DeepFaceLab/mainscripts/FacesetEnhancer.py
Colombo d46fb5cfd3 fixed mask editor
added FacesetEnhancer
4.2.other) data_src util faceset enhance best GPU.bat
4.2.other) data_src util faceset enhance multi GPU.bat

FacesetEnhancer greatly increases details in your source face set,
same as Gigapixel enhancer, but in fully automatic mode.
In OpenCL build it works on CPU only.

Please consider a donation.
2019-12-26 21:27:10 +04:00

163 lines
5.8 KiB
Python

import multiprocessing
import shutil
from DFLIMG import *
from interact import interact as io
from joblib import Subprocessor
from nnlib import nnlib
from utils import Path_utils
from utils.cv2_utils import *
class FacesetEnhancerSubprocessor(Subprocessor):
#override
def __init__(self, image_paths, output_dirpath, multi_gpu=False, cpu_only=False):
self.image_paths = image_paths
self.output_dirpath = output_dirpath
self.result = []
self.devices = FacesetEnhancerSubprocessor.get_devices_for_config(multi_gpu, cpu_only)
super().__init__('FacesetEnhancer', FacesetEnhancerSubprocessor.Cli, 600)
#override
def on_clients_initialized(self):
io.progress_bar (None, len (self.image_paths))
#override
def on_clients_finalized(self):
io.progress_bar_close()
#override
def process_info_generator(self):
base_dict = {'output_dirpath':self.output_dirpath}
for (device_idx, device_type, device_name, device_total_vram_gb) in self.devices:
client_dict = base_dict.copy()
client_dict['device_idx'] = device_idx
client_dict['device_name'] = device_name
client_dict['device_type'] = device_type
yield client_dict['device_name'], {}, client_dict
#override
def get_data(self, host_dict):
if len (self.image_paths) > 0:
return self.image_paths.pop(0)
#override
def on_data_return (self, host_dict, data):
self.image_paths.insert(0, data)
#override
def on_result (self, host_dict, data, result):
io.progress_bar_inc(1)
if result[0] == 1:
self.result +=[ (result[1], result[2]) ]
#override
def get_result(self):
return self.result
@staticmethod
def get_devices_for_config (multi_gpu, cpu_only):
backend = nnlib.device.backend
if 'cpu' in backend:
cpu_only = True
if not cpu_only and backend == "plaidML":
cpu_only = True
if not cpu_only:
devices = []
if multi_gpu:
devices = nnlib.device.getValidDevicesWithAtLeastTotalMemoryGB(2)
if len(devices) == 0:
idx = nnlib.device.getBestValidDeviceIdx()
if idx != -1:
devices = [idx]
if len(devices) == 0:
cpu_only = True
result = []
for idx in devices:
dev_name = nnlib.device.getDeviceName(idx)
dev_vram = nnlib.device.getDeviceVRAMTotalGb(idx)
result += [ (idx, 'GPU', dev_name, dev_vram) ]
return result
if cpu_only:
return [ (i, 'CPU', 'CPU%d' % (i), 0 ) for i in range( min(8, multiprocessing.cpu_count() // 2) ) ]
class Cli(Subprocessor.Cli):
#override
def on_initialize(self, client_dict):
device_idx = client_dict['device_idx']
cpu_only = client_dict['device_type'] == 'CPU'
self.output_dirpath = client_dict['output_dirpath']
device_config = nnlib.DeviceConfig ( cpu_only=cpu_only, force_gpu_idx=device_idx, allow_growth=True)
nnlib.import_all (device_config)
device_vram = device_config.gpu_vram_gb[0]
intro_str = 'Running on %s.' % (client_dict['device_name'])
if not cpu_only and device_vram <= 2:
intro_str += " Recommended to close all programs using this device."
self.log_info (intro_str)
from facelib import FaceEnhancer
self.fe = FaceEnhancer()
#override
def process_data(self, filepath):
try:
dflimg = DFLIMG.load (filepath)
if dflimg is None:
self.log_err ("%s is not a dfl image file" % (filepath.name) )
else:
img = cv2_imread(filepath).astype(np.float32) / 255.0
img = self.fe.enhance(img)
img = np.clip (img*255, 0, 255).astype(np.uint8)
output_filepath = self.output_dirpath / filepath.name
cv2_imwrite ( str(output_filepath), img, [int(cv2.IMWRITE_JPEG_QUALITY), 100] )
dflimg.embed_and_set ( str(output_filepath) )
return (1, filepath, output_filepath)
except:
self.log_err (f"Exception occured while processing file {filepath}. Error: {traceback.format_exc()}")
return (0, filepath, None)
def process_folder ( dirpath, multi_gpu=False, cpu_only=False ):
output_dirpath = dirpath.parent / (dirpath.name + '_enhanced')
output_dirpath.mkdir (exist_ok=True, parents=True)
dirpath_parts = '/'.join( dirpath.parts[-2:])
output_dirpath_parts = '/'.join( output_dirpath.parts[-2:] )
io.log_info (f"Enhancing faceset in {dirpath_parts}.")
io.log_info ( f"Processing to {output_dirpath_parts}.")
output_images_paths = Path_utils.get_image_paths(output_dirpath)
if len(output_images_paths) > 0:
for filename in output_images_paths:
Path(filename).unlink()
image_paths = [Path(x) for x in Path_utils.get_image_paths( dirpath )]
result = FacesetEnhancerSubprocessor ( image_paths, output_dirpath, multi_gpu=multi_gpu, cpu_only=cpu_only).run()
io.log_info (f"Copying processed files to {dirpath_parts}.")
for (filepath, output_filepath) in result:
shutil.copy (output_filepath, filepath)
io.log_info (f"Removing {output_dirpath_parts}.")
shutil.rmtree(output_dirpath)