mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-08-22 14:24:40 -07:00
Refactor preview image code
This commit is contained in:
parent
2bf695552b
commit
f94c77b226
1 changed files with 71 additions and 53 deletions
|
@ -181,6 +181,64 @@ def trainerThread (s2c, c2s, e, args, device_args):
|
|||
c2s.put ( {'op':'close'} )
|
||||
|
||||
|
||||
def scale_previews(previews, preview_min_height, preview_max_height):
|
||||
preview_height = max((h for h, w, c in (im.shape for name, im in previews)))
|
||||
|
||||
if preview_height > preview_max_height:
|
||||
preview_height = preview_max_height
|
||||
elif preview_height < preview_min_height:
|
||||
preview_height = preview_min_height
|
||||
|
||||
# make all previews size equal
|
||||
for preview in previews[:]:
|
||||
(preview_name, preview_rgb) = preview
|
||||
(h, w, c) = preview_rgb.shape
|
||||
if h != preview_height:
|
||||
scale_factor = preview_height / float(h)
|
||||
previews.remove(preview)
|
||||
previews.append((preview_name, cv2.resize(preview_rgb, (0, 0),
|
||||
fx=scale_factor,
|
||||
fy=scale_factor,
|
||||
interpolation=cv2.INTER_AREA)))
|
||||
return previews
|
||||
|
||||
|
||||
def create_preview_pane_image(previews, selected_preview, loss_history,
|
||||
show_last_history_iters_count, batch_size):
|
||||
selected_preview_name = previews[selected_preview][0]
|
||||
selected_preview_rgb = previews[selected_preview][1]
|
||||
(h,w,c) = selected_preview_rgb.shape
|
||||
|
||||
# HEAD
|
||||
head_lines = [
|
||||
'[s]:save [enter]:exit',
|
||||
'[p]:update [space]:next preview [l]:change history range',
|
||||
'Preview: "%s" [%d/%d]' % (selected_preview_name,selected_preview+1, len(previews) )
|
||||
]
|
||||
head_line_height = 15
|
||||
head_height = len(head_lines) * head_line_height
|
||||
head = np.ones ( (head_height,w,c) ) * 0.1
|
||||
|
||||
for i in range(0, len(head_lines)):
|
||||
t = i*head_line_height
|
||||
b = (i+1)*head_line_height
|
||||
head[t:b, 0:w] += imagelib.get_text_image ( (head_line_height,w,c) , head_lines[i], color=[0.8]*c )
|
||||
|
||||
final = head
|
||||
|
||||
if loss_history is not None:
|
||||
if show_last_history_iters_count == 0:
|
||||
loss_history_to_show = loss_history
|
||||
else:
|
||||
loss_history_to_show = loss_history[-show_last_history_iters_count:]
|
||||
|
||||
lh_img = models.ModelBase.get_loss_history_preview(loss_history_to_show, iter, batch_size, w, c)
|
||||
final = np.concatenate ( [final, lh_img], axis=0 )
|
||||
|
||||
final = np.concatenate ( [final, selected_preview_rgb], axis=0 )
|
||||
final = np.clip(final, 0, 1)
|
||||
return (final*255).astype(np.uint8)
|
||||
|
||||
|
||||
def main(args, device_args):
|
||||
io.log_info ("Running trainer.\r\n")
|
||||
|
@ -236,24 +294,7 @@ def main(args, device_args):
|
|||
iter = input['iter'] if 'iter' in input.keys() else 0
|
||||
#batch_size = input['batch_size'] if 'iter' in input.keys() else 1
|
||||
if previews is not None:
|
||||
preview_height = max((h for h, w, c in (im.shape for name, im in previews)))
|
||||
|
||||
if preview_height > preview_max_height:
|
||||
preview_height = preview_max_height
|
||||
elif preview_height < preview_min_height:
|
||||
preview_height = preview_min_height
|
||||
|
||||
# make all previews size equal
|
||||
for preview in previews[:]:
|
||||
(preview_name, preview_rgb) = preview
|
||||
(h, w, c) = preview_rgb.shape
|
||||
if h != preview_height:
|
||||
scale_factor = preview_height / float(h)
|
||||
previews.remove(preview)
|
||||
previews.append((preview_name, cv2.resize(preview_rgb, (0, 0),
|
||||
fx=scale_factor,
|
||||
fy=scale_factor,
|
||||
interpolation=cv2.INTER_AREA)))
|
||||
previews = scale_previews(previews, preview_min_height, preview_max_height)
|
||||
selected_preview = selected_preview % len(previews)
|
||||
update_preview = True
|
||||
elif op == 'close':
|
||||
|
@ -261,41 +302,12 @@ def main(args, device_args):
|
|||
|
||||
if update_preview:
|
||||
update_preview = False
|
||||
|
||||
selected_preview_name = previews[selected_preview][0]
|
||||
selected_preview_rgb = previews[selected_preview][1]
|
||||
(h,w,c) = selected_preview_rgb.shape
|
||||
|
||||
# HEAD
|
||||
head_lines = [
|
||||
'[s]:save [enter]:exit',
|
||||
'[p]:update [space]:next preview [l]:change history range',
|
||||
'Preview: "%s" [%d/%d]' % (selected_preview_name,selected_preview+1, len(previews) )
|
||||
]
|
||||
head_line_height = 15
|
||||
head_height = len(head_lines) * head_line_height
|
||||
head = np.ones ( (head_height,w,c) ) * 0.1
|
||||
|
||||
for i in range(0, len(head_lines)):
|
||||
t = i*head_line_height
|
||||
b = (i+1)*head_line_height
|
||||
head[t:b, 0:w] += imagelib.get_text_image ( (head_line_height,w,c) , head_lines[i], color=[0.8]*c )
|
||||
|
||||
final = head
|
||||
|
||||
if loss_history is not None:
|
||||
if show_last_history_iters_count == 0:
|
||||
loss_history_to_show = loss_history
|
||||
else:
|
||||
loss_history_to_show = loss_history[-show_last_history_iters_count:]
|
||||
|
||||
lh_img = models.ModelBase.get_loss_history_preview(loss_history_to_show, iter, batch_size, w, c)
|
||||
final = np.concatenate ( [final, lh_img], axis=0 )
|
||||
|
||||
final = np.concatenate ( [final, selected_preview_rgb], axis=0 )
|
||||
final = np.clip(final, 0, 1)
|
||||
|
||||
io.show_image( wnd_name, (final*255).astype(np.uint8) )
|
||||
preview_pane_image = create_preview_pane_image(previews,
|
||||
selected_preview,
|
||||
loss_history,
|
||||
show_last_history_iters_count,
|
||||
batch_size)
|
||||
io.show_image( wnd_name, preview_pane_image)
|
||||
is_showing = True
|
||||
|
||||
key_events = io.get_key_events(wnd_name)
|
||||
|
@ -324,6 +336,12 @@ def main(args, device_args):
|
|||
elif key == ord(' '):
|
||||
selected_preview = (selected_preview + 1) % len(previews)
|
||||
update_preview = True
|
||||
elif key == ord('-'):
|
||||
# Decrease zoom
|
||||
pass
|
||||
elif key == ord('+'):
|
||||
# Increase zoom
|
||||
pass
|
||||
|
||||
try:
|
||||
io.process_messages(0.1)
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue