fixed GPU detection and indexes, got rid of using nvml, now using direct cuda lib to determine gpu info that match tensorflow indexes,

removed TrueFace model.

added SAEv2 model. Differences from SAE:
+ default e_ch_dims is now 21
+ new encoder produces more stable face and less scale jitter
  before: https://i.imgur.com/4jUcol8.gifv
  after:  https://i.imgur.com/lyiax49.gifv - scale of the face is less changed within frame size
+ decoder now has only 1 residual block instead of 2, result is same quality with less decoder size
+ added mid-full face, which covers 30% more area than half face.
+ added option " Enable 'true face' training "
  Enable it only after 50k iters, when the face is sharp enough.
  the result face will be more like src.
  The most src-like face with 'true-face-training' you can achieve with DF architecture.
This commit is contained in:
Colombo 2019-10-05 16:26:23 +04:00
parent 353bcdf80f
commit d781af3d1f
12 changed files with 824 additions and 2077 deletions

View file

@ -71,17 +71,17 @@ def ConvertMaskedFace (predictor_func, predictor_input_shape, cfg, frame_info, i
if cfg.face_type == FaceType.FULL:
FAN_dst_face_mask_a_0 = cv2.resize (dst_face_fanseg_mask, (output_size,output_size), cv2.INTER_CUBIC)
elif cfg.face_type == FaceType.HALF:
half_face_fanseg_mat = LandmarksProcessor.get_transform_mat (img_face_landmarks, cfg.fanseg_input_size, face_type=FaceType.HALF)
else:
face_fanseg_mat = LandmarksProcessor.get_transform_mat (img_face_landmarks, cfg.fanseg_input_size, face_type=cfg.face_type)
fanseg_rect_corner_pts = np.array ( [ [0,0], [cfg.fanseg_input_size-1,0], [0,cfg.fanseg_input_size-1] ], dtype=np.float32 )
a = LandmarksProcessor.transform_points (fanseg_rect_corner_pts, half_face_fanseg_mat, invert=True )
a = LandmarksProcessor.transform_points (fanseg_rect_corner_pts, face_fanseg_mat, invert=True )
b = LandmarksProcessor.transform_points (a, full_face_fanseg_mat )
m = cv2.getAffineTransform(b, fanseg_rect_corner_pts)
FAN_dst_face_mask_a_0 = cv2.warpAffine(dst_face_fanseg_mask, m, (cfg.fanseg_input_size,)*2, flags=cv2.INTER_CUBIC )
FAN_dst_face_mask_a_0 = cv2.resize (FAN_dst_face_mask_a_0, (output_size,output_size), cv2.INTER_CUBIC)
else:
raise ValueError ("cfg.face_type unsupported")
#else:
# raise ValueError ("cfg.face_type unsupported")
if cfg.mask_mode == 3: #FAN-prd
prd_face_mask_a_0 = FAN_prd_face_mask_a_0

View file

@ -117,8 +117,8 @@ class ConverterConfigMasked(ConverterConfig):
super().__init__(type=ConverterConfig.TYPE_MASKED)
self.face_type = face_type
if self.face_type not in [FaceType.FULL, FaceType.HALF]:
raise ValueError("ConverterConfigMasked supports only full or half face masks.")
if self.face_type not in [FaceType.HALF, FaceType.MID_FULL, FaceType.FULL ]:
raise ValueError("ConverterConfigMasked does not support this type of face.")
self.default_mode = default_mode
self.clip_hborder_mask_per = clip_hborder_mask_per

View file

@ -2,11 +2,12 @@ from enum import IntEnum
class FaceType(IntEnum):
#enumerating in order "next contains prev"
HALF = 0,
FULL = 1,
FULL_NO_ALIGN = 3,
HEAD = 4,
HEAD_NO_ALIGN = 5,
HALF = 0
MID_FULL = 1
FULL = 2
FULL_NO_ALIGN = 3
HEAD = 4
HEAD_NO_ALIGN = 5
MARK_ONLY = 10, #no align at all, just embedded faceinfo
@ -22,6 +23,7 @@ class FaceType(IntEnum):
return to_string_dict[face_type]
from_string_dict = {'half_face': FaceType.HALF,
'midfull_face': FaceType.MID_FULL,
'full_face': FaceType.FULL,
'head' : FaceType.HEAD,
'mark_only' : FaceType.MARK_ONLY,
@ -29,6 +31,7 @@ from_string_dict = {'half_face': FaceType.HALF,
'head_no_align' : FaceType.HEAD_NO_ALIGN,
}
to_string_dict = { FaceType.HALF : 'half_face',
FaceType.MID_FULL : 'midfull_face',
FaceType.FULL : 'full_face',
FaceType.HEAD : 'head',
FaceType.MARK_ONLY :'mark_only',

View file

@ -271,6 +271,8 @@ def get_transform_mat (image_landmarks, output_size, face_type, scale=1.0):
if face_type == FaceType.HALF:
padding = 0
elif face_type == FaceType.MID_FULL:
padding = int(output_size * 0.06)
elif face_type == FaceType.FULL:
padding = (output_size / 64) * 12
elif face_type == FaceType.HEAD:
@ -435,9 +437,6 @@ def get_cmask (image_shape, lmrks, eyebrows_expand_mod=1.0):
)
)
#import code
#code.interact(local=dict(globals(), **locals()))
eyes_fall_dist = w // 32
eyes_thickness = max( w // 64, 1 )

658
models/Model_SAEv2/Model.py Normal file
View file

@ -0,0 +1,658 @@
from functools import partial
import numpy as np
import mathlib
from facelib import FaceType
from interact import interact as io
from models import ModelBase
from nnlib import nnlib
from samplelib import *
#SAE - Styled AutoEncoder
class SAEModel(ModelBase):
#override
def onInitializeOptions(self, is_first_run, ask_override):
yn_str = {True:'y',False:'n'}
default_resolution = 128
default_archi = 'df'
default_face_type = 'f'
default_learn_mask = True
if is_first_run:
resolution = io.input_int("Resolution ( 64-256 ?:help skip:128) : ", default_resolution, help_message="More resolution requires more VRAM and time to train. Value will be adjusted to multiple of 16.")
resolution = np.clip (resolution, 64, 256)
while np.modf(resolution / 16)[0] != 0.0:
resolution -= 1
self.options['resolution'] = resolution
self.options['face_type'] = io.input_str ("Half, mid full, or full face? (h/mf/f, ?:help skip:f) : ", default_face_type, ['h','mf','f'], help_message="Half face has better resolution, but covers less area of cheeks. Mid face is 30% wider than half face.").lower()
self.options['learn_mask'] = io.input_bool ( f"Learn mask? (y/n, ?:help skip:{yn_str[default_learn_mask]} ) : " , default_learn_mask, help_message="Learning mask can help model to recognize face directions. Learn without mask can reduce model size, in this case converter forced to use 'not predicted mask' that is not smooth as predicted. Model with style values can be learned without mask and produce same quality result.")
else:
self.options['resolution'] = self.options.get('resolution', default_resolution)
self.options['face_type'] = self.options.get('face_type', default_face_type)
self.options['learn_mask'] = self.options.get('learn_mask', default_learn_mask)
if (is_first_run or ask_override) and 'tensorflow' in self.device_config.backend:
def_optimizer_mode = self.options.get('optimizer_mode', 1)
self.options['optimizer_mode'] = io.input_int ("Optimizer mode? ( 1,2,3 ?:help skip:%d) : " % (def_optimizer_mode), def_optimizer_mode, help_message="1 - no changes. 2 - allows you to train x2 bigger network consuming RAM. 3 - allows you to train x3 bigger network consuming huge amount of RAM and slower, depends on CPU power.")
else:
self.options['optimizer_mode'] = self.options.get('optimizer_mode', 1)
if is_first_run:
self.options['archi'] = io.input_str ("AE architecture (df, liae ?:help skip:%s) : " % (default_archi) , default_archi, ['df','liae'], help_message="'df' keeps faces more natural. 'liae' can fix overly different face shapes.").lower() #-s version is slower, but has decreased change to collapse.
else:
self.options['archi'] = self.options.get('archi', default_archi)
default_ae_dims = 256 if 'liae' in self.options['archi'] else 512
default_e_ch_dims = 21
default_d_ch_dims = default_e_ch_dims
def_ca_weights = False
if is_first_run:
self.options['ae_dims'] = np.clip ( io.input_int("AutoEncoder dims (32-1024 ?:help skip:%d) : " % (default_ae_dims) , default_ae_dims, help_message="All face information will packed to AE dims. If amount of AE dims are not enough, then for example closed eyes will not be recognized. More dims are better, but require more VRAM. You can fine-tune model size to fit your GPU." ), 32, 1024 )
self.options['e_ch_dims'] = np.clip ( io.input_int("Encoder dims per channel (21-85 ?:help skip:%d) : " % (default_e_ch_dims) , default_e_ch_dims, help_message="More encoder dims help to recognize more facial features, but require more VRAM. You can fine-tune model size to fit your GPU." ), 21, 85 )
default_d_ch_dims = self.options['e_ch_dims']
self.options['d_ch_dims'] = np.clip ( io.input_int("Decoder dims per channel (10-85 ?:help skip:%d) : " % (default_d_ch_dims) , default_d_ch_dims, help_message="More decoder dims help to get better details, but require more VRAM. You can fine-tune model size to fit your GPU." ), 10, 85 )
self.options['ca_weights'] = io.input_bool (f"Use CA weights? (y/n, ?:help skip:{yn_str[def_ca_weights]} ) : ", def_ca_weights, help_message="Initialize network with 'Convolution Aware' weights. This may help to achieve a higher accuracy model, but consumes a time at first run.")
else:
self.options['ae_dims'] = self.options.get('ae_dims', default_ae_dims)
self.options['e_ch_dims'] = self.options.get('e_ch_dims', default_e_ch_dims)
self.options['d_ch_dims'] = self.options.get('d_ch_dims', default_d_ch_dims)
self.options['ca_weights'] = self.options.get('ca_weights', def_ca_weights)
default_face_style_power = 0.0
default_bg_style_power = 0.0
if is_first_run or ask_override:
def_pixel_loss = self.options.get('pixel_loss', False)
self.options['pixel_loss'] = io.input_bool (f"Use pixel loss? (y/n, ?:help skip:{yn_str[def_pixel_loss]} ) : ", def_pixel_loss, help_message="Pixel loss may help to enhance fine details and stabilize face color. Use it only if quality does not improve over time. Enabling this option too early increases the chance of model collapse.")
default_face_style_power = default_face_style_power if is_first_run else self.options.get('face_style_power', default_face_style_power)
self.options['face_style_power'] = np.clip ( io.input_number("Face style power ( 0.0 .. 100.0 ?:help skip:%.2f) : " % (default_face_style_power), default_face_style_power,
help_message="Learn to transfer face style details such as light and color conditions. Warning: Enable it only after 10k iters, when predicted face is clear enough to start learn style. Start from 0.1 value and check history changes. Enabling this option increases the chance of model collapse."), 0.0, 100.0 )
default_bg_style_power = default_bg_style_power if is_first_run else self.options.get('bg_style_power', default_bg_style_power)
self.options['bg_style_power'] = np.clip ( io.input_number("Background style power ( 0.0 .. 100.0 ?:help skip:%.2f) : " % (default_bg_style_power), default_bg_style_power,
help_message="Learn to transfer image around face. This can make face more like dst. Enabling this option increases the chance of model collapse."), 0.0, 100.0 )
default_apply_random_ct = False if is_first_run else self.options.get('apply_random_ct', False)
self.options['apply_random_ct'] = io.input_bool (f"Apply random color transfer to src faceset? (y/n, ?:help skip:{yn_str[default_apply_random_ct]}) : ", default_apply_random_ct, help_message="Increase variativity of src samples by apply LCT color transfer from random dst samples. It is like 'face_style' learning, but more precise color transfer and without risk of model collapse, also it does not require additional GPU resources, but the training time may be longer, due to the src faceset is becoming more diverse.")
default_true_face_training = False if is_first_run else self.options.get('true_face_training', False)
self.options['true_face_training'] = io.input_bool (f"Enable 'true face' training? (y/n, ?:help skip:{yn_str[default_true_face_training]}) : ", default_true_face_training, help_message="Result face will be more like src. Enable it only after 100k iters, when face is sharp enough.")
if nnlib.device.backend != 'plaidML': # todo https://github.com/plaidml/plaidml/issues/301
default_clipgrad = False if is_first_run else self.options.get('clipgrad', False)
self.options['clipgrad'] = io.input_bool (f"Enable gradient clipping? (y/n, ?:help skip:{yn_str[default_clipgrad]}) : ", default_clipgrad, help_message="Gradient clipping reduces chance of model collapse, sacrificing speed of training.")
else:
self.options['clipgrad'] = False
else:
self.options['pixel_loss'] = self.options.get('pixel_loss', False)
self.options['face_style_power'] = self.options.get('face_style_power', default_face_style_power)
self.options['bg_style_power'] = self.options.get('bg_style_power', default_bg_style_power)
self.options['apply_random_ct'] = self.options.get('apply_random_ct', False)
self.options['clipgrad'] = self.options.get('clipgrad', False)
if is_first_run:
self.options['pretrain'] = io.input_bool ("Pretrain the model? (y/n, ?:help skip:n) : ", False, help_message="Pretrain the model with large amount of various faces. This technique may help to train the fake with overly different face shapes and light conditions of src/dst data. Face will be look more like a morphed. To reduce the morph effect, some model files will be initialized but not be updated after pretrain: LIAE: inter_AB.h5 DF: encoder.h5. The longer you pretrain the model the more morphed face will look. After that, save and run the training again.")
else:
self.options['pretrain'] = False
#override
def onInitialize(self):
exec(nnlib.import_all(), locals(), globals())
self.set_vram_batch_requirements({1.5:4,4:8})
resolution = self.options['resolution']
learn_mask = self.options['learn_mask']
ae_dims = self.options['ae_dims']
e_ch_dims = self.options['e_ch_dims']
d_ch_dims = self.options['d_ch_dims']
self.pretrain = self.options['pretrain'] = self.options.get('pretrain', False)
if not self.pretrain:
self.options.pop('pretrain')
bgr_shape = (resolution, resolution, 3)
mask_shape = (resolution, resolution, 1)
apply_random_ct = self.options.get('apply_random_ct', False)
self.true_face_training = self.options.get('true_face_training', False)
masked_training = True
class SAEDFModel(object):
def __init__(self, resolution, ae_dims, e_ch_dims, d_ch_dims, learn_mask):
super().__init__()
self.learn_mask = learn_mask
output_nc = 3
bgr_shape = (resolution, resolution, output_nc)
mask_shape = (resolution, resolution, 1)
lowest_dense_res = resolution // 16
e_dims = output_nc*e_ch_dims
def downscale (dim, kernel_size=5, dilation_rate=1):
def func(x):
return SubpixelDownscaler()(LeakyReLU(0.1)(Conv2D(dim // 4, kernel_size=kernel_size, strides=1, dilation_rate=dilation_rate, padding='same')(x)))
return func
def upscale (dim):
def func(x):
return SubpixelUpscaler()(LeakyReLU(0.1)(Conv2D(dim * 4, kernel_size=3, strides=1, padding='same')(x)))
return func
def enc_flow(e_dims, ae_dims, lowest_dense_res):
def func(inp):
x = downscale(e_dims , 3, 1 )(inp)
x = downscale(e_dims*2, 3, 1 )(x)
x = downscale(e_dims*4, 3, 1 )(x)
x0 = downscale(e_dims*8, 3, 1 )(x)
x = downscale(e_dims , 5, 1 )(inp)
x = downscale(e_dims*2, 5, 1 )(x)
x = downscale(e_dims*4, 5, 1 )(x)
x1 = downscale(e_dims*8, 5, 1 )(x)
x = downscale(e_dims , 5, 2 )(inp)
x = downscale(e_dims*2, 5, 2 )(x)
x = downscale(e_dims*4, 5, 2 )(x)
x2 = downscale(e_dims*8, 5, 2 )(x)
x = downscale(e_dims , 7, 2 )(inp)
x = downscale(e_dims*2, 7, 2 )(x)
x = downscale(e_dims*4, 7, 2 )(x)
x3 = downscale(e_dims*8, 7, 2 )(x)
x = Concatenate()([x0,x1,x2,x3])
x = Dense(ae_dims)(Flatten()(x))
x = Dense(lowest_dense_res * lowest_dense_res * ae_dims)(x)
x = Reshape((lowest_dense_res, lowest_dense_res, ae_dims))(x)
x = upscale(ae_dims)(x)
return x
return func
def dec_flow(output_nc, d_ch_dims, add_residual_blocks=True):
dims = output_nc * d_ch_dims
def ResidualBlock(dim):
def func(inp):
x = Conv2D(dim, kernel_size=3, padding='same')(inp)
x = LeakyReLU(0.2)(x)
x = Conv2D(dim, kernel_size=3, padding='same')(x)
x = Add()([x, inp])
x = LeakyReLU(0.2)(x)
return x
return func
def func(x):
x = upscale(dims*8)(x)
if add_residual_blocks:
x = ResidualBlock(dims*8)(x)
x = upscale(dims*4)(x)
if add_residual_blocks:
x = ResidualBlock(dims*4)(x)
x = upscale(dims*2)(x)
if add_residual_blocks:
x = ResidualBlock(dims*2)(x)
return Conv2D(output_nc, kernel_size=5, padding='same', activation='sigmoid')(x)
return func
self.encoder = modelify(enc_flow(e_dims, ae_dims, lowest_dense_res)) ( Input(bgr_shape) )
sh = K.int_shape( self.encoder.outputs[0] )[1:]
self.decoder_src = modelify(dec_flow(output_nc, d_ch_dims)) ( Input(sh) )
self.decoder_dst = modelify(dec_flow(output_nc, d_ch_dims)) ( Input(sh) )
if learn_mask:
self.decoder_srcm = modelify(dec_flow(1, d_ch_dims, add_residual_blocks=False)) ( Input(sh) )
self.decoder_dstm = modelify(dec_flow(1, d_ch_dims, add_residual_blocks=False)) ( Input(sh) )
self.src_dst_trainable_weights = self.encoder.trainable_weights + self.decoder_src.trainable_weights + self.decoder_dst.trainable_weights
if learn_mask:
self.src_dst_mask_trainable_weights = self.encoder.trainable_weights + self.decoder_srcm.trainable_weights + self.decoder_dstm.trainable_weights
self.warped_src, self.warped_dst = Input(bgr_shape), Input(bgr_shape)
self.target_src, self.target_dst = Input(bgr_shape), Input(bgr_shape)
self.target_srcm, self.target_dstm = Input(mask_shape), Input(mask_shape)
self.src_code, self.dst_code = self.encoder(self.warped_src), self.encoder(self.warped_dst)
self.pred_src_src = self.decoder_src(self.src_code)
self.pred_dst_dst = self.decoder_dst(self.dst_code)
self.pred_src_dst = self.decoder_src(self.dst_code)
if learn_mask:
self.pred_src_srcm = self.decoder_srcm(self.src_code)
self.pred_dst_dstm = self.decoder_dstm(self.dst_code)
self.pred_src_dstm = self.decoder_srcm(self.dst_code)
def get_model_filename_list(self, exclude_for_pretrain=False):
ar = []
if not exclude_for_pretrain:
ar += [ [self.encoder, 'encoder.h5'] ]
ar += [ [self.decoder_src, 'decoder_src.h5'],
[self.decoder_dst, 'decoder_dst.h5'] ]
if self.learn_mask:
ar += [ [self.decoder_srcm, 'decoder_srcm.h5'],
[self.decoder_dstm, 'decoder_dstm.h5'] ]
return ar
class SAELIAEModel(object):
def __init__(self, resolution, ae_dims, e_ch_dims, d_ch_dims, learn_mask):
super().__init__()
self.learn_mask = learn_mask
output_nc = 3
bgr_shape = (resolution, resolution, output_nc)
mask_shape = (resolution, resolution, 1)
e_dims = output_nc*e_ch_dims
lowest_dense_res = resolution // 16
def downscale (dim, kernel_size=5, dilation_rate=1):
def func(x):
return SubpixelDownscaler()(LeakyReLU(0.1)(Conv2D(dim // 4, kernel_size=kernel_size, strides=1, dilation_rate=dilation_rate, padding='same')(x)))
return func
def upscale (dim):
def func(x):
return SubpixelUpscaler()(LeakyReLU(0.1)(Conv2D(dim * 4, kernel_size=3, strides=1, padding='same')(x)))
return func
def enc_flow(e_dims):
def func(inp):
x = downscale(e_dims , 3, 1 )(inp)
x = downscale(e_dims*2, 3, 1 )(x)
x = downscale(e_dims*4, 3, 1 )(x)
x0 = downscale(e_dims*8, 3, 1 )(x)
x = downscale(e_dims , 5, 1 )(inp)
x = downscale(e_dims*2, 5, 1 )(x)
x = downscale(e_dims*4, 5, 1 )(x)
x1 = downscale(e_dims*8, 5, 1 )(x)
x = downscale(e_dims , 5, 2 )(inp)
x = downscale(e_dims*2, 5, 2 )(x)
x = downscale(e_dims*4, 5, 2 )(x)
x2 = downscale(e_dims*8, 5, 2 )(x)
x = downscale(e_dims , 7, 2 )(inp)
x = downscale(e_dims*2, 7, 2 )(x)
x = downscale(e_dims*4, 7, 2 )(x)
x3 = downscale(e_dims*8, 7, 2 )(x)
x = Concatenate()([x0,x1,x2,x3])
x = Flatten()(x)
return x
return func
def inter_flow(lowest_dense_res, ae_dims):
def func(x):
x = Dense(ae_dims)(x)
x = Dense(lowest_dense_res * lowest_dense_res * ae_dims*2)(x)
x = Reshape((lowest_dense_res, lowest_dense_res, ae_dims*2))(x)
x = upscale(ae_dims*2)(x)
return x
return func
def dec_flow(output_nc, d_ch_dims, add_residual_blocks=True):
d_dims = output_nc*d_ch_dims
def ResidualBlock(dim):
def func(inp):
x = Conv2D(dim, kernel_size=3, padding='same')(inp)
x = LeakyReLU(0.2)(x)
x = Conv2D(dim, kernel_size=3, padding='same')(inp)
x = Add()([x, inp])
x = LeakyReLU(0.2)(x)
return x
return func
def func(x):
x = upscale(d_dims*8)(x)
if add_residual_blocks:
x = ResidualBlock(d_dims*8)(x)
x = upscale(d_dims*4)(x)
if add_residual_blocks:
x = ResidualBlock(d_dims*4)(x)
x = upscale(d_dims*2)(x)
if add_residual_blocks:
x = ResidualBlock(d_dims*2)(x)
return Conv2D(output_nc, kernel_size=5, padding='same', activation='sigmoid')(x)
return func
self.encoder = modelify(enc_flow(e_dims)) ( Input(bgr_shape) )
sh = K.int_shape( self.encoder.outputs[0] )[1:]
self.inter_B = modelify(inter_flow(lowest_dense_res, ae_dims)) ( Input(sh) )
self.inter_AB = modelify(inter_flow(lowest_dense_res, ae_dims)) ( Input(sh) )
sh = np.array(K.int_shape( self.inter_B.outputs[0] )[1:])*(1,1,2)
self.decoder = modelify(dec_flow(output_nc, d_ch_dims)) ( Input(sh) )
if learn_mask:
self.decoderm = modelify(dec_flow(1, d_ch_dims, add_residual_blocks=False)) ( Input(sh) )
self.src_dst_trainable_weights = self.encoder.trainable_weights + self.inter_B.trainable_weights + self.inter_AB.trainable_weights + self.decoder.trainable_weights
if learn_mask:
self.src_dst_mask_trainable_weights = self.encoder.trainable_weights + self.inter_B.trainable_weights + self.inter_AB.trainable_weights + self.decoderm.trainable_weights
self.warped_src, self.warped_dst = Input(bgr_shape), Input(bgr_shape)
self.target_src, self.target_dst = Input(bgr_shape), Input(bgr_shape)
self.target_srcm, self.target_dstm = Input(mask_shape), Input(mask_shape)
warped_src_code = self.encoder (self.warped_src)
self.src_code = warped_src_inter_AB_code = self.inter_AB (warped_src_code)
src_code = Concatenate()([warped_src_inter_AB_code,warped_src_inter_AB_code])
warped_dst_code = self.encoder (self.warped_dst)
self.dst_code = warped_dst_inter_B_code = self.inter_B (warped_dst_code)
warped_dst_inter_AB_code = self.inter_AB (warped_dst_code)
dst_code = Concatenate()([warped_dst_inter_B_code,warped_dst_inter_AB_code])
src_dst_code = Concatenate()([warped_dst_inter_AB_code,warped_dst_inter_AB_code])
self.pred_src_src = self.decoder(src_code)
self.pred_dst_dst = self.decoder(dst_code)
self.pred_src_dst = self.decoder(src_dst_code)
if learn_mask:
self.pred_src_srcm = self.decoderm(src_code)
self.pred_dst_dstm = self.decoderm(dst_code)
self.pred_src_dstm = self.decoderm(src_dst_code)
def get_model_filename_list(self, exclude_for_pretrain=False):
ar = [ [self.encoder, 'encoder.h5'],
[self.inter_B, 'inter_B.h5'] ]
if not exclude_for_pretrain:
ar += [ [self.inter_AB, 'inter_AB.h5'] ]
ar += [ [self.decoder, 'decoder.h5'] ]
if self.learn_mask:
ar += [ [self.decoderm, 'decoderm.h5'] ]
return ar
if 'df' in self.options['archi']:
self.model = SAEDFModel (resolution, ae_dims, e_ch_dims, d_ch_dims, learn_mask)
elif 'liae' in self.options['archi']:
self.model = SAELIAEModel (resolution, ae_dims, e_ch_dims, d_ch_dims, learn_mask)
self.opt_dis_model = []
if self.true_face_training:
def dis_flow(ndf=256):
def func(x):
x, = x
code_res = K.int_shape(x)[1]
x = Conv2D( ndf, 4, strides=2, padding='valid')( ZeroPadding2D(1)(x) )
x = LeakyReLU(0.1)(x)
x = Conv2D( ndf*2, 3, strides=2, padding='valid')( ZeroPadding2D(1)(x) )
x = LeakyReLU(0.1)(x)
if code_res > 8:
x = Conv2D( ndf*4, 3, strides=2, padding='valid')( ZeroPadding2D(1)(x) )
x = LeakyReLU(0.1)(x)
if code_res > 16:
x = Conv2D( ndf*8, 3, strides=2, padding='valid')( ZeroPadding2D(1)(x) )
x = LeakyReLU(0.1)(x)
if code_res > 32:
x = Conv2D( ndf*8, 3, strides=2, padding='valid')( ZeroPadding2D(1)(x) )
x = LeakyReLU(0.1)(x)
return Conv2D( 1, 1, strides=1, padding='valid', activation='sigmoid')(x)
return func
sh = [ Input( K.int_shape(self.model.src_code)[1:] ) ]
self.dis = modelify(dis_flow()) (sh)
self.opt_dis_model = [ (self.dis, 'dis.h5') ]
loaded, not_loaded = [], self.model.get_model_filename_list()+self.opt_dis_model
if not self.is_first_run():
loaded, not_loaded = self.load_weights_safe(not_loaded)
CA_models = []
if self.options.get('ca_weights', False):
CA_models += [ model for model, _ in not_loaded ]
CA_conv_weights_list = []
for model in CA_models:
for layer in model.layers:
if type(layer) == keras.layers.Conv2D:
CA_conv_weights_list += [layer.weights[0]] #- is Conv2D kernel_weights
if len(CA_conv_weights_list) != 0:
CAInitializerMP ( CA_conv_weights_list )
target_srcm = gaussian_blur( max(1, resolution // 32) )(self.model.target_srcm)
target_dstm = gaussian_blur( max(1, resolution // 32) )(self.model.target_dstm)
target_src_masked = self.model.target_src*target_srcm
target_dst_masked = self.model.target_dst*target_dstm
target_dst_anti_masked = self.model.target_dst*(1.0 - target_dstm)
target_src_masked_opt = target_src_masked if masked_training else self.model.target_src
target_dst_masked_opt = target_dst_masked if masked_training else self.model.target_dst
pred_src_src_masked_opt = self.model.pred_src_src*target_srcm if masked_training else self.model.pred_src_src
pred_dst_dst_masked_opt = self.model.pred_dst_dst*target_dstm if masked_training else self.model.pred_dst_dst
psd_target_dst_masked = self.model.pred_src_dst*target_dstm
psd_target_dst_anti_masked = self.model.pred_src_dst*(1.0 - target_dstm)
if self.is_training_mode:
self.src_dst_opt = RMSprop(lr=5e-5, clipnorm=1.0 if self.options['clipgrad'] else 0.0, tf_cpu_mode=self.options['optimizer_mode']-1)
self.src_dst_mask_opt = RMSprop(lr=5e-5, clipnorm=1.0 if self.options['clipgrad'] else 0.0, tf_cpu_mode=self.options['optimizer_mode']-1)
self.D_opt = RMSprop(lr=1e-5, clipnorm=1.0 if self.options['clipgrad'] else 0.0, tf_cpu_mode=self.options['optimizer_mode']-1)
if not self.options['pixel_loss']:
src_loss = K.mean ( 10*dssim(kernel_size=int(resolution/11.6),max_value=1.0)( target_src_masked_opt, pred_src_src_masked_opt) )
else:
src_loss = K.mean ( 50*K.square( target_src_masked_opt - pred_src_src_masked_opt ) )
face_style_power = self.options['face_style_power'] / 100.0
if face_style_power != 0:
src_loss += style_loss(gaussian_blur_radius=resolution//16, loss_weight=face_style_power, wnd_size=0)( psd_target_dst_masked, target_dst_masked )
bg_style_power = self.options['bg_style_power'] / 100.0
if bg_style_power != 0:
if not self.options['pixel_loss']:
src_loss += K.mean( (10*bg_style_power)*dssim(kernel_size=int(resolution/11.6),max_value=1.0)( psd_target_dst_anti_masked, target_dst_anti_masked ))
else:
src_loss += K.mean( (50*bg_style_power)*K.square( psd_target_dst_anti_masked - target_dst_anti_masked ))
if not self.options['pixel_loss']:
dst_loss = K.mean( 10*dssim(kernel_size=int(resolution/11.6),max_value=1.0)(target_dst_masked_opt, pred_dst_dst_masked_opt) )
else:
dst_loss = K.mean( 50*K.square( target_dst_masked_opt - pred_dst_dst_masked_opt ) )
opt_D_loss = []
if self.true_face_training:
def DLoss(labels,logits):
return K.mean(K.binary_crossentropy(labels,logits))
src_code_d = self.dis( self.model.src_code )
src_code_d_ones = K.ones_like(src_code_d)
src_code_d_zeros = K.zeros_like(src_code_d)
dst_code_d = self.dis( self.model.dst_code )
dst_code_d_ones = K.ones_like(dst_code_d)
opt_D_loss = [ 0.2*DLoss(src_code_d_ones, src_code_d) ]
loss_D = (DLoss(dst_code_d_ones , dst_code_d) + \
DLoss(src_code_d_zeros, src_code_d) ) * 0.5
self.D_train = K.function ([self.model.warped_src, self.model.warped_dst],[loss_D], self.D_opt.get_updates(loss_D, self.dis.trainable_weights) )
self.src_dst_train = K.function ([self.model.warped_src, self.model.warped_dst, self.model.target_src, self.model.target_srcm, self.model.target_dst, self.model.target_dstm],
[src_loss,dst_loss],
self.src_dst_opt.get_updates( [src_loss+dst_loss]+opt_D_loss, self.model.src_dst_trainable_weights)
)
if self.options['learn_mask']:
src_mask_loss = K.mean(K.square(self.model.target_srcm-self.model.pred_src_srcm))
dst_mask_loss = K.mean(K.square(self.model.target_dstm-self.model.pred_dst_dstm))
self.src_dst_mask_train = K.function ([self.model.warped_src, self.model.warped_dst, self.model.target_srcm, self.model.target_dstm],[src_mask_loss, dst_mask_loss], self.src_dst_mask_opt.get_updates(src_mask_loss+dst_mask_loss, self.model.src_dst_mask_trainable_weights ) )
if self.options['learn_mask']:
self.AE_view = K.function ([self.model.warped_src, self.model.warped_dst], [self.model.pred_src_src, self.model.pred_dst_dst, self.model.pred_dst_dstm, self.model.pred_src_dst, self.model.pred_src_dstm])
else:
self.AE_view = K.function ([self.model.warped_src, self.model.warped_dst], [self.model.pred_src_src, self.model.pred_dst_dst, self.model.pred_src_dst ])
else:
if self.options['learn_mask']:
self.AE_convert = K.function ([self.model.warped_dst],[ self.model.pred_src_dst, self.model.pred_dst_dstm, self.model.pred_src_dstm ])
else:
self.AE_convert = K.function ([self.model.warped_dst],[ self.model.pred_src_dst ])
if self.is_training_mode:
t = SampleProcessor.Types
if self.options['face_type'] == 'h':
face_type = t.FACE_TYPE_HALF
elif self.options['face_type'] == 'mf':
face_type = t.FACE_TYPE_MID_FULL
elif self.options['face_type'] == 'f':
face_type = t.FACE_TYPE_FULL
t_mode_bgr = t.MODE_BGR if not self.pretrain else t.MODE_BGR_SHUFFLE
training_data_src_path = self.training_data_src_path
training_data_dst_path = self.training_data_dst_path
sort_by_yaw = self.sort_by_yaw
if self.pretrain and self.pretraining_data_path is not None:
training_data_src_path = self.pretraining_data_path
training_data_dst_path = self.pretraining_data_path
sort_by_yaw = False
self.set_training_data_generators ([
SampleGeneratorFace(training_data_src_path, sort_by_yaw_target_samples_path=training_data_dst_path if sort_by_yaw else None,
random_ct_samples_path=training_data_dst_path if apply_random_ct else None,
debug=self.is_debug(), batch_size=self.batch_size,
sample_process_options=SampleProcessor.Options(random_flip=self.random_flip, scale_range=np.array([-0.05, 0.05])+self.src_scale_mod / 100.0 ),
output_sample_types = [ {'types' : (t.IMG_WARPED_TRANSFORMED, face_type, t_mode_bgr), 'resolution':resolution, 'apply_ct': apply_random_ct},
{'types' : (t.IMG_TRANSFORMED, face_type, t_mode_bgr), 'resolution': resolution, 'apply_ct': apply_random_ct },
{'types' : (t.IMG_TRANSFORMED, face_type, t.MODE_M), 'resolution': resolution } ]
),
SampleGeneratorFace(training_data_dst_path, debug=self.is_debug(), batch_size=self.batch_size,
sample_process_options=SampleProcessor.Options(random_flip=self.random_flip, ),
output_sample_types = [ {'types' : (t.IMG_WARPED_TRANSFORMED, face_type, t_mode_bgr), 'resolution':resolution},
{'types' : (t.IMG_TRANSFORMED, face_type, t_mode_bgr), 'resolution': resolution},
{'types' : (t.IMG_TRANSFORMED, face_type, t.MODE_M), 'resolution': resolution} ])
])
#override
def get_model_filename_list(self):
return self.model.get_model_filename_list ( exclude_for_pretrain=(self.pretrain and self.iter != 0) ) +self.opt_dis_model
#override
def onSave(self):
self.save_weights_safe( self.get_model_filename_list()+self.opt_dis_model )
#override
def onTrainOneIter(self, generators_samples, generators_list):
warped_src, target_src, target_srcm = generators_samples[0]
warped_dst, target_dst, target_dstm = generators_samples[1]
feed = [warped_src, warped_dst, target_src, target_srcm, target_dst, target_dstm]
src_loss, dst_loss, = self.src_dst_train (feed)
if self.true_face_training:
self.D_train([warped_src, warped_dst])
if self.options['learn_mask']:
feed = [ warped_src, warped_dst, target_srcm, target_dstm ]
src_mask_loss, dst_mask_loss, = self.src_dst_mask_train (feed)
return ( ('src_loss', src_loss), ('dst_loss', dst_loss), )
#override
def onGetPreview(self, sample):
test_S = sample[0][1][0:4] #first 4 samples
test_S_m = sample[0][2][0:4] #first 4 samples
test_D = sample[1][1][0:4]
test_D_m = sample[1][2][0:4]
if self.options['learn_mask']:
S, D, SS, DD, DDM, SD, SDM = [ np.clip(x, 0.0, 1.0) for x in ([test_S,test_D] + self.AE_view ([test_S, test_D]) ) ]
DDM, SDM, = [ np.repeat (x, (3,), -1) for x in [DDM, SDM] ]
else:
S, D, SS, DD, SD, = [ np.clip(x, 0.0, 1.0) for x in ([test_S,test_D] + self.AE_view ([test_S, test_D]) ) ]
result = []
st = []
for i in range(len(test_S)):
ar = S[i], SS[i], D[i], DD[i], SD[i]
st.append ( np.concatenate ( ar, axis=1) )
result += [ ('SAE', np.concatenate (st, axis=0 )), ]
if self.options['learn_mask']:
st_m = []
for i in range(len(test_S)):
ar = S[i]*test_S_m[i], SS[i], D[i]*test_D_m[i], DD[i]*DDM[i], SD[i]*(DDM[i]*SDM[i])
st_m.append ( np.concatenate ( ar, axis=1) )
result += [ ('SAE masked', np.concatenate (st_m, axis=0 )), ]
return result
def predictor_func (self, face=None, dummy_predict=False):
if dummy_predict:
self.AE_convert ([ np.zeros ( (1, self.options['resolution'], self.options['resolution'], 3), dtype=np.float32 ) ])
else:
if self.options['learn_mask']:
bgr, mask_dst_dstm, mask_src_dstm = self.AE_convert ([face[np.newaxis,...]])
mask = mask_dst_dstm[0] * mask_src_dstm[0]
return bgr[0], mask[...,0]
else:
bgr, = self.AE_convert ([face[np.newaxis,...]])
return bgr[0]
#override
def get_ConverterConfig(self):
if self.options['face_type'] == 'h':
face_type = FaceType.HALF
elif self.options['face_type'] == 'mf':
face_type = FaceType.MID_FULL
elif self.options['face_type'] == 'f':
face_type = FaceType.FULL
import converters
return self.predictor_func, (self.options['resolution'], self.options['resolution'], 3), converters.ConverterConfigMasked(face_type=face_type,
default_mode = 1 if self.options['apply_random_ct'] or self.options['face_style_power'] or self.options['bg_style_power'] else 4,
clip_hborder_mask_per=0.0625 if (face_type == FaceType.FULL) else 0,
)
Model = SAEModel

View file

@ -1,185 +0,0 @@
import numpy as np
from facelib import FaceType
from interact import interact as io
from models import ModelBase
from nnlib import nnlib, FUNIT
from samplelib import *
class TrueFaceModel(ModelBase):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs,
ask_sort_by_yaw=False,
ask_random_flip=False,
ask_src_scale_mod=False)
#override
def onInitializeOptions(self, is_first_run, ask_override):
default_resolution = 128
default_face_type = 'f'
if is_first_run:
resolution = self.options['resolution'] = io.input_int(f"Resolution ( 64-256 ?:help skip:{default_resolution}) : ", default_resolution, help_message="More resolution requires more VRAM and time to train. Value will be adjusted to multiple of 16.")
resolution = np.clip (resolution, 64, 256)
while np.modf(resolution / 16)[0] != 0.0:
resolution -= 1
else:
self.options['resolution'] = self.options.get('resolution', default_resolution)
if is_first_run:
self.options['face_type'] = io.input_str ("Half or Full face? (h/f, ?:help skip:f) : ", default_face_type, ['h','f'], help_message="").lower()
else:
self.options['face_type'] = self.options.get('face_type', default_face_type)
if (is_first_run or ask_override) and 'tensorflow' in self.device_config.backend:
def_optimizer_mode = self.options.get('optimizer_mode', 3)
self.options['optimizer_mode'] = io.input_int ("Optimizer mode? ( 1,2,3 ?:help skip:%d) : " % (def_optimizer_mode), def_optimizer_mode, help_message="1 - no changes. 2 - allows you to train x2 bigger network consuming RAM. 3 - allows you to train x3 bigger network consuming huge amount of RAM and slower, depends on CPU power.")
else:
self.options['optimizer_mode'] = self.options.get('optimizer_mode', 1)
#override
def onInitialize(self, batch_size=-1, **in_options):
exec(nnlib.code_import_all, locals(), globals())
self.set_vram_batch_requirements({2:1,3:1,4:4,5:8,6:16})
resolution = self.options['resolution']
face_type = self.face_type = FaceType.FULL if self.options['face_type'] == 'f' else FaceType.HALF
self.model = FUNIT( face_type_str=FaceType.toString(face_type),
batch_size=self.batch_size,
encoder_nf=64,
encoder_downs=2,
encoder_res_blk=2,
class_downs=4,
class_nf=64,
class_latent=64,
mlp_blks=2,
dis_nf=64,
dis_res_blks=10,
num_classes=2,
subpixel_decoder=True,
initialize_weights=self.is_first_run(),
is_training=self.is_training_mode,
tf_cpu_mode=self.options['optimizer_mode']-1
)
if not self.is_first_run():
self.load_weights_safe(self.model.get_model_filename_list())
t = SampleProcessor.Types
face_type = t.FACE_TYPE_FULL if self.options['face_type'] == 'f' else t.FACE_TYPE_HALF
if self.is_training_mode:
output_sample_types=[ {'types': (t.IMG_TRANSFORMED, face_type, t.MODE_BGR), 'resolution':resolution, 'normalize_tanh':True},
]
self.set_training_data_generators ([
SampleGeneratorFace(self.training_data_src_path, debug=self.is_debug(), batch_size=self.batch_size,
sample_process_options=SampleProcessor.Options(random_flip=True),
output_sample_types=output_sample_types ),
SampleGeneratorFace(self.training_data_dst_path, debug=self.is_debug(), batch_size=self.batch_size,
sample_process_options=SampleProcessor.Options(random_flip=True),
output_sample_types=output_sample_types )
])
else:
generator = SampleGeneratorFace(self.training_data_src_path, batch_size=1,
sample_process_options=SampleProcessor.Options(),
output_sample_types=[ {'types': (t.IMG_SOURCE, face_type, t.MODE_BGR), 'resolution':resolution, 'normalize_tanh':True} ] )
io.log_info("Calculating average src face style...")
codes = []
for i in io.progress_bar_generator(range(generator.get_total_sample_count())):
codes += self.model.get_average_class_code( generator.generate_next() )
self.average_class_code = np.mean ( np.array(codes), axis=0 )[None,...]
#override
def get_model_filename_list(self):
return self.model.get_model_filename_list()
#override
def onSave(self):
self.save_weights_safe(self.model.get_model_filename_list())
#override
def onTrainOneIter(self, generators_samples, generators_list):
bs = self.batch_size
lbs = bs // 2
hbs = bs - lbs
src, = generators_samples[0]
dst, = generators_samples[1]
xa = np.concatenate ( [src[0:lbs], dst[0:lbs]], axis=0 )
la = np.concatenate ( [ np.array ([0]*lbs, np.int32),
np.array ([1]*lbs, np.int32) ] )
xb = np.concatenate ( [src[lbs:], dst[lbs:]], axis=0 )
lb = np.concatenate ( [ np.array ([0]*hbs, np.int32),
np.array ([1]*hbs, np.int32) ] )
rnd_list = np.arange(lbs*2)
np.random.shuffle(rnd_list)
xa = xa[rnd_list,...]
la = la[rnd_list,...]
la = la[...,None]
rnd_list = np.arange(hbs*2)
np.random.shuffle(rnd_list)
xb = xb[rnd_list,...]
lb = lb[rnd_list,...]
lb = lb[...,None]
G_loss, D_loss = self.model.train(xa,la,xb,lb)
return ( ('G_loss', G_loss), ('D_loss', D_loss), )
#override
def onGetPreview(self, generators_samples):
xa = generators_samples[0][0]
xb = generators_samples[1][0]
view_samples = min(4, xa.shape[0])
s_xa_mean = self.model.get_average_class_code([xa])[0][None,...]
s_xb_mean = self.model.get_average_class_code([xb])[0][None,...]
s_xab_mean = self.model.get_average_class_code([ np.concatenate( [xa,xb], axis=0) ])[0][None,...]
lines = []
for i in range(view_samples):
xaxa, = self.model.convert ([ xa[i:i+1], s_xa_mean ] )
xbxb, = self.model.convert ([ xb[i:i+1], s_xb_mean ] )
xbxa, = self.model.convert ([ xb[i:i+1], s_xa_mean ] )
xa_i,xb_i,xaxa,xbxb,xbxa = [ np.clip(x/2+0.5, 0, 1) for x in [xa[i], xb[i], xaxa[0],xbxb[0],xbxa[0]] ]
lines += [ np.concatenate( (xa_i, xaxa, xb_i, xbxb, xbxa), axis=1) ]
r = np.concatenate ( lines, axis=0 )
return [ ('TrueFace', r ) ]
def predictor_func (self, face=None, dummy_predict=False):
if dummy_predict:
self.model.convert ([ np.zeros ( (1, self.options['resolution'], self.options['resolution'], 3), dtype=np.float32 ), self.average_class_code ])
else:
bgr, = self.model.convert ([ face[np.newaxis,...]*2-1, self.average_class_code ])
return bgr[0] / 2 + 0.5
#override
def get_ConverterConfig(self):
import converters
return self.predictor_func, (self.options['resolution'], self.options['resolution'], 3), converters.ConverterConfigMasked(face_type=self.face_type,
default_mode = 1,
clip_hborder_mask_per=0.0625 if (self.face_type == FaceType.FULL) else 0,
)
Model = TrueFaceModel

Binary file not shown.

View file

@ -1,7 +1,8 @@
import sys
import ctypes
import os
import json
import numpy as np
from .pynvml import *
#you can set DFL_TF_MIN_REQ_CAP manually for your build
#the reason why we cannot check tensorflow.version is it requires import tensorflow
@ -88,13 +89,8 @@ class device:
for i in range(plaidML_devices_count):
yield i
elif device.backend == "tensorflow":
for gpu_idx in range(nvmlDeviceGetCount()):
cap = device.getDeviceComputeCapability (gpu_idx)
if cap >= tf_min_req_cap:
yield gpu_idx
elif device.backend == "tensorflow-generic":
yield 0
for dev in cuda_devices:
yield dev['index']
@staticmethod
def getValidDevicesWithAtLeastTotalMemoryGB(totalmemsize_gb):
@ -104,35 +100,20 @@ class device:
if plaidML_devices[i]['globalMemSize'] >= totalmemsize_gb*1024*1024*1024:
result.append (i)
elif device.backend == "tensorflow":
for i in device.getValidDeviceIdxsEnumerator():
handle = nvmlDeviceGetHandleByIndex(i)
memInfo = nvmlDeviceGetMemoryInfo( handle )
if (memInfo.total) >= totalmemsize_gb*1024*1024*1024:
for dev in cuda_devices:
if dev['total_mem'] >= totalmemsize_gb*1024*1024*1024:
result.append (i)
elif device.backend == "tensorflow-generic":
return [0]
return result
@staticmethod
def getAllDevicesIdxsList():
if device.backend == "plaidML":
return [ *range(plaidML_devices_count) ]
elif device.backend == "tensorflow":
return [ *range(nvmlDeviceGetCount() ) ]
elif device.backend == "tensorflow-generic":
return [0]
@staticmethod
def getValidDevicesIdxsWithNamesList():
if device.backend == "plaidML":
return [ (i, plaidML_devices[i]['description'] ) for i in device.getValidDeviceIdxsEnumerator() ]
elif device.backend == "tensorflow":
return [ (i, nvmlDeviceGetName(nvmlDeviceGetHandleByIndex(i)).decode() ) for i in device.getValidDeviceIdxsEnumerator() ]
return [ ( dev['index'], dev['name'] ) for dev in cuda_devices ]
elif device.backend == "tensorflow-cpu":
return [ (0, 'CPU') ]
elif device.backend == "tensorflow-generic":
return [ (0, device.getDeviceName(0) ) ]
@staticmethod
def getDeviceVRAMTotalGb (idx):
@ -140,13 +121,10 @@ class device:
if idx < plaidML_devices_count:
return plaidML_devices[idx]['globalMemSize'] / (1024*1024*1024)
elif device.backend == "tensorflow":
if idx < nvmlDeviceGetCount():
memInfo = nvmlDeviceGetMemoryInfo( nvmlDeviceGetHandleByIndex(idx) )
return round ( memInfo.total / (1024*1024*1024) )
for dev in cuda_devices:
if idx == dev['index']:
return round ( dev['total_mem'] / (1024*1024*1024) )
return 0
elif device.backend == "tensorflow-generic":
return 2
@staticmethod
def getBestValidDeviceIdx():
@ -163,15 +141,12 @@ class device:
elif device.backend == "tensorflow":
idx = -1
idx_mem = 0
for i in device.getValidDeviceIdxsEnumerator():
memInfo = nvmlDeviceGetMemoryInfo( nvmlDeviceGetHandleByIndex(i) )
if memInfo.total > idx_mem:
idx = i
idx_mem = memInfo.total
for dev in cuda_devices:
if dev['total_mem'] > idx_mem:
idx = dev['index']
idx_mem = dev['total_mem']
return idx
elif device.backend == "tensorflow-generic":
return 0
@staticmethod
def getWorstValidDeviceIdx():
@ -188,24 +163,22 @@ class device:
elif device.backend == "tensorflow":
idx = -1
idx_mem = sys.maxsize
for i in device.getValidDeviceIdxsEnumerator():
memInfo = nvmlDeviceGetMemoryInfo( nvmlDeviceGetHandleByIndex(i) )
if memInfo.total < idx_mem:
idx = i
idx_mem = memInfo.total
for dev in cuda_devices:
if dev['total_mem'] < idx_mem:
idx = dev['index']
idx_mem = dev['total_mem']
return idx
elif device.backend == "tensorflow-generic":
return 0
@staticmethod
def isValidDeviceIdx(idx):
if device.backend == "plaidML":
return idx in [*device.getValidDeviceIdxsEnumerator()]
elif device.backend == "tensorflow":
return idx in [*device.getValidDeviceIdxsEnumerator()]
elif device.backend == "tensorflow-generic":
return (idx == 0)
for dev in cuda_devices:
if idx == dev['index']:
return True
return False
@staticmethod
def getDeviceIdxsEqualModel(idx):
@ -219,14 +192,13 @@ class device:
return result
elif device.backend == "tensorflow":
result = []
idx_name = nvmlDeviceGetName(nvmlDeviceGetHandleByIndex(idx)).decode()
for i in device.getValidDeviceIdxsEnumerator():
if nvmlDeviceGetName(nvmlDeviceGetHandleByIndex(i)).decode() == idx_name:
result.append (i)
idx_name = device.getDeviceName(idx)
for dev in cuda_devices:
if dev['name'] == idx_name:
result.append ( dev['index'] )
return result
elif device.backend == "tensorflow-generic":
return [0] if idx == 0 else []
@staticmethod
def getDeviceName (idx):
@ -234,11 +206,9 @@ class device:
if idx < plaidML_devices_count:
return plaidML_devices[idx]['description']
elif device.backend == "tensorflow":
if idx < nvmlDeviceGetCount():
return nvmlDeviceGetName(nvmlDeviceGetHandleByIndex(idx)).decode()
elif device.backend == "tensorflow-generic":
if idx == 0:
return "Generic GeForce GPU"
for dev in cuda_devices:
if dev['index'] == idx:
return dev['name']
return None
@ -252,35 +222,22 @@ class device:
@staticmethod
def getDeviceComputeCapability(idx):
result = 0
if device.backend == "plaidML":
return 99
elif device.backend == "tensorflow":
if idx < nvmlDeviceGetCount():
result = nvmlDeviceGetCudaComputeCapability(nvmlDeviceGetHandleByIndex(idx))
elif device.backend == "tensorflow-generic":
return 99 if idx == 0 else 0
return result[0] * 10 + result[1]
force_plaidML = os.environ.get("DFL_FORCE_PLAIDML", "0") == "1" #for OpenCL build , forcing using plaidML even if NVIDIA found
force_tf_cpu = os.environ.get("DFL_FORCE_TF_CPU", "0") == "1" #for OpenCL build , forcing using tf-cpu if plaidML failed
has_nvml = False
has_nvml_cap = False
#use DFL_FORCE_HAS_NVIDIA_DEVICE=1 if
#- your NVIDIA cannot be seen by OpenCL
#- CUDA build of DFL
has_nvidia_device = os.environ.get("DFL_FORCE_HAS_NVIDIA_DEVICE", "0") == "1"
for dev in cuda_devices:
if dev['index'] == idx:
return dev['cc']
return 0
plaidML_build = os.environ.get("DFL_PLAIDML_BUILD", "0") == "1"
plaidML_devices = None
def get_plaidML_devices():
global plaidML_devices
global has_nvidia_device
cuda_devices = None
if plaidML_build:
if plaidML_devices is None:
plaidML_devices = []
# Using plaidML OpenCL backend to determine system devices and has_nvidia_device
# Using plaidML OpenCL backend to determine system devices
try:
os.environ['PLAIDML_EXPERIMENTAL'] = 'false' #this enables work plaidML without run 'plaidml-setup'
import plaidml
@ -289,8 +246,6 @@ def get_plaidML_devices():
details = json.loads(d.details)
if details['type'] == 'CPU': #skipping opencl-CPU
continue
if 'nvidia' in details['vendor'].lower():
has_nvidia_device = True
plaidML_devices += [ {'id':d.id,
'globalMemSize' : int(details['globalMemSize']),
'description' : d.description.decode()
@ -298,60 +253,58 @@ def get_plaidML_devices():
ctx.shutdown()
except:
pass
return plaidML_devices
if not has_nvidia_device:
get_plaidML_devices()
#choosing backend
if device.backend is None and not force_tf_cpu:
#first trying to load NVSMI and detect CUDA devices for tensorflow backend,
#even force_plaidML is choosed, because if plaidML will fail, we can choose tensorflow
try:
nvmlInit()
has_nvml = True
device.backend = "tensorflow" #set tensorflow backend in order to use device.*device() functions
gpu_idxs = device.getAllDevicesIdxsList()
gpu_caps = np.array ( [ device.getDeviceComputeCapability(gpu_idx) for gpu_idx in gpu_idxs ] )
if len ( np.ndarray.flatten ( np.argwhere (gpu_caps >= tf_min_req_cap) ) ) == 0:
if not force_plaidML:
print ("No CUDA devices found with minimum required compute capability: %d.%d. Falling back to OpenCL mode." % (tf_min_req_cap // 10, tf_min_req_cap % 10) )
device.backend = None
nvmlShutdown()
else:
has_nvml_cap = True
except:
#if no NVSMI installed exception will occur
device.backend = None
has_nvml = False
if force_plaidML or (device.backend is None and not has_nvidia_device):
#tensorflow backend was failed without has_nvidia_device , or forcing plaidML, trying to use plaidML backend
if len(get_plaidML_devices()) == 0:
#print ("plaidML: No capable OpenCL devices found. Falling back to tensorflow backend.")
device.backend = None
else:
if len(plaidML_devices) != 0:
device.backend = "plaidML"
plaidML_devices_count = len(get_plaidML_devices())
else:
if cuda_devices is None:
cuda_devices = []
libnames = ('libcuda.so', 'libcuda.dylib', 'nvcuda.dll')
cuda = None
for libname in libnames:
try:
cuda = ctypes.CDLL(libname)
except:
continue
else:
break
if cuda is not None:
nGpus = ctypes.c_int()
name = b' ' * 200
cc_major = ctypes.c_int()
cc_minor = ctypes.c_int()
freeMem = ctypes.c_size_t()
totalMem = ctypes.c_size_t()
result = ctypes.c_int()
device_t = ctypes.c_int()
context = ctypes.c_void_p()
error_str = ctypes.c_char_p()
if cuda.cuInit(0) == 0 and \
cuda.cuDeviceGetCount(ctypes.byref(nGpus)) == 0:
for i in range(nGpus.value):
if cuda.cuDeviceGet(ctypes.byref(device_t), i) != 0 or \
cuda.cuDeviceGetName(ctypes.c_char_p(name), len(name), device_t) != 0 or \
cuda.cuDeviceComputeCapability(ctypes.byref(cc_major), ctypes.byref(cc_minor), device_t) != 0:
continue
if cuda.cuCtxCreate_v2(ctypes.byref(context), 0, device_t) == 0:
if cuda.cuMemGetInfo_v2(ctypes.byref(freeMem), ctypes.byref(totalMem)) == 0:
cc = cc_major.value * 10 + cc_minor.value
if cc >= tf_min_req_cap:
cuda_devices.append ( {'index':i,
'name':name.split(b'\0', 1)[0].decode(),
'total_mem':totalMem.value,
'free_mem':freeMem.value,
'cc':cc
}
)
cuda.cuCtxDetach(context)
if len(cuda_devices) != 0:
device.backend = "tensorflow"
if device.backend is None:
if force_tf_cpu:
device.backend = "tensorflow-cpu"
elif not has_nvml:
if has_nvidia_device:
#some notebook systems have NVIDIA card without NVSMI in official drivers
#in that case considering we have system with one capable GPU and let tensorflow to choose best GPU
device.backend = "tensorflow-generic"
else:
#no NVSMI and no NVIDIA cards, also plaidML was failed, then CPU only
device.backend = "tensorflow-cpu"
else:
if has_nvml_cap:
#has NVSMI and capable CUDA-devices, but force_plaidML was failed, then we choosing tensorflow
device.backend = "tensorflow"
else:
#has NVSMI, no capable CUDA-devices, also plaidML was failed, then CPU only
device.backend = "tensorflow-cpu"

View file

@ -96,6 +96,7 @@ dssim = nnlib.dssim
PixelShuffler = nnlib.PixelShuffler
SubpixelUpscaler = nnlib.SubpixelUpscaler
SubpixelDownscaler = nnlib.SubpixelDownscaler
Scale = nnlib.Scale
BlurPool = nnlib.BlurPool
FUNITAdain = nnlib.FUNITAdain
@ -156,13 +157,13 @@ NLayerDiscriminator = nnlib.NLayerDiscriminator
else:
config = tf.ConfigProto()
if device_config.force_gpu_idx != -1 and device_config.backend != "tensorflow-generic":
#tensorflow-generic is system with NVIDIA card, but w/o NVSMI
#so dont hide devices and let tensorflow to choose best card
visible_device_list = ''
for idx in device_config.gpu_idxs:
visible_device_list += str(idx) + ','
config.gpu_options.visible_device_list=visible_device_list[:-1]
#if device_config.force_gpu_idx != -1 and device_config.backend != "tensorflow-generic":
# #tensorflow-generic is system with NVIDIA card, but w/o NVSMI
# #so dont hide devices and let tensorflow to choose best card
# visible_device_list = ''
# for idx in device_config.gpu_idxs:
# visible_device_list += str(idx) + ','
# config.gpu_options.visible_device_list=visible_device_list[:-1]
config.gpu_options.force_gpu_compatible = True
config.gpu_options.allow_growth = device_config.allow_growth
@ -473,6 +474,49 @@ NLayerDiscriminator = nnlib.NLayerDiscriminator
nnlib.PixelShuffler = PixelShuffler
nnlib.SubpixelUpscaler = PixelShuffler
class SubpixelDownscaler(KL.Layer):
def __init__(self, size=(2, 2), data_format='channels_last', **kwargs):
super(SubpixelDownscaler, self).__init__(**kwargs)
self.data_format = data_format
self.size = size
def call(self, inputs):
input_shape = K.shape(inputs)
if K.int_shape(input_shape)[0] != 4:
raise ValueError('Inputs should have rank 4; Received input shape:', str(K.int_shape(inputs)))
batch_size, h, w, c = input_shape[0], input_shape[1], input_shape[2], K.int_shape(inputs)[-1]
rh, rw = self.size
oh, ow = h // rh, w // rw
oc = c * (rh * rw)
out = K.reshape(inputs, (batch_size, oh, rh, ow, rw, c))
out = K.permute_dimensions(out, (0, 1, 3, 2, 4, 5))
out = K.reshape(out, (batch_size, oh, ow, oc))
return out
def compute_output_shape(self, input_shape):
if len(input_shape) != 4:
raise ValueError('Inputs should have rank ' +
str(4) +
'; Received input shape:', str(input_shape))
height = input_shape[1] // self.size[0] if input_shape[1] is not None else None
width = input_shape[2] // self.size[1] if input_shape[2] is not None else None
channels = input_shape[3] * self.size[0] * self.size[1]
return (input_shape[0], height, width, channels)
def get_config(self):
config = {'size': self.size,
'data_format': self.data_format}
base_config = super(SubpixelDownscaler, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
nnlib.SubpixelDownscaler = SubpixelDownscaler
class BlurPool(KL.Layer):
"""
https://arxiv.org/abs/1904.11486 https://github.com/adobe/antialiased-cnns

File diff suppressed because it is too large Load diff

View file

@ -58,11 +58,12 @@ class SampleProcessor(object):
FACE_TYPE_BEGIN = 10
FACE_TYPE_HALF = 10
FACE_TYPE_FULL = 11
FACE_TYPE_HEAD = 12 #currently unused
FACE_TYPE_AVATAR = 13 #currently unused
FACE_TYPE_FULL_NO_ALIGN = 14
FACE_TYPE_HEAD_NO_ALIGN = 15
FACE_TYPE_MID_FULL = 11
FACE_TYPE_FULL = 12
FACE_TYPE_HEAD = 13 #currently unused
FACE_TYPE_AVATAR = 14 #currently unused
FACE_TYPE_FULL_NO_ALIGN = 15
FACE_TYPE_HEAD_NO_ALIGN = 16
FACE_TYPE_END = 20
MODE_BEGIN = 40
@ -82,6 +83,7 @@ class SampleProcessor(object):
self.ty_range = ty_range
SPTF_FACETYPE_TO_FACETYPE = { Types.FACE_TYPE_HALF : FaceType.HALF,
Types.FACE_TYPE_MID_FULL : FaceType.MID_FULL,
Types.FACE_TYPE_FULL : FaceType.FULL,
Types.FACE_TYPE_HEAD : FaceType.HEAD,
Types.FACE_TYPE_FULL_NO_ALIGN : FaceType.FULL_NO_ALIGN,