mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-07-06 04:52:13 -07:00
fixed mask editor
added FacesetEnhancer 4.2.other) data_src util faceset enhance best GPU.bat 4.2.other) data_src util faceset enhance multi GPU.bat FacesetEnhancer greatly increases details in your source face set, same as Gigapixel enhancer, but in fully automatic mode. In OpenCL build it works on CPU only. Please consider a donation.
This commit is contained in:
parent
3be223a265
commit
d46fb5cfd3
6 changed files with 476 additions and 6 deletions
BIN
facelib/FaceEnhancer.h5
Normal file
BIN
facelib/FaceEnhancer.h5
Normal file
Binary file not shown.
154
facelib/FaceEnhancer.py
Normal file
154
facelib/FaceEnhancer.py
Normal file
|
@ -0,0 +1,154 @@
|
|||
import operator
|
||||
from pathlib import Path
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
|
||||
|
||||
|
||||
class FaceEnhancer(object):
|
||||
"""
|
||||
x4 face enhancer
|
||||
"""
|
||||
def __init__(self):
|
||||
from nnlib import nnlib
|
||||
exec( nnlib.import_all(), locals(), globals() )
|
||||
|
||||
model_path = Path(__file__).parent / "FaceEnhancer.h5"
|
||||
if not model_path.exists():
|
||||
return
|
||||
|
||||
bgr_inp = Input ( (192,192,3) )
|
||||
t_param_inp = Input ( (1,) )
|
||||
t_param1_inp = Input ( (1,) )
|
||||
x = Conv2D (64, 3, strides=1, padding='same' )(bgr_inp)
|
||||
|
||||
a = Dense (64, use_bias=False) ( t_param_inp )
|
||||
a = Reshape( (1,1,64) )(a)
|
||||
b = Dense (64, use_bias=False ) ( t_param1_inp )
|
||||
b = Reshape( (1,1,64) )(b)
|
||||
x = Add()([x,a,b])
|
||||
|
||||
x = LeakyReLU(0.1)(x)
|
||||
|
||||
x = LeakyReLU(0.1)(Conv2D (64, 3, strides=1, padding='same' )(x))
|
||||
x = e0 = LeakyReLU(0.1)(Conv2D (64, 3, strides=1, padding='same')(x))
|
||||
|
||||
x = AveragePooling2D()(x)
|
||||
x = LeakyReLU(0.1)(Conv2D (112, 3, strides=1, padding='same')(x))
|
||||
x = e1 = LeakyReLU(0.1)(Conv2D (112, 3, strides=1, padding='same')(x))
|
||||
|
||||
x = AveragePooling2D()(x)
|
||||
x = LeakyReLU(0.1)(Conv2D (192, 3, strides=1, padding='same')(x))
|
||||
x = e2 = LeakyReLU(0.1)(Conv2D (192, 3, strides=1, padding='same')(x))
|
||||
|
||||
x = AveragePooling2D()(x)
|
||||
x = LeakyReLU(0.1)(Conv2D (336, 3, strides=1, padding='same')(x))
|
||||
x = e3 = LeakyReLU(0.1)(Conv2D (336, 3, strides=1, padding='same')(x))
|
||||
|
||||
x = AveragePooling2D()(x)
|
||||
x = LeakyReLU(0.1)(Conv2D (512, 3, strides=1, padding='same')(x))
|
||||
x = e4 = LeakyReLU(0.1)(Conv2D (512, 3, strides=1, padding='same')(x))
|
||||
|
||||
x = AveragePooling2D()(x)
|
||||
x = LeakyReLU(0.1)(Conv2D (512, 3, strides=1, padding='same')(x))
|
||||
x = LeakyReLU(0.1)(Conv2D (512, 3, strides=1, padding='same')(x))
|
||||
x = LeakyReLU(0.1)(Conv2D (512, 3, strides=1, padding='same')(x))
|
||||
x = LeakyReLU(0.1)(Conv2D (512, 3, strides=1, padding='same')(x))
|
||||
|
||||
x = Concatenate()([ BilinearInterpolation()(x), e4 ])
|
||||
|
||||
x = LeakyReLU(0.1)(Conv2D (512, 3, strides=1, padding='same')(x))
|
||||
x = LeakyReLU(0.1)(Conv2D (512, 3, strides=1, padding='same')(x))
|
||||
|
||||
x = Concatenate()([ BilinearInterpolation()(x), e3 ])
|
||||
x = LeakyReLU(0.1)(Conv2D (512, 3, strides=1, padding='same')(x))
|
||||
x = LeakyReLU(0.1)(Conv2D (512, 3, strides=1, padding='same')(x))
|
||||
|
||||
x = Concatenate()([ BilinearInterpolation()(x), e2 ])
|
||||
x = LeakyReLU(0.1)(Conv2D (288, 3, strides=1, padding='same')(x))
|
||||
x = LeakyReLU(0.1)(Conv2D (288, 3, strides=1, padding='same')(x))
|
||||
|
||||
x = Concatenate()([ BilinearInterpolation()(x), e1 ])
|
||||
x = LeakyReLU(0.1)(Conv2D (160, 3, strides=1, padding='same')(x))
|
||||
x = LeakyReLU(0.1)(Conv2D (160, 3, strides=1, padding='same')(x))
|
||||
|
||||
x = Concatenate()([ BilinearInterpolation()(x), e0 ])
|
||||
x = LeakyReLU(0.1)(Conv2D (96, 3, strides=1, padding='same')(x))
|
||||
x = d0 = LeakyReLU(0.1)(Conv2D (96, 3, strides=1, padding='same')(x))
|
||||
|
||||
x = LeakyReLU(0.1)(Conv2D (48, 3, strides=1, padding='same')(x))
|
||||
|
||||
x = Conv2D (3, 3, strides=1, padding='same', activation='tanh')(x)
|
||||
out1x = Add()([bgr_inp, x])
|
||||
|
||||
x = d0
|
||||
x = LeakyReLU(0.1)(Conv2D (96, 3, strides=1, padding='same')(x))
|
||||
x = LeakyReLU(0.1)(Conv2D (96, 3, strides=1, padding='same')(x))
|
||||
x = d2x = BilinearInterpolation()(x)
|
||||
|
||||
x = LeakyReLU(0.1)(Conv2D (48, 3, strides=1, padding='same')(x))
|
||||
x = Conv2D (3, 3, strides=1, padding='same', activation='tanh')(x)
|
||||
|
||||
out2x = Add()([BilinearInterpolation()(out1x), x])
|
||||
|
||||
x = d2x
|
||||
x = LeakyReLU(0.1)(Conv2D (72, 3, strides=1, padding='same')(x))
|
||||
x = LeakyReLU(0.1)(Conv2D (72, 3, strides=1, padding='same')(x))
|
||||
x = d4x = BilinearInterpolation()(x)
|
||||
|
||||
x = LeakyReLU(0.1)(Conv2D (36, 3, strides=1, padding='same')(x))
|
||||
x = Conv2D (3, 3, strides=1, padding='same', activation='tanh')(x)
|
||||
out4x = Add()([BilinearInterpolation()(out2x), x ])
|
||||
|
||||
self.model = keras.models.Model ( [bgr_inp,t_param_inp,t_param1_inp], [out4x] )
|
||||
self.model.load_weights (str(model_path))
|
||||
|
||||
|
||||
def enhance (self, inp_img, is_tanh=False, preserve_size=True):
|
||||
if not is_tanh:
|
||||
inp_img = np.clip( inp_img * 2 -1, -1, 1 )
|
||||
|
||||
param = np.array([0.2])
|
||||
param1 = np.array([1.0])
|
||||
up_res = 4
|
||||
patch_size = 192
|
||||
patch_size_half = patch_size // 2
|
||||
|
||||
h,w,c = inp_img.shape
|
||||
|
||||
i_max = w-patch_size+1
|
||||
j_max = h-patch_size+1
|
||||
|
||||
final_img = np.zeros ( (h*up_res,w*up_res,c), dtype=np.float32 )
|
||||
final_img_div = np.zeros ( (h*up_res,w*up_res,1), dtype=np.float32 )
|
||||
|
||||
x = np.concatenate ( [ np.linspace (0,1,patch_size_half*up_res), np.linspace (1,0,patch_size_half*up_res) ] )
|
||||
x,y = np.meshgrid(x,x)
|
||||
patch_mask = (x*y)[...,None]
|
||||
|
||||
j=0
|
||||
while j < j_max:
|
||||
i = 0
|
||||
while i < i_max:
|
||||
patch_img = inp_img[j:j+patch_size, i:i+patch_size,:]
|
||||
x = self.model.predict( [ patch_img[None,...], param, param1 ] )[0]
|
||||
final_img [j*up_res:(j+patch_size)*up_res, i*up_res:(i+patch_size)*up_res,:] += x*patch_mask
|
||||
final_img_div[j*up_res:(j+patch_size)*up_res, i*up_res:(i+patch_size)*up_res,:] += patch_mask
|
||||
if i == i_max-1:
|
||||
break
|
||||
i = min( i+patch_size_half, i_max-1)
|
||||
if j == j_max-1:
|
||||
break
|
||||
j = min( j+patch_size_half, j_max-1)
|
||||
|
||||
final_img_div[final_img_div==0] = 1.0
|
||||
final_img /= final_img_div
|
||||
|
||||
if preserve_size:
|
||||
final_img = cv2.resize (final_img, (w,h), cv2.INTER_LANCZOS4)
|
||||
|
||||
if not is_tanh:
|
||||
final_img = np.clip( final_img/2+0.5, 0, 1 )
|
||||
|
||||
return final_img
|
|
@ -4,3 +4,4 @@ from .MTCExtractor import MTCExtractor
|
|||
from .S3FDExtractor import S3FDExtractor
|
||||
from .FANExtractor import FANExtractor
|
||||
from .PoseEstimator import PoseEstimator
|
||||
from .FaceEnhancer import FaceEnhancer
|
18
main.py
18
main.py
|
@ -286,6 +286,21 @@ if __name__ == "__main__":
|
|||
|
||||
p.set_defaults(func=process_labelingtool_edit_mask)
|
||||
|
||||
facesettool_parser = subparsers.add_parser( "facesettool", help="Faceset tools.").add_subparsers()
|
||||
|
||||
def process_faceset_enhancer(arguments):
|
||||
os_utils.set_process_lowest_prio()
|
||||
from mainscripts import FacesetEnhancer
|
||||
FacesetEnhancer.process_folder ( Path(arguments.input_dir), multi_gpu=arguments.multi_gpu, cpu_only=arguments.cpu_only )
|
||||
|
||||
p = facesettool_parser.add_parser ("enhance", help="Enhance details in DFL faceset.")
|
||||
p.add_argument('--input-dir', required=True, action=fixPathAction, dest="input_dir", help="Input directory of aligned faces.")
|
||||
p.add_argument('--multi-gpu', action="store_true", dest="multi_gpu", default=False, help="Enables multi GPU.")
|
||||
p.add_argument('--cpu-only', action="store_true", dest="cpu_only", default=False, help="Process on CPU.")
|
||||
|
||||
p.set_defaults(func=process_faceset_enhancer)
|
||||
|
||||
"""
|
||||
def process_relight_faceset(arguments):
|
||||
os_utils.set_process_lowest_prio()
|
||||
from mainscripts import FacesetRelighter
|
||||
|
@ -296,8 +311,6 @@ if __name__ == "__main__":
|
|||
from mainscripts import FacesetRelighter
|
||||
FacesetRelighter.delete_relighted (arguments.input_dir)
|
||||
|
||||
facesettool_parser = subparsers.add_parser( "facesettool", help="Faceset tools.").add_subparsers()
|
||||
|
||||
p = facesettool_parser.add_parser ("relight", help="Synthesize new faces from existing ones by relighting them. With the relighted faces neural network will better reproduce face shadows.")
|
||||
p.add_argument('--input-dir', required=True, action=fixPathAction, dest="input_dir", help="Input directory of aligned faces.")
|
||||
p.add_argument('--lighten', action="store_true", dest="lighten", default=None, help="Lighten the faces.")
|
||||
|
@ -307,6 +320,7 @@ if __name__ == "__main__":
|
|||
p = facesettool_parser.add_parser ("delete_relighted", help="Delete relighted faces.")
|
||||
p.add_argument('--input-dir', required=True, action=fixPathAction, dest="input_dir", help="Input directory of aligned faces.")
|
||||
p.set_defaults(func=process_delete_relighted)
|
||||
"""
|
||||
|
||||
def bad_args(arguments):
|
||||
parser.print_help()
|
||||
|
|
163
mainscripts/FacesetEnhancer.py
Normal file
163
mainscripts/FacesetEnhancer.py
Normal file
|
@ -0,0 +1,163 @@
|
|||
import multiprocessing
|
||||
import shutil
|
||||
|
||||
from DFLIMG import *
|
||||
from interact import interact as io
|
||||
from joblib import Subprocessor
|
||||
from nnlib import nnlib
|
||||
from utils import Path_utils
|
||||
from utils.cv2_utils import *
|
||||
|
||||
|
||||
class FacesetEnhancerSubprocessor(Subprocessor):
|
||||
|
||||
#override
|
||||
def __init__(self, image_paths, output_dirpath, multi_gpu=False, cpu_only=False):
|
||||
self.image_paths = image_paths
|
||||
self.output_dirpath = output_dirpath
|
||||
self.result = []
|
||||
self.devices = FacesetEnhancerSubprocessor.get_devices_for_config(multi_gpu, cpu_only)
|
||||
|
||||
super().__init__('FacesetEnhancer', FacesetEnhancerSubprocessor.Cli, 600)
|
||||
|
||||
#override
|
||||
def on_clients_initialized(self):
|
||||
io.progress_bar (None, len (self.image_paths))
|
||||
|
||||
#override
|
||||
def on_clients_finalized(self):
|
||||
io.progress_bar_close()
|
||||
|
||||
#override
|
||||
def process_info_generator(self):
|
||||
base_dict = {'output_dirpath':self.output_dirpath}
|
||||
|
||||
for (device_idx, device_type, device_name, device_total_vram_gb) in self.devices:
|
||||
client_dict = base_dict.copy()
|
||||
client_dict['device_idx'] = device_idx
|
||||
client_dict['device_name'] = device_name
|
||||
client_dict['device_type'] = device_type
|
||||
yield client_dict['device_name'], {}, client_dict
|
||||
|
||||
#override
|
||||
def get_data(self, host_dict):
|
||||
if len (self.image_paths) > 0:
|
||||
return self.image_paths.pop(0)
|
||||
|
||||
#override
|
||||
def on_data_return (self, host_dict, data):
|
||||
self.image_paths.insert(0, data)
|
||||
|
||||
#override
|
||||
def on_result (self, host_dict, data, result):
|
||||
io.progress_bar_inc(1)
|
||||
if result[0] == 1:
|
||||
self.result +=[ (result[1], result[2]) ]
|
||||
|
||||
#override
|
||||
def get_result(self):
|
||||
return self.result
|
||||
|
||||
@staticmethod
|
||||
def get_devices_for_config (multi_gpu, cpu_only):
|
||||
backend = nnlib.device.backend
|
||||
if 'cpu' in backend:
|
||||
cpu_only = True
|
||||
|
||||
if not cpu_only and backend == "plaidML":
|
||||
cpu_only = True
|
||||
|
||||
if not cpu_only:
|
||||
devices = []
|
||||
if multi_gpu:
|
||||
devices = nnlib.device.getValidDevicesWithAtLeastTotalMemoryGB(2)
|
||||
|
||||
if len(devices) == 0:
|
||||
idx = nnlib.device.getBestValidDeviceIdx()
|
||||
if idx != -1:
|
||||
devices = [idx]
|
||||
|
||||
if len(devices) == 0:
|
||||
cpu_only = True
|
||||
|
||||
result = []
|
||||
for idx in devices:
|
||||
dev_name = nnlib.device.getDeviceName(idx)
|
||||
dev_vram = nnlib.device.getDeviceVRAMTotalGb(idx)
|
||||
|
||||
result += [ (idx, 'GPU', dev_name, dev_vram) ]
|
||||
|
||||
return result
|
||||
|
||||
if cpu_only:
|
||||
return [ (i, 'CPU', 'CPU%d' % (i), 0 ) for i in range( min(8, multiprocessing.cpu_count() // 2) ) ]
|
||||
|
||||
class Cli(Subprocessor.Cli):
|
||||
|
||||
#override
|
||||
def on_initialize(self, client_dict):
|
||||
device_idx = client_dict['device_idx']
|
||||
cpu_only = client_dict['device_type'] == 'CPU'
|
||||
self.output_dirpath = client_dict['output_dirpath']
|
||||
|
||||
device_config = nnlib.DeviceConfig ( cpu_only=cpu_only, force_gpu_idx=device_idx, allow_growth=True)
|
||||
nnlib.import_all (device_config)
|
||||
|
||||
device_vram = device_config.gpu_vram_gb[0]
|
||||
|
||||
intro_str = 'Running on %s.' % (client_dict['device_name'])
|
||||
if not cpu_only and device_vram <= 2:
|
||||
intro_str += " Recommended to close all programs using this device."
|
||||
|
||||
self.log_info (intro_str)
|
||||
|
||||
from facelib import FaceEnhancer
|
||||
self.fe = FaceEnhancer()
|
||||
|
||||
#override
|
||||
def process_data(self, filepath):
|
||||
try:
|
||||
dflimg = DFLIMG.load (filepath)
|
||||
if dflimg is None:
|
||||
self.log_err ("%s is not a dfl image file" % (filepath.name) )
|
||||
else:
|
||||
img = cv2_imread(filepath).astype(np.float32) / 255.0
|
||||
|
||||
img = self.fe.enhance(img)
|
||||
|
||||
img = np.clip (img*255, 0, 255).astype(np.uint8)
|
||||
|
||||
output_filepath = self.output_dirpath / filepath.name
|
||||
|
||||
cv2_imwrite ( str(output_filepath), img, [int(cv2.IMWRITE_JPEG_QUALITY), 100] )
|
||||
dflimg.embed_and_set ( str(output_filepath) )
|
||||
return (1, filepath, output_filepath)
|
||||
except:
|
||||
self.log_err (f"Exception occured while processing file {filepath}. Error: {traceback.format_exc()}")
|
||||
|
||||
return (0, filepath, None)
|
||||
|
||||
def process_folder ( dirpath, multi_gpu=False, cpu_only=False ):
|
||||
output_dirpath = dirpath.parent / (dirpath.name + '_enhanced')
|
||||
output_dirpath.mkdir (exist_ok=True, parents=True)
|
||||
|
||||
dirpath_parts = '/'.join( dirpath.parts[-2:])
|
||||
output_dirpath_parts = '/'.join( output_dirpath.parts[-2:] )
|
||||
io.log_info (f"Enhancing faceset in {dirpath_parts}.")
|
||||
io.log_info ( f"Processing to {output_dirpath_parts}.")
|
||||
|
||||
output_images_paths = Path_utils.get_image_paths(output_dirpath)
|
||||
if len(output_images_paths) > 0:
|
||||
for filename in output_images_paths:
|
||||
Path(filename).unlink()
|
||||
|
||||
image_paths = [Path(x) for x in Path_utils.get_image_paths( dirpath )]
|
||||
result = FacesetEnhancerSubprocessor ( image_paths, output_dirpath, multi_gpu=multi_gpu, cpu_only=cpu_only).run()
|
||||
|
||||
io.log_info (f"Copying processed files to {dirpath_parts}.")
|
||||
|
||||
for (filepath, output_filepath) in result:
|
||||
shutil.copy (output_filepath, filepath)
|
||||
|
||||
io.log_info (f"Removing {output_dirpath_parts}.")
|
||||
shutil.rmtree(output_dirpath)
|
138
nnlib/nnlib.py
138
nnlib/nnlib.py
|
@ -28,6 +28,7 @@ class nnlib(object):
|
|||
|
||||
tf = None
|
||||
tf_sess = None
|
||||
tf_sess_config = None
|
||||
|
||||
PML = None
|
||||
PMLK = None
|
||||
|
@ -105,6 +106,7 @@ PixelShuffler = nnlib.PixelShuffler
|
|||
SubpixelUpscaler = nnlib.SubpixelUpscaler
|
||||
SubpixelDownscaler = nnlib.SubpixelDownscaler
|
||||
Scale = nnlib.Scale
|
||||
BilinearInterpolation = nnlib.BilinearInterpolation
|
||||
BlurPool = nnlib.BlurPool
|
||||
FUNITAdain = nnlib.FUNITAdain
|
||||
SelfAttention = nnlib.SelfAttention
|
||||
|
@ -192,6 +194,7 @@ NLayerDiscriminator = nnlib.NLayerDiscriminator
|
|||
|
||||
config.gpu_options.force_gpu_compatible = True
|
||||
config.gpu_options.allow_growth = device_config.allow_growth
|
||||
nnlib.tf_sess_config = config
|
||||
|
||||
nnlib.tf_sess = tf.Session(config=config)
|
||||
|
||||
|
@ -711,6 +714,141 @@ NLayerDiscriminator = nnlib.NLayerDiscriminator
|
|||
return dict(list(base_config.items()) + list(config.items()))
|
||||
nnlib.Scale = Scale
|
||||
|
||||
|
||||
"""
|
||||
unable to work in plaidML, due to unimplemented ops
|
||||
|
||||
class BilinearInterpolation(KL.Layer):
|
||||
def __init__(self, size=(2,2), **kwargs):
|
||||
self.size = size
|
||||
super(BilinearInterpolation, self).__init__(**kwargs)
|
||||
|
||||
def compute_output_shape(self, input_shape):
|
||||
return (input_shape[0], input_shape[1]*self.size[1], input_shape[2]*self.size[0], input_shape[3])
|
||||
|
||||
|
||||
def call(self, X):
|
||||
_,h,w,_ = K.int_shape(X)
|
||||
|
||||
X = K.concatenate( [ X, X[:,:,-2:-1,:] ],axis=2 )
|
||||
X = K.concatenate( [ X, X[:,:,-2:-1,:] ],axis=2 )
|
||||
X = K.concatenate( [ X, X[:,-2:-1,:,:] ],axis=1 )
|
||||
X = K.concatenate( [ X, X[:,-2:-1,:,:] ],axis=1 )
|
||||
|
||||
X_sh = K.shape(X)
|
||||
batch_size, height, width, num_channels = X_sh[0], X_sh[1], X_sh[2], X_sh[3]
|
||||
|
||||
output_h, output_w = (h*self.size[1]+4, w*self.size[0]+4)
|
||||
|
||||
x_linspace = np.linspace(-1. , 1. - 2/output_w, output_w)#
|
||||
y_linspace = np.linspace(-1. , 1. - 2/output_h, output_h)#
|
||||
|
||||
x_coordinates, y_coordinates = np.meshgrid(x_linspace, y_linspace)
|
||||
x_coordinates = K.flatten(K.constant(x_coordinates, dtype=K.floatx() ))
|
||||
y_coordinates = K.flatten(K.constant(y_coordinates, dtype=K.floatx() ))
|
||||
|
||||
grid = K.concatenate([x_coordinates, y_coordinates, K.ones_like(x_coordinates)], 0)
|
||||
grid = K.flatten(grid)
|
||||
|
||||
|
||||
grids = K.tile(grid, ( batch_size, ) )
|
||||
grids = K.reshape(grids, (batch_size, 3, output_h * output_w ))
|
||||
|
||||
|
||||
x = K.cast(K.flatten(grids[:, 0:1, :]), dtype='float32')
|
||||
y = K.cast(K.flatten(grids[:, 1:2, :]), dtype='float32')
|
||||
x = .5 * (x + 1.0) * K.cast(width, dtype='float32')
|
||||
y = .5 * (y + 1.0) * K.cast(height, dtype='float32')
|
||||
x0 = K.cast(x, 'int32')
|
||||
x1 = x0 + 1
|
||||
y0 = K.cast(y, 'int32')
|
||||
y1 = y0 + 1
|
||||
max_x = int(K.int_shape(X)[2] -1)
|
||||
max_y = int(K.int_shape(X)[1] -1)
|
||||
|
||||
x0 = K.clip(x0, 0, max_x)
|
||||
x1 = K.clip(x1, 0, max_x)
|
||||
y0 = K.clip(y0, 0, max_y)
|
||||
y1 = K.clip(y1, 0, max_y)
|
||||
|
||||
|
||||
pixels_batch = K.constant ( np.arange(0, batch_size) * (height * width), dtype=K.floatx() )
|
||||
|
||||
pixels_batch = K.expand_dims(pixels_batch, axis=-1)
|
||||
|
||||
base = K.tile(pixels_batch, (1, output_h * output_w ) )
|
||||
base = K.flatten(base)
|
||||
|
||||
# base_y0 = base + (y0 * width)
|
||||
base_y0 = y0 * width
|
||||
base_y0 = base + base_y0
|
||||
# base_y1 = base + (y1 * width)
|
||||
base_y1 = y1 * width
|
||||
base_y1 = base_y1 + base
|
||||
|
||||
indices_a = base_y0 + x0
|
||||
indices_b = base_y1 + x0
|
||||
indices_c = base_y0 + x1
|
||||
indices_d = base_y1 + x1
|
||||
|
||||
flat_image = K.reshape(X, (-1, num_channels) )
|
||||
flat_image = K.cast(flat_image, dtype='float32')
|
||||
pixel_values_a = K.gather(flat_image, indices_a)
|
||||
pixel_values_b = K.gather(flat_image, indices_b)
|
||||
pixel_values_c = K.gather(flat_image, indices_c)
|
||||
pixel_values_d = K.gather(flat_image, indices_d)
|
||||
|
||||
x0 = K.cast(x0, 'float32')
|
||||
x1 = K.cast(x1, 'float32')
|
||||
y0 = K.cast(y0, 'float32')
|
||||
y1 = K.cast(y1, 'float32')
|
||||
|
||||
area_a = K.expand_dims(((x1 - x) * (y1 - y)), 1)
|
||||
area_b = K.expand_dims(((x1 - x) * (y - y0)), 1)
|
||||
area_c = K.expand_dims(((x - x0) * (y1 - y)), 1)
|
||||
area_d = K.expand_dims(((x - x0) * (y - y0)), 1)
|
||||
|
||||
values_a = area_a * pixel_values_a
|
||||
values_b = area_b * pixel_values_b
|
||||
values_c = area_c * pixel_values_c
|
||||
values_d = area_d * pixel_values_d
|
||||
interpolated_image = values_a + values_b + values_c + values_d
|
||||
|
||||
new_shape = (batch_size, output_h, output_w, num_channels)
|
||||
interpolated_image = K.reshape(interpolated_image, new_shape)
|
||||
|
||||
interpolated_image = interpolated_image[:,:-4,:-4,:]
|
||||
return interpolated_image
|
||||
|
||||
def get_config(self):
|
||||
config = {"size": self.size}
|
||||
base_config = super(BilinearInterpolation, self).get_config()
|
||||
return dict(list(base_config.items()) + list(config.items()))
|
||||
"""
|
||||
class BilinearInterpolation(KL.Layer):
|
||||
def __init__(self, size=(2,2), **kwargs):
|
||||
self.size = size
|
||||
super(BilinearInterpolation, self).__init__(**kwargs)
|
||||
|
||||
def compute_output_shape(self, input_shape):
|
||||
return (input_shape[0], input_shape[1]*self.size[1], input_shape[2]*self.size[0], input_shape[3])
|
||||
|
||||
def call(self, X):
|
||||
_,h,w,_ = K.int_shape(X)
|
||||
|
||||
return K.cast( K.tf.image.resize_images(X, (h*self.size[1],w*self.size[0]) ), K.floatx() )
|
||||
|
||||
def get_config(self):
|
||||
config = {"size": self.size}
|
||||
base_config = super(BilinearInterpolation, self).get_config()
|
||||
return dict(list(base_config.items()) + list(config.items()))
|
||||
|
||||
nnlib.BilinearInterpolation = BilinearInterpolation
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
class SelfAttention(KL.Layer):
|
||||
def __init__(self, nc, squeeze_factor=8, **kwargs):
|
||||
assert nc//squeeze_factor > 0, f"Input channels must be >= {squeeze_factor}, recieved nc={nc}"
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue