DeepFaceLab/converters/ConvertMasked.py
Colombo d781af3d1f fixed GPU detection and indexes, got rid of using nvml, now using direct cuda lib to determine gpu info that match tensorflow indexes,
removed TrueFace model.

added SAEv2 model. Differences from SAE:
+ default e_ch_dims is now 21
+ new encoder produces more stable face and less scale jitter
  before: https://i.imgur.com/4jUcol8.gifv
  after:  https://i.imgur.com/lyiax49.gifv - scale of the face is less changed within frame size
+ decoder now has only 1 residual block instead of 2, result is same quality with less decoder size
+ added mid-full face, which covers 30% more area than half face.
+ added option " Enable 'true face' training "
  Enable it only after 50k iters, when the face is sharp enough.
  the result face will be more like src.
  The most src-like face with 'true-face-training' you can achieve with DF architecture.
2019-10-05 16:26:23 +04:00

352 lines
No EOL
19 KiB
Python

import traceback
import cv2
import numpy as np
import imagelib
from facelib import FaceType, LandmarksProcessor
from interact import interact as io
from utils.cv2_utils import *
def ConvertMaskedFace (predictor_func, predictor_input_shape, cfg, frame_info, img_bgr_uint8, img_bgr, img_face_landmarks):
img_size = img_bgr.shape[1], img_bgr.shape[0]
img_face_mask_a = LandmarksProcessor.get_image_hull_mask (img_bgr.shape, img_face_landmarks)
if cfg.mode == 'original':
if cfg.export_mask_alpha:
img_bgr = np.concatenate ( [img_bgr, img_face_mask_a], -1 )
return img_bgr, img_face_mask_a
out_img = img_bgr.copy()
out_merging_mask = None
output_size = predictor_input_shape[0]
if cfg.super_resolution_mode != 0:
output_size *= 2
face_mat = LandmarksProcessor.get_transform_mat (img_face_landmarks, output_size, face_type=cfg.face_type)
face_output_mat = LandmarksProcessor.get_transform_mat (img_face_landmarks, output_size, face_type=cfg.face_type, scale= 1.0 + 0.01*cfg.output_face_scale )
dst_face_bgr = cv2.warpAffine( img_bgr , face_mat, (output_size, output_size), flags=cv2.INTER_CUBIC )
dst_face_mask_a_0 = cv2.warpAffine( img_face_mask_a, face_mat, (output_size, output_size), flags=cv2.INTER_CUBIC )
predictor_input_bgr = cv2.resize (dst_face_bgr, predictor_input_shape[0:2] )
predicted = predictor_func (predictor_input_bgr)
if isinstance(predicted, tuple):
#converter return bgr,mask
prd_face_bgr = np.clip (predicted[0], 0, 1.0)
prd_face_mask_a_0 = np.clip (predicted[1], 0, 1.0)
predictor_masked = True
else:
#converter return bgr only, using dst mask
prd_face_bgr = np.clip (predicted, 0, 1.0 )
prd_face_mask_a_0 = cv2.resize (dst_face_mask_a_0, predictor_input_shape[0:2] )
predictor_masked = False
if cfg.super_resolution_mode:
prd_face_bgr = cfg.superres_func(cfg.super_resolution_mode, prd_face_bgr)
if predictor_masked:
prd_face_mask_a_0 = cv2.resize (prd_face_mask_a_0, (output_size, output_size), cv2.INTER_CUBIC)
else:
prd_face_mask_a_0 = cv2.resize (dst_face_mask_a_0, (output_size, output_size), cv2.INTER_CUBIC)
if cfg.mask_mode == 2: #dst
prd_face_mask_a_0 = cv2.resize (dst_face_mask_a_0, (output_size,output_size), cv2.INTER_CUBIC)
elif cfg.mask_mode >= 3 and cfg.mask_mode <= 7:
if cfg.mask_mode == 3 or cfg.mask_mode == 5 or cfg.mask_mode == 6:
prd_face_fanseg_bgr = cv2.resize (prd_face_bgr, (cfg.fanseg_input_size,)*2 )
prd_face_fanseg_mask = cfg.fanseg_extract_func(FaceType.FULL, prd_face_fanseg_bgr)
FAN_prd_face_mask_a_0 = cv2.resize ( prd_face_fanseg_mask, (output_size, output_size), cv2.INTER_CUBIC)
if cfg.mask_mode >= 4 or cfg.mask_mode <= 7:
full_face_fanseg_mat = LandmarksProcessor.get_transform_mat (img_face_landmarks, cfg.fanseg_input_size, face_type=FaceType.FULL)
dst_face_fanseg_bgr = cv2.warpAffine(img_bgr, full_face_fanseg_mat, (cfg.fanseg_input_size,)*2, flags=cv2.INTER_CUBIC )
dst_face_fanseg_mask = cfg.fanseg_extract_func( FaceType.FULL, dst_face_fanseg_bgr )
if cfg.face_type == FaceType.FULL:
FAN_dst_face_mask_a_0 = cv2.resize (dst_face_fanseg_mask, (output_size,output_size), cv2.INTER_CUBIC)
else:
face_fanseg_mat = LandmarksProcessor.get_transform_mat (img_face_landmarks, cfg.fanseg_input_size, face_type=cfg.face_type)
fanseg_rect_corner_pts = np.array ( [ [0,0], [cfg.fanseg_input_size-1,0], [0,cfg.fanseg_input_size-1] ], dtype=np.float32 )
a = LandmarksProcessor.transform_points (fanseg_rect_corner_pts, face_fanseg_mat, invert=True )
b = LandmarksProcessor.transform_points (a, full_face_fanseg_mat )
m = cv2.getAffineTransform(b, fanseg_rect_corner_pts)
FAN_dst_face_mask_a_0 = cv2.warpAffine(dst_face_fanseg_mask, m, (cfg.fanseg_input_size,)*2, flags=cv2.INTER_CUBIC )
FAN_dst_face_mask_a_0 = cv2.resize (FAN_dst_face_mask_a_0, (output_size,output_size), cv2.INTER_CUBIC)
#else:
# raise ValueError ("cfg.face_type unsupported")
if cfg.mask_mode == 3: #FAN-prd
prd_face_mask_a_0 = FAN_prd_face_mask_a_0
elif cfg.mask_mode == 4: #FAN-dst
prd_face_mask_a_0 = FAN_dst_face_mask_a_0
elif cfg.mask_mode == 5:
prd_face_mask_a_0 = FAN_prd_face_mask_a_0 * FAN_dst_face_mask_a_0
elif cfg.mask_mode == 6:
prd_face_mask_a_0 = prd_face_mask_a_0 * FAN_prd_face_mask_a_0 * FAN_dst_face_mask_a_0
elif cfg.mask_mode == 7:
prd_face_mask_a_0 = prd_face_mask_a_0 * FAN_dst_face_mask_a_0
prd_face_mask_a_0[ prd_face_mask_a_0 < 0.001 ] = 0.0
prd_face_mask_a = prd_face_mask_a_0[...,np.newaxis]
prd_face_mask_aaa = np.repeat (prd_face_mask_a, (3,), axis=-1)
img_face_mask_aaa = cv2.warpAffine( prd_face_mask_aaa, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), flags=cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC )
img_face_mask_aaa = np.clip (img_face_mask_aaa, 0.0, 1.0)
img_face_mask_aaa [ img_face_mask_aaa <= 0.1 ] = 0.0 #get rid of noise
if 'raw' in cfg.mode:
face_corner_pts = np.array ([ [0,0], [output_size-1,0], [output_size-1,output_size-1], [0,output_size-1] ], dtype=np.float32)
square_mask = np.zeros(img_bgr.shape, dtype=np.float32)
cv2.fillConvexPoly(square_mask, \
LandmarksProcessor.transform_points (face_corner_pts, face_output_mat, invert=True ).astype(np.int), \
(1,1,1) )
if cfg.mode == 'raw-rgb':
out_merging_mask = square_mask
if cfg.mode == 'raw-rgb' or cfg.mode == 'raw-rgb-mask':
out_img = cv2.warpAffine( prd_face_bgr, face_output_mat, img_size, out_img, cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC, cv2.BORDER_TRANSPARENT )
if cfg.mode == 'raw-rgb-mask':
out_img = np.concatenate ( [out_img, np.expand_dims (img_face_mask_aaa[:,:,0],-1)], -1 )
out_merging_mask = square_mask
elif cfg.mode == 'raw-mask-only':
out_img = img_face_mask_aaa
out_merging_mask = img_face_mask_aaa
elif cfg.mode == 'raw-predicted-only':
out_img = cv2.warpAffine( prd_face_bgr, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC, cv2.BORDER_TRANSPARENT )
out_merging_mask = square_mask
out_img = np.clip (out_img, 0.0, 1.0 )
else:
#averaging [lenx, leny, maskx, masky] by grayscale gradients of upscaled mask
ar = []
for i in range(1, 10):
maxregion = np.argwhere( img_face_mask_aaa > i / 10.0 )
if maxregion.size != 0:
miny,minx = maxregion.min(axis=0)[:2]
maxy,maxx = maxregion.max(axis=0)[:2]
lenx = maxx - minx
leny = maxy - miny
if min(lenx,leny) >= 4:
ar += [ [ lenx, leny] ]
if len(ar) > 0:
lenx, leny = np.mean ( ar, axis=0 )
lowest_len = min (lenx, leny)
if cfg.erode_mask_modifier != 0:
ero = int( lowest_len * ( 0.126 - lowest_len * 0.00004551365 ) * 0.01*cfg.erode_mask_modifier )
if ero > 0:
img_face_mask_aaa = cv2.erode(img_face_mask_aaa, cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(ero,ero)), iterations = 1 )
elif ero < 0:
img_face_mask_aaa = cv2.dilate(img_face_mask_aaa, cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(-ero,-ero)), iterations = 1 )
if cfg.clip_hborder_mask_per > 0: #clip hborder before blur
prd_hborder_rect_mask_a = np.ones ( prd_face_mask_a.shape, dtype=np.float32)
prd_border_size = int ( prd_hborder_rect_mask_a.shape[1] * cfg.clip_hborder_mask_per )
prd_hborder_rect_mask_a[:,0:prd_border_size,:] = 0
prd_hborder_rect_mask_a[:,-prd_border_size:,:] = 0
prd_hborder_rect_mask_a[-prd_border_size:,:,:] = 0
prd_hborder_rect_mask_a = np.expand_dims(cv2.blur(prd_hborder_rect_mask_a, (prd_border_size, prd_border_size) ),-1)
img_prd_hborder_rect_mask_a = cv2.warpAffine( prd_hborder_rect_mask_a, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC )
img_prd_hborder_rect_mask_a = np.expand_dims (img_prd_hborder_rect_mask_a, -1)
img_face_mask_aaa *= img_prd_hborder_rect_mask_a
img_face_mask_aaa = np.clip( img_face_mask_aaa, 0, 1.0 )
if cfg.blur_mask_modifier > 0:
blur = int( lowest_len * 0.10 * 0.01*cfg.blur_mask_modifier )
if blur > 0:
img_face_mask_aaa = cv2.blur(img_face_mask_aaa, (blur, blur) )
img_face_mask_aaa = np.clip( img_face_mask_aaa, 0, 1.0 )
if 'seamless' not in cfg.mode and cfg.color_transfer_mode != 0:
if cfg.color_transfer_mode == 1: #rct
prd_face_bgr = imagelib.reinhard_color_transfer ( np.clip( (prd_face_bgr*255).astype(np.uint8), 0, 255),
np.clip( (dst_face_bgr*255).astype(np.uint8), 0, 255),
source_mask=prd_face_mask_a, target_mask=prd_face_mask_a)
prd_face_bgr = np.clip( prd_face_bgr.astype(np.float32) / 255.0, 0.0, 1.0)
elif cfg.color_transfer_mode == 2: #lct
prd_face_bgr = imagelib.linear_color_transfer (prd_face_bgr, dst_face_bgr)
prd_face_bgr = np.clip( prd_face_bgr, 0.0, 1.0)
elif cfg.color_transfer_mode == 3: #mkl
prd_face_bgr = imagelib.color_transfer_mkl (prd_face_bgr, dst_face_bgr)
elif cfg.color_transfer_mode == 4: #mkl-m
prd_face_bgr = imagelib.color_transfer_mkl (prd_face_bgr*prd_face_mask_a, dst_face_bgr*prd_face_mask_a)
elif cfg.color_transfer_mode == 5: #idt
prd_face_bgr = imagelib.color_transfer_idt (prd_face_bgr, dst_face_bgr)
elif cfg.color_transfer_mode == 6: #idt-m
prd_face_bgr = imagelib.color_transfer_idt (prd_face_bgr*prd_face_mask_a, dst_face_bgr*prd_face_mask_a)
elif cfg.color_transfer_mode == 7: #ebs
prd_face_bgr = cfg.ebs_ct_func ( np.clip( (dst_face_bgr*255), 0, 255).astype(np.uint8),
np.clip( (prd_face_bgr*255), 0, 255).astype(np.uint8), )#prd_face_mask_a
prd_face_bgr = np.clip( prd_face_bgr.astype(np.float32) / 255.0, 0.0, 1.0)
if cfg.mode == 'hist-match-bw':
prd_face_bgr = cv2.cvtColor(prd_face_bgr, cv2.COLOR_BGR2GRAY)
prd_face_bgr = np.repeat( np.expand_dims (prd_face_bgr, -1), (3,), -1 )
if cfg.mode == 'hist-match' or cfg.mode == 'hist-match-bw':
hist_mask_a = np.ones ( prd_face_bgr.shape[:2] + (1,) , dtype=np.float32)
if cfg.masked_hist_match:
hist_mask_a *= prd_face_mask_a
white = (1.0-hist_mask_a)* np.ones ( prd_face_bgr.shape[:2] + (1,) , dtype=np.float32)
hist_match_1 = prd_face_bgr*hist_mask_a + white
hist_match_1[ hist_match_1 > 1.0 ] = 1.0
hist_match_2 = dst_face_bgr*hist_mask_a + white
hist_match_2[ hist_match_1 > 1.0 ] = 1.0
prd_face_bgr = imagelib.color_hist_match(hist_match_1, hist_match_2, cfg.hist_match_threshold )
if cfg.mode == 'hist-match-bw':
prd_face_bgr = prd_face_bgr.astype(dtype=np.float32)
if 'seamless' in cfg.mode:
#mask used for cv2.seamlessClone
img_face_mask_a = img_face_mask_aaa[...,0:1]
if cfg.mode == 'seamless2':
img_face_mask_a = cv2.warpAffine( img_face_mask_a, face_output_mat, (output_size, output_size), flags=cv2.INTER_CUBIC )
img_face_seamless_mask_a = None
for i in range(1,10):
a = img_face_mask_a > i / 10.0
if len(np.argwhere(a)) == 0:
continue
img_face_seamless_mask_a = img_face_mask_a.copy()
img_face_seamless_mask_a[a] = 1.0
img_face_seamless_mask_a[img_face_seamless_mask_a <= i / 10.0] = 0.0
break
if cfg.mode == 'seamless2':
face_seamless = imagelib.seamless_clone ( prd_face_bgr, dst_face_bgr, img_face_seamless_mask_a )
out_img = cv2.warpAffine( face_seamless, face_output_mat, img_size, out_img, cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC, cv2.BORDER_TRANSPARENT )
else:
out_img = cv2.warpAffine( prd_face_bgr, face_output_mat, img_size, out_img, cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC, cv2.BORDER_TRANSPARENT )
out_img = np.clip(out_img, 0.0, 1.0)
if 'seamless' in cfg.mode and cfg.mode != 'seamless2':
try:
#calc same bounding rect and center point as in cv2.seamlessClone to prevent jittering (not flickering)
l,t,w,h = cv2.boundingRect( (img_face_seamless_mask_a*255).astype(np.uint8) )
s_maskx, s_masky = int(l+w/2), int(t+h/2)
out_img = cv2.seamlessClone( (out_img*255).astype(np.uint8), img_bgr_uint8, (img_face_seamless_mask_a*255).astype(np.uint8), (s_maskx,s_masky) , cv2.NORMAL_CLONE )
out_img = out_img.astype(dtype=np.float32) / 255.0
except Exception as e:
#seamlessClone may fail in some cases
e_str = traceback.format_exc()
if 'MemoryError' in e_str:
raise Exception("Seamless fail: " + e_str) #reraise MemoryError in order to reprocess this data by other processes
else:
print ("Seamless fail: " + e_str)
out_img = img_bgr*(1-img_face_mask_aaa) + (out_img*img_face_mask_aaa)
out_face_bgr = cv2.warpAffine( out_img, face_mat, (output_size, output_size) )
if 'seamless' in cfg.mode and cfg.color_transfer_mode != 0:
if cfg.color_transfer_mode == 1:
face_mask_aaa = cv2.warpAffine( img_face_mask_aaa, face_mat, (output_size, output_size) )
out_face_bgr = imagelib.reinhard_color_transfer ( np.clip( (out_face_bgr*255), 0, 255).astype(np.uint8),
np.clip( (dst_face_bgr*255), 0, 255).astype(np.uint8),
source_mask=face_mask_aaa, target_mask=face_mask_aaa)
out_face_bgr = np.clip( out_face_bgr.astype(np.float32) / 255.0, 0.0, 1.0)
elif cfg.color_transfer_mode == 2: #lct
out_face_bgr = imagelib.linear_color_transfer (out_face_bgr, dst_face_bgr)
out_face_bgr = np.clip( out_face_bgr, 0.0, 1.0)
elif cfg.color_transfer_mode == 3: #mkl
out_face_bgr = imagelib.color_transfer_mkl (out_face_bgr, dst_face_bgr)
elif cfg.color_transfer_mode == 4: #mkl-m
out_face_bgr = imagelib.color_transfer_mkl (out_face_bgr*prd_face_mask_a, dst_face_bgr*prd_face_mask_a)
elif cfg.color_transfer_mode == 5: #idt
out_face_bgr = imagelib.color_transfer_idt (out_face_bgr, dst_face_bgr)
elif cfg.color_transfer_mode == 6: #idt-m
out_face_bgr = imagelib.color_transfer_idt (out_face_bgr*prd_face_mask_a, dst_face_bgr*prd_face_mask_a)
elif cfg.color_transfer_mode == 7: #ebs
out_face_bgr = cfg.ebs_ct_func ( np.clip( (dst_face_bgr*255), 0, 255).astype(np.uint8),
np.clip( (out_face_bgr*255), 0, 255).astype(np.uint8), )
out_face_bgr = np.clip( out_face_bgr.astype(np.float32) / 255.0, 0.0, 1.0)
if cfg.mode == 'seamless-hist-match':
out_face_bgr = imagelib.color_hist_match(out_face_bgr, dst_face_bgr, cfg.hist_match_threshold)
cfg_mp = cfg.motion_blur_power / 100.0
if cfg_mp != 0:
k_size = int(frame_info.motion_power*cfg_mp)
if k_size >= 1:
k_size = np.clip (k_size+1, 2, 50)
if cfg.super_resolution_mode:
k_size *= 2
out_face_bgr = imagelib.LinearMotionBlur (out_face_bgr, k_size , frame_info.motion_deg)
if cfg.blursharpen_amount != 0:
out_face_bgr = cfg.blursharpen_func ( out_face_bgr, cfg.sharpen_mode, 3, cfg.blursharpen_amount)
new_out = cv2.warpAffine( out_face_bgr, face_mat, img_size, img_bgr.copy(), cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC, cv2.BORDER_TRANSPARENT )
out_img = np.clip( img_bgr*(1-img_face_mask_aaa) + (new_out*img_face_mask_aaa) , 0, 1.0 )
if cfg.color_degrade_power != 0:
out_img_reduced = imagelib.reduce_colors(out_img, 256)
if cfg.color_degrade_power == 100:
out_img = out_img_reduced
else:
alpha = cfg.color_degrade_power / 100.0
out_img = (out_img*(1.0-alpha) + out_img_reduced*alpha)
if cfg.export_mask_alpha:
out_img = np.concatenate ( [out_img, img_face_mask_aaa[:,:,0:1]], -1 )
out_merging_mask = img_face_mask_aaa
return out_img, out_merging_mask
def ConvertMasked (predictor_func, predictor_input_shape, cfg, frame_info):
img_bgr_uint8 = cv2_imread(frame_info.filename)
img_bgr_uint8 = imagelib.normalize_channels (img_bgr_uint8, 3)
img_bgr = img_bgr_uint8.astype(np.float32) / 255.0
outs = []
for face_num, img_landmarks in enumerate( frame_info.landmarks_list ):
out_img, out_img_merging_mask = ConvertMaskedFace (predictor_func, predictor_input_shape, cfg, frame_info, img_bgr_uint8, img_bgr, img_landmarks)
outs += [ (out_img, out_img_merging_mask) ]
#Combining multiple face outputs
final_img = None
for img, merging_mask in outs:
h,w,c = img.shape
if final_img is None:
final_img = img
else:
merging_mask = merging_mask[...,0:1]
if c == 3:
final_img = final_img*(1-merging_mask) + img*merging_mask
elif c == 4:
final_img_bgr = final_img[...,0:3]*(1-merging_mask) + img[...,0:3]*merging_mask
final_img_mask = np.clip ( final_img[...,3:4] + img[...,3:4], 0, 1 )
final_img = np.concatenate ( [final_img_bgr, final_img_mask], -1 )
return (final_img*255).astype(np.uint8)