selected_preview_name,selected_preview+1, len(previews) )
]
head_line_height = 15
head_line_height = int(15 * zoom.scale)
head_height = len(head_lines) * head_line_height
head = np.ones ( (head_height,w,c) ) * 0.1
head = np.ones((head_height, w, c)) * 0.1
for i in range(0, len(head_lines)):
t = i*head_line_height
b = (i+1)*head_line_height
head[t:b, 0:w] += imagelib.get_text_image ( (head_line_height,w,c) , head_lines[i], color=[0.8]*c )
t = i * head_line_height
b = (i+1) * head_line_height
head[t:b, 0:w] += imagelib.get_text_image((head_line_height, w, c), head_lines[i], color=[0.8]*c)
final = head
@ -231,11 +273,11 @@ def create_preview_pane_image(previews, selected_preview, loss_history,
loss_history_to_show = loss_history
else:
loss_history_to_show = loss_history[-show_last_history_iters_count:]
lh_img = models.ModelBase.get_loss_history_preview(loss_history_to_show, iter, batch_size, w, c)
lh_height = int(100 * zoom.scale)
lh_img = models.ModelBase.get_loss_history_preview(loss_history_to_show, iteration, batch_size, w, c, lh_height)
final = np.concatenate ( [final, lh_img], axis=0 )
final = np.concatenate ( [final, selected_preview_rgb], axis=0 )
final = np.concatenate([final, selected_preview_rgb], axis=0)
final = np.clip(final, 0, 1)
return (final*255).astype(np.uint8)
@ -278,10 +320,9 @@ def main(args, device_args):
is_showing = False
is_waiting_preview = False
show_last_history_iters_count = 0
iter = 0
iteration = 0
batch_size = 1
preview_min_height = 512
preview_max_height = 1024
zoom = Zoom.ZOOM_100
while True:
if not c2s.empty():
@ -291,23 +332,24 @@ def main(args, device_args):
is_waiting_preview = False
loss_history = input['loss_history'] if 'loss_history' in input.keys() else None
previews = input['previews'] if 'previews' in input.keys() else None
iter = input['iter'] if 'iter' in input.keys() else 0
iteration = input['iter'] if 'iter' in input.keys() else 0
#batch_size = input['batch_size'] if 'iter' in input.keys() else 1
if previews is not None:
previews = scale_previews(previews, preview_min_height, preview_max_height)
selected_preview = selected_preview % len(previews)
update_preview = True
elif op == 'close':
break
if update_preview:
update_preview = False
selected_preview = selected_preview % len(previews)
preview_pane_image = create_preview_pane_image(previews,
selected_preview,
loss_history,
show_last_history_iters_count,
batch_size)
io.show_image( wnd_name, preview_pane_image)
iteration,
batch_size,
zoom)
io.show_image(wnd_name, preview_pane_image)
is_showing = True
key_events = io.get_key_events(wnd_name)
@ -337,12 +379,10 @@ def main(args, device_args):
selected_preview = (selected_preview + 1) % len(previews)
update_preview = True
elif key == ord('-'):
# Decrease zoom
zoom = zoom.prev()
pass
elif key == ord('+'):
# Increase zoom
pass
zoom = zoom.next()
try:
io.process_messages(0.1)
except KeyboardInterrupt:

View file

@ -641,11 +641,11 @@ class ModelBase(object):
self.batch_size = d[ keys[-1] ]
@staticmethod
def get_loss_history_preview(loss_history, iter,batch_size, w, c):
def get_loss_history_preview(loss_history, iter, batch_size, w, c, lh_height=100):
loss_history = np.array (loss_history.copy())
lh_height = 100
lh_img = np.ones ( (lh_height,w,c) ) * 0.1
lh_img = np.ones((lh_height, w, c)) * 0.1
if len(loss_history) != 0:
loss_count = len(loss_history[0])