Merge pull request #1 from iperov/master

Merge Upstream Changes
This commit is contained in:
Krzysztof Brzęczyszczykiewicz 2020-02-24 16:18:37 +07:00 committed by GitHub
commit c01b528d1e
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
28 changed files with 472 additions and 215 deletions

View file

@ -18,8 +18,11 @@ More than 95% of deepfake videos are created with DeepFaceLab.
DeepFaceLab is used by such popular youtube channels as
|![](doc/youtube_icon.png) [Ctrl Shift Face](https://www.youtube.com/channel/UCKpH0CKltc73e4wh0_pgL3g)|![](doc/youtube_icon.png) [Sham00k](https://www.youtube.com/channel/UCZXbWcv7fSZFTAZV4beckyw/videos)|![](doc/youtube_icon.png) [Collider videos](https://www.youtube.com/watch?v=A91P2qtPT54&list=PLayt6616lBclvOprvrC8qKGCO-mAhPRux)|![](doc/youtube_icon.png) [iFake](https://www.youtube.com/channel/UCC0lK2Zo2BMXX-k1Ks0r7dg/videos)|![](doc/youtube_icon.png) [VFXChris Ume](https://www.youtube.com/channel/UCGf4OlX_aTt8DlrgiH3jN3g/videos)|
|---|---|---|---|---|
|![](doc/youtube_icon.png) [Ctrl Shift Face](https://www.youtube.com/channel/UCKpH0CKltc73e4wh0_pgL3g)|![](doc/youtube_icon.png) [VFXChris Ume](https://www.youtube.com/channel/UCGf4OlX_aTt8DlrgiH3jN3g/videos)|
|---|---|
|![](doc/youtube_icon.png) [Sham00k](https://www.youtube.com/channel/UCZXbWcv7fSZFTAZV4beckyw/videos)|![](doc/youtube_icon.png) [Collider videos](https://www.youtube.com/watch?v=A91P2qtPT54&list=PLayt6616lBclvOprvrC8qKGCO-mAhPRux)|![](doc/youtube_icon.png) [iFake](https://www.youtube.com/channel/UCC0lK2Zo2BMXX-k1Ks0r7dg/videos)|
|---|---|---|
</td></tr>
<tr><td align="center" width="9999">
@ -97,7 +100,7 @@ deepfake quality progress
</td></tr>
<tr><td align="center" width="9999">
<sub>#deepfacelab #deepfakes #faceswap #face-swap #deep-learning #deeplearning #deep-neural-networks #deepface #deep-face-swap #fakeapp #fake-app #neural-networks #neural-nets</sub>
<sub>#deepfacelab #deepfakes #faceswap #face-swap #deep-learning #deeplearning #deep-neural-networks #deepface #deep-face-swap #fakeapp #fake-app #neural-networks #neural-nets #tensorflow #cuda #nvidia</sub>
</td></tr>
</table>

View file

@ -366,8 +366,8 @@ def color_hist_match(src_im, tar_im, hist_match_threshold=255):
return matched
def color_transfer_mix(img_src,img_trg):
img_src = (img_src*255.0).astype(np.uint8)
img_trg = (img_trg*255.0).astype(np.uint8)
img_src = np.clip(img_src*255.0, 0, 255).astype(np.uint8)
img_trg = np.clip(img_trg*255.0, 0, 255).astype(np.uint8)
img_src_lab = cv2.cvtColor(img_src, cv2.COLOR_BGR2LAB)
img_trg_lab = cv2.cvtColor(img_trg, cv2.COLOR_BGR2LAB)

View file

@ -47,11 +47,11 @@ def gen_warp_params (source, flip, rotation_range=[-10,10], scale_range=[-0.5, 0
return params
def warp_by_params (params, img, can_warp, can_transform, can_flip, border_replicate):
def warp_by_params (params, img, can_warp, can_transform, can_flip, border_replicate, cv2_inter=cv2.INTER_CUBIC):
if can_warp:
img = cv2.remap(img, params['mapx'], params['mapy'], cv2.INTER_CUBIC )
img = cv2.remap(img, params['mapx'], params['mapy'], cv2_inter )
if can_transform:
img = cv2.warpAffine( img, params['rmat'], (params['w'], params['w']), borderMode=(cv2.BORDER_REPLICATE if border_replicate else cv2.BORDER_CONSTANT), flags=cv2.INTER_CUBIC )
img = cv2.warpAffine( img, params['rmat'], (params['w'], params['w']), borderMode=(cv2.BORDER_REPLICATE if border_replicate else cv2.BORDER_CONSTANT), flags=cv2_inter )
if len(img.shape) == 2:
img = img[...,None]
if can_flip and params['flip']:

View file

@ -1,7 +1,28 @@
import queue as Queue
import multiprocessing
import queue as Queue
import threading
import time
class SubprocessGenerator(object):
@staticmethod
def launch_thread(generator):
generator._start()
@staticmethod
def start_in_parallel( generator_list ):
"""
Start list of generators in parallel
"""
for generator in generator_list:
thread = threading.Thread(target=SubprocessGenerator.launch_thread, args=(generator,) )
thread.daemon = True
thread.start()
while not all ([generator._is_started() for generator in generator_list]):
time.sleep(0.005)
def __init__(self, generator_func, user_param=None, prefetch=2, start_now=True):
super().__init__()
self.prefetch = prefetch
@ -17,9 +38,13 @@ class SubprocessGenerator(object):
if self.p == None:
user_param = self.user_param
self.user_param = None
self.p = multiprocessing.Process(target=self.process_func, args=(user_param,) )
self.p.daemon = True
self.p.start()
p = multiprocessing.Process(target=self.process_func, args=(user_param,) )
p.daemon = True
p.start()
self.p = p
def _is_started(self):
return self.p is not None
def process_func(self, user_param):
self.generator_func = self.generator_func(user_param)

View file

@ -289,7 +289,7 @@ class Subprocessor(object):
terminate_it = True
break
if self.no_response_time_sec != 0 and (time.time() - cli.sent_time) > self.no_response_time_sec:
if (time.time() - cli.sent_time) > 30:
terminate_it = True
if terminate_it:

View file

@ -318,7 +318,12 @@ def initialize_layers(nn):
class BlurPool(LayerBase):
def __init__(self, filt_size=3, stride=2, **kwargs ):
if nn.data_format == "NHWC":
self.strides = [1,stride,stride,1]
else:
self.strides = [1,1,stride,stride]
self.filt_size = filt_size
pad = [ int(1.*(filt_size-1)/2), int(np.ceil(1.*(filt_size-1)/2)) ]
@ -352,9 +357,9 @@ def initialize_layers(nn):
self.k = tf.constant (self.a, dtype=nn.tf_floatx )
def __call__(self, x):
k = tf.tile (self.k, (1,1,x.shape[-1],1) )
k = tf.tile (self.k, (1,1,x.shape[nn.conv2d_ch_axis],1) )
x = tf.pad(x, self.padding )
x = tf.nn.depthwise_conv2d(x, k, self.strides, 'VALID')
x = tf.nn.depthwise_conv2d(x, k, self.strides, 'VALID', data_format=nn.data_format)
return x
nn.BlurPool = BlurPool

View file

@ -243,15 +243,15 @@ def initialize_models(nn):
nn.ModelBase = ModelBase
class PatchDiscriminator(nn.ModelBase):
def on_build(self, patch_size, in_ch, base_ch=256, kernel_initializer=None):
def on_build(self, patch_size, in_ch, base_ch=256, conv_kernel_initializer=None):
prev_ch = in_ch
self.convs = []
for i, (kernel_size, strides) in enumerate(patch_discriminator_kernels[patch_size]):
cur_ch = base_ch * min( (2**i), 8 )
self.convs.append ( nn.Conv2D( prev_ch, cur_ch, kernel_size=kernel_size, strides=strides, padding='SAME', kernel_initializer=kernel_initializer) )
self.convs.append ( nn.Conv2D( prev_ch, cur_ch, kernel_size=kernel_size, strides=strides, padding='SAME', kernel_initializer=conv_kernel_initializer) )
prev_ch = cur_ch
self.out_conv = nn.Conv2D( prev_ch, 1, kernel_size=1, padding='VALID', kernel_initializer=kernel_initializer)
self.out_conv = nn.Conv2D( prev_ch, 1, kernel_size=1, padding='VALID', kernel_initializer=conv_kernel_initializer)
def forward(self, x):
for conv in self.convs:
@ -260,6 +260,31 @@ def initialize_models(nn):
nn.PatchDiscriminator = PatchDiscriminator
class IllumDiscriminator(nn.ModelBase):
def on_build(self, patch_size, in_ch, base_ch=256, conv_kernel_initializer=None):
prev_ch = in_ch
self.convs = []
for i, (kernel_size, strides) in enumerate(patch_discriminator_kernels[patch_size]):
cur_ch = base_ch * min( (2**i), 8 )
self.convs.append ( nn.Conv2D( prev_ch, cur_ch, kernel_size=kernel_size, strides=strides, padding='SAME', kernel_initializer=conv_kernel_initializer) )
prev_ch = cur_ch
self.out1 = nn.Conv2D( 1, 1024, kernel_size=1, strides=1, padding='SAME', kernel_initializer=conv_kernel_initializer)
self.out2 = nn.Conv2D( 1024, 1, kernel_size=1, strides=1, padding='SAME', kernel_initializer=conv_kernel_initializer)
def forward(self, x):
for conv in self.convs:
x = tf.nn.leaky_relu( conv(x), 0.1 )
x = tf.reduce_mean(x, axis=nn.conv2d_ch_axis, keep_dims=True)
x = self.out1(x)
x = tf.nn.leaky_relu(x, 0.1 )
x = self.out2(x)
return x
nn.IllumDiscriminator = IllumDiscriminator
patch_discriminator_kernels = \
{ 1 : [ [1,1] ],
@ -277,4 +302,8 @@ patch_discriminator_kernels = \
13 : [ [3,2], [4,2], [2,1] ],
14 : [ [4,2], [4,2], [2,1] ],
15 : [ [3,2], [3,2], [3,1] ],
16 : [ [4,2], [3,2], [3,1] ] }
16 : [ [4,2], [3,2], [3,1] ],
28 : [ [4,2], [3,2], [4,2], [2,1] ]
}

View file

@ -55,6 +55,7 @@ class nn():
tf_upsample2d = None
tf_upsample2d_bilinear = None
tf_flatten = None
tf_max_pool = None
tf_reshape_4D = None
tf_random_binomial = None
tf_gaussian_blur = None
@ -82,6 +83,7 @@ class nn():
# Models
PatchDiscriminator = None
IllumDiscriminator = None
@staticmethod
def initialize(device_config=None, floatx="float32", data_format="NHWC"):

View file

@ -129,6 +129,14 @@ def initialize_tensor_ops(nn):
nn.tf_flatten = tf_flatten
def tf_max_pool(x, kernel_size, strides):
if nn.data_format == "NHWC":
return tf.nn.max_pool(x, [1,kernel_size,kernel_size,1], [1,strides,strides,1], "VALID", data_format=nn.data_format)
else:
return tf.nn.max_pool(x, [1,1,kernel_size,kernel_size], [1,1,strides,strides], "VALID", data_format=nn.data_format)
nn.tf_max_pool = tf_max_pool
def tf_reshape_4D(x, w,h,c):
if nn.data_format == "NHWC":
# match NCHW version in order to switch data_format without problems

Binary file not shown.

Before

Width:  |  Height:  |  Size: 11 KiB

After

Width:  |  Height:  |  Size: 10 KiB

Before After
Before After

Binary file not shown.

Before

Width:  |  Height:  |  Size: 41 KiB

After

Width:  |  Height:  |  Size: 49 KiB

Before After
Before After

View file

@ -216,7 +216,7 @@ class FANExtractor(object):
for i, lmrks in enumerate(landmarks):
try:
if lmrks is not None:
image_to_face_mat = LandmarksProcessor.get_transform_mat (lmrks, 256, FaceType.FULL, full_face_align_top=False)
image_to_face_mat = LandmarksProcessor.get_transform_mat (lmrks, 256, FaceType.FULL)
face_image = cv2.warpAffine(input_image, image_to_face_mat, (256, 256), cv2.INTER_CUBIC )
rects2 = second_pass_extractor.extract(face_image, is_bgr=is_bgr)

View file

@ -6,8 +6,9 @@ class FaceType(IntEnum):
MID_FULL = 1
FULL = 2
FULL_NO_ALIGN = 3
HEAD = 4
HEAD_NO_ALIGN = 5
WHOLE_FACE = 4
HEAD = 5
HEAD_NO_ALIGN = 6
MARK_ONLY = 10, #no align at all, just embedded faceinfo
@ -25,6 +26,7 @@ class FaceType(IntEnum):
from_string_dict = {'half_face': FaceType.HALF,
'midfull_face': FaceType.MID_FULL,
'full_face': FaceType.FULL,
'whole_face': FaceType.WHOLE_FACE,
'head' : FaceType.HEAD,
'mark_only' : FaceType.MARK_ONLY,
'full_face_no_align' : FaceType.FULL_NO_ALIGN,
@ -33,6 +35,7 @@ from_string_dict = {'half_face': FaceType.HALF,
to_string_dict = { FaceType.HALF : 'half_face',
FaceType.MID_FULL : 'midfull_face',
FaceType.FULL : 'full_face',
FaceType.WHOLE_FACE : 'whole_face',
FaceType.HEAD : 'head',
FaceType.MARK_ONLY :'mark_only',
FaceType.FULL_NO_ALIGN : 'full_face_no_align',

View file

@ -188,8 +188,9 @@ FaceType_to_padding_remove_align = {
FaceType.MID_FULL: (0.0675, False),
FaceType.FULL: (0.2109375, False),
FaceType.FULL_NO_ALIGN: (0.2109375, True),
FaceType.HEAD: (0.369140625, False),
FaceType.HEAD_NO_ALIGN: (0.369140625, True),
FaceType.WHOLE_FACE: (0.40, False),
FaceType.HEAD: (1.0, False),
FaceType.HEAD_NO_ALIGN: (1.0, True),
}
def convert_98_to_68(lmrks):
@ -249,77 +250,63 @@ def transform_points(points, mat, invert=False):
points = np.squeeze(points)
return points
def get_transform_mat (image_landmarks, output_size, face_type, scale=1.0, full_face_align_top=True):
def get_transform_mat (image_landmarks, output_size, face_type, scale=1.0):
if not isinstance(image_landmarks, np.ndarray):
image_landmarks = np.array (image_landmarks)
padding, remove_align = FaceType_to_padding_remove_align.get(face_type, 0.0)
# estimate landmarks transform from global space to local aligned space with bounds [0..1]
mat = umeyama( np.concatenate ( [ image_landmarks[17:49] , image_landmarks[54:55] ] ) , landmarks_2D_new, True)[0:2]
l_p = transform_points ( np.float32([(0,0),(1,0),(1,1),(0,1),(0.5,0.5)]) , mat, True)
l_c = l_p[4]
tb_diag_vec = (l_p[2]-l_p[0]).astype(np.float32)
# get corner points in global space
g_p = transform_points ( np.float32([(0,0),(1,0),(1,1),(0,1),(0.5,0.5) ]) , mat, True)
g_c = g_p[4]
# calc diagonal vectors between corners in global space
tb_diag_vec = (g_p[2]-g_p[0]).astype(np.float32)
tb_diag_vec /= npla.norm(tb_diag_vec)
bt_diag_vec = (l_p[1]-l_p[3]).astype(np.float32)
bt_diag_vec = (g_p[1]-g_p[3]).astype(np.float32)
bt_diag_vec /= npla.norm(bt_diag_vec)
mod = (1.0 / scale)* ( npla.norm(l_p[0]-l_p[2])*(padding*np.sqrt(2.0) + 0.5) )
# calc modifier of diagonal vectors for scale and padding value
padding, remove_align = FaceType_to_padding_remove_align.get(face_type, 0.0)
mod = (1.0 / scale)* ( npla.norm(g_p[0]-g_p[2])*(padding*np.sqrt(2.0) + 0.5) )
if face_type == FaceType.WHOLE_FACE:
vec = (g_p[0]-g_p[3]).astype(np.float32)
vec_len = npla.norm(vec)
vec /= vec_len
g_c += vec*vec_len*0.07
# calc 3 points in global space to estimate 2d affine transform
if not remove_align:
l_t = np.array( [ np.round( l_c - tb_diag_vec*mod ),
np.round( l_c + bt_diag_vec*mod ),
np.round( l_c + tb_diag_vec*mod ) ] )
l_t = np.array( [ np.round( g_c - tb_diag_vec*mod ),
np.round( g_c + bt_diag_vec*mod ),
np.round( g_c + tb_diag_vec*mod ) ] )
else:
l_t = np.array( [ np.round( l_c - tb_diag_vec*mod ),
np.round( l_c + bt_diag_vec*mod ),
np.round( l_c + tb_diag_vec*mod ),
np.round( l_c - bt_diag_vec*mod ),
# remove_align - face will be centered in the frame but not aligned
l_t = np.array( [ np.round( g_c - tb_diag_vec*mod ),
np.round( g_c + bt_diag_vec*mod ),
np.round( g_c + tb_diag_vec*mod ),
np.round( g_c - bt_diag_vec*mod ),
] )
# get area of face square in global space
area = mathlib.polygon_area(l_t[:,0], l_t[:,1] )
side = np.float32(math.sqrt(area) / 2)
l_t = np.array( [ np.round( l_c + [-side,-side] ),
np.round( l_c + [ side,-side] ),
np.round( l_c + [ side, side] ) ] )
# calc side of square
side = np.float32(math.sqrt(area) / 2)
# calc 3 points with unrotated square
l_t = np.array( [ np.round( g_c + [-side,-side] ),
np.round( g_c + [ side,-side] ),
np.round( g_c + [ side, side] ) ] )
# calc affine transform from 3 global space points to 3 local space points size of 'output_size'
pts2 = np.float32(( (0,0),(output_size,0),(output_size,output_size) ))
mat = cv2.getAffineTransform(l_t,pts2)
#if remove_align:
# bbox = transform_points ( [ (0,0), (0,output_size), (output_size, output_size), (output_size,0) ], mat, True)
# #import code
# #code.interact(local=dict(globals(), **locals()))
# area = mathlib.polygon_area(bbox[:,0], bbox[:,1] )
# side = math.sqrt(area) / 2
# center = transform_points ( [(output_size/2,output_size/2)], mat, True)
# pts1 = np.float32(( center+[-side,-side], center+[side,-side], center+[side,-side] ))
# pts2 = np.float32([[0,0],[output_size,0],[0,output_size]])
# mat = cv2.getAffineTransform(pts1,pts2)
return mat
#if full_face_align_top and (face_type == FaceType.FULL or face_type == FaceType.FULL_NO_ALIGN):
# #lmrks2 = expand_eyebrows(image_landmarks)
# #lmrks2_ = transform_points( [ lmrks2[19], lmrks2[24] ], mat, False )
# #y_diff = np.float32( (0,np.min(lmrks2_[:,1])) )
# #y_diff = transform_points( [ np.float32( (0,0) ), y_diff], mat, True)
# #y_diff = y_diff[1]-y_diff[0]
#
# x_diff = np.float32((0,0))
#
# lmrks2_ = transform_points( [ image_landmarks[0], image_landmarks[16] ], mat, False )
# if lmrks2_[0,0] < 0:
# x_diff = lmrks2_[0,0]
# x_diff = transform_points( [ np.float32( (0,0) ), np.float32((x_diff,0)) ], mat, True)
# x_diff = x_diff[1]-x_diff[0]
# elif lmrks2_[1,0] >= output_size:
# x_diff = lmrks2_[1,0]-(output_size-1)
# x_diff = transform_points( [ np.float32( (0,0) ), np.float32((x_diff,0)) ], mat, True)
# x_diff = x_diff[1]-x_diff[0]
#
# mat = cv2.getAffineTransform( l_t+y_diff+x_diff ,pts2)
def expand_eyebrows(lmrks, eyebrows_expand_mod=1.0):
if len(lmrks) != 68:
raise Exception('works only with 68 landmarks')
@ -349,8 +336,8 @@ def expand_eyebrows(lmrks, eyebrows_expand_mod=1.0):
def get_image_hull_mask (image_shape, image_landmarks, eyebrows_expand_mod=1.0, ie_polys=None, color=(1,) ):
hull_mask = np.zeros(image_shape[0:2]+( len(color),),dtype=np.float32)
def get_image_hull_mask (image_shape, image_landmarks, eyebrows_expand_mod=1.0, ie_polys=None ):
hull_mask = np.zeros(image_shape[0:2]+(1,),dtype=np.float32)
lmrks = expand_eyebrows(image_landmarks, eyebrows_expand_mod)
@ -366,7 +353,7 @@ def get_image_hull_mask (image_shape, image_landmarks, eyebrows_expand_mod=1.0,
for item in parts:
merged = np.concatenate(item)
cv2.fillConvexPoly(hull_mask, cv2.convexHull(merged), color )
cv2.fillConvexPoly(hull_mask, cv2.convexHull(merged), (1,) )
if ie_polys is not None:
ie_polys.overlay_mask(hull_mask)
@ -411,7 +398,7 @@ def alpha_to_color (img_alpha, color):
def get_cmask (image_shape, lmrks, eyebrows_expand_mod=1.0):
h,w,c = image_shape
hull = get_image_hull_mask (image_shape, lmrks, eyebrows_expand_mod, color=(1,) )
hull = get_image_hull_mask (image_shape, lmrks, eyebrows_expand_mod )
result = np.zeros( (h,w,3), dtype=np.float32 )
@ -679,18 +666,11 @@ def calc_face_pitch(landmarks):
b = landmarks[8][1]
return float(b-t)
def calc_face_yaw(landmarks):
if not isinstance(landmarks, np.ndarray):
landmarks = np.array (landmarks)
l = ( (landmarks[27][0]-landmarks[0][0]) + (landmarks[28][0]-landmarks[1][0]) + (landmarks[29][0]-landmarks[2][0]) ) / 3.0
r = ( (landmarks[16][0]-landmarks[27][0]) + (landmarks[15][0]-landmarks[28][0]) + (landmarks[14][0]-landmarks[29][0]) ) / 3.0
return float(r-l)
def estimate_pitch_yaw_roll(aligned_256px_landmarks):
def estimate_pitch_yaw_roll(aligned_landmarks, size=256):
"""
returns pitch,yaw,roll [-pi...+pi]
"""
shape = (256,256)
shape = (size,size)
focal_length = shape[1]
camera_center = (shape[1] / 2, shape[0] / 2)
camera_matrix = np.array(
@ -700,7 +680,7 @@ def estimate_pitch_yaw_roll(aligned_256px_landmarks):
(_, rotation_vector, translation_vector) = cv2.solvePnP(
landmarks_68_3D,
aligned_256px_landmarks.astype(np.float32),
aligned_landmarks.astype(np.float32),
camera_matrix,
np.zeros((4, 1)) )
@ -710,3 +690,132 @@ def estimate_pitch_yaw_roll(aligned_256px_landmarks):
roll = np.clip ( roll, -math.pi, math.pi )
return -pitch, yaw, roll
#if remove_align:
# bbox = transform_points ( [ (0,0), (0,output_size), (output_size, output_size), (output_size,0) ], mat, True)
# #import code
# #code.interact(local=dict(globals(), **locals()))
# area = mathlib.polygon_area(bbox[:,0], bbox[:,1] )
# side = math.sqrt(area) / 2
# center = transform_points ( [(output_size/2,output_size/2)], mat, True)
# pts1 = np.float32(( center+[-side,-side], center+[side,-side], center+[side,-side] ))
# pts2 = np.float32([[0,0],[output_size,0],[0,output_size]])
# mat = cv2.getAffineTransform(pts1,pts2)
#if full_face_align_top and (face_type == FaceType.FULL or face_type == FaceType.FULL_NO_ALIGN):
# #lmrks2 = expand_eyebrows(image_landmarks)
# #lmrks2_ = transform_points( [ lmrks2[19], lmrks2[24] ], mat, False )
# #y_diff = np.float32( (0,np.min(lmrks2_[:,1])) )
# #y_diff = transform_points( [ np.float32( (0,0) ), y_diff], mat, True)
# #y_diff = y_diff[1]-y_diff[0]
#
# x_diff = np.float32((0,0))
#
# lmrks2_ = transform_points( [ image_landmarks[0], image_landmarks[16] ], mat, False )
# if lmrks2_[0,0] < 0:
# x_diff = lmrks2_[0,0]
# x_diff = transform_points( [ np.float32( (0,0) ), np.float32((x_diff,0)) ], mat, True)
# x_diff = x_diff[1]-x_diff[0]
# elif lmrks2_[1,0] >= output_size:
# x_diff = lmrks2_[1,0]-(output_size-1)
# x_diff = transform_points( [ np.float32( (0,0) ), np.float32((x_diff,0)) ], mat, True)
# x_diff = x_diff[1]-x_diff[0]
#
# mat = cv2.getAffineTransform( l_t+y_diff+x_diff ,pts2)
"""
def get_averaged_transform_mat (img_landmarks,
img_landmarks_prev,
img_landmarks_next,
average_frame_count,
average_center_frame_count,
output_size, face_type, scale=1.0):
l_c_list = []
tb_diag_vec_list = []
bt_diag_vec_list = []
mod_list = []
count = max(average_frame_count,average_center_frame_count)
for i in range ( -count, count+1, 1 ):
if i < 0:
lmrks = img_landmarks_prev[i] if -i < len(img_landmarks_prev) else None
elif i > 0:
lmrks = img_landmarks_next[i] if i < len(img_landmarks_next) else None
else:
lmrks = img_landmarks
if lmrks is None:
continue
l_c, tb_diag_vec, bt_diag_vec, mod = get_transform_mat_data (lmrks, face_type, scale=scale)
if i >= -average_frame_count and i <= average_frame_count:
tb_diag_vec_list.append(tb_diag_vec)
bt_diag_vec_list.append(bt_diag_vec)
mod_list.append(mod)
if i >= -average_center_frame_count and i <= average_center_frame_count:
l_c_list.append(l_c)
tb_diag_vec = np.mean( np.array(tb_diag_vec_list), axis=0 )
bt_diag_vec = np.mean( np.array(bt_diag_vec_list), axis=0 )
mod = np.mean( np.array(mod_list), axis=0 )
l_c = np.mean( np.array(l_c_list), axis=0 )
return get_transform_mat_by_data (l_c, tb_diag_vec, bt_diag_vec, mod, output_size, face_type)
def get_transform_mat (image_landmarks, output_size, face_type, scale=1.0):
if not isinstance(image_landmarks, np.ndarray):
image_landmarks = np.array (image_landmarks)
# get face padding value for FaceType
padding, remove_align = FaceType_to_padding_remove_align.get(face_type, 0.0)
# estimate landmarks transform from global space to local aligned space with bounds [0..1]
mat = umeyama( np.concatenate ( [ image_landmarks[17:49] , image_landmarks[54:55] ] ) , landmarks_2D_new, True)[0:2]
# get corner points in global space
l_p = transform_points ( np.float32([(0,0),(1,0),(1,1),(0,1),(0.5,0.5)]) , mat, True)
l_c = l_p[4]
# calc diagonal vectors between corners in global space
tb_diag_vec = (l_p[2]-l_p[0]).astype(np.float32)
tb_diag_vec /= npla.norm(tb_diag_vec)
bt_diag_vec = (l_p[1]-l_p[3]).astype(np.float32)
bt_diag_vec /= npla.norm(bt_diag_vec)
# calc modifier of diagonal vectors for scale and padding value
mod = (1.0 / scale)* ( npla.norm(l_p[0]-l_p[2])*(padding*np.sqrt(2.0) + 0.5) )
# calc 3 points in global space to estimate 2d affine transform
if not remove_align:
l_t = np.array( [ np.round( l_c - tb_diag_vec*mod ),
np.round( l_c + bt_diag_vec*mod ),
np.round( l_c + tb_diag_vec*mod ) ] )
else:
# remove_align - face will be centered in the frame but not aligned
l_t = np.array( [ np.round( l_c - tb_diag_vec*mod ),
np.round( l_c + bt_diag_vec*mod ),
np.round( l_c + tb_diag_vec*mod ),
np.round( l_c - bt_diag_vec*mod ),
] )
# get area of face square in global space
area = mathlib.polygon_area(l_t[:,0], l_t[:,1] )
# calc side of square
side = np.float32(math.sqrt(area) / 2)
# calc 3 points with unrotated square
l_t = np.array( [ np.round( l_c + [-side,-side] ),
np.round( l_c + [ side,-side] ),
np.round( l_c + [ side, side] ) ] )
# calc affine transform from 3 global space points to 3 local space points size of 'output_size'
pts2 = np.float32(( (0,0),(output_size,0),(output_size,output_size) ))
mat = cv2.getAffineTransform(l_t,pts2)
return mat
"""

View file

@ -47,7 +47,7 @@ if __name__ == "__main__":
p.add_argument('--output-dir', required=True, action=fixPathAction, dest="output_dir", help="Output directory. This is where the extracted files will be stored.")
p.add_argument('--output-debug', action="store_true", dest="output_debug", default=None, help="Writes debug images to <output-dir>_debug\ directory.")
p.add_argument('--no-output-debug', action="store_false", dest="output_debug", default=None, help="Don't writes debug images to <output-dir>_debug\ directory.")
p.add_argument('--face-type', dest="face_type", choices=['half_face', 'full_face', 'head', 'full_face_no_align', 'mark_only'], default='full_face', help="Default 'full_face'. Don't change this option, currently all models uses 'full_face'")
p.add_argument('--face-type', dest="face_type", choices=['half_face', 'full_face', 'whole_face', 'head', 'full_face_no_align', 'mark_only'], default='full_face', help="Default 'full_face'. Don't change this option, currently all models uses 'full_face'")
p.add_argument('--manual-fix', action="store_true", dest="manual_fix", default=False, help="Enables manual extract only frames where faces were not recognized.")
p.add_argument('--manual-output-debug-fix', action="store_true", dest="manual_output_debug_fix", default=False, help="Performs manual reextract input-dir frames which were deleted from [output_dir]_debug\ dir.")
p.add_argument('--manual-window-size', type=int, dest="manual_window_size", default=1368, help="Manual fix window size. Default: 1368.")

View file

@ -680,7 +680,6 @@ def main(detector=None,
manual_fix=False,
manual_output_debug_fix=False,
manual_window_size=1368,
image_size=256,
face_type='full_face',
max_faces_from_image=0,
cpu_only = False,
@ -688,6 +687,8 @@ def main(detector=None,
):
face_type = FaceType.fromString(face_type)
image_size = 512 if face_type == FaceType.WHOLE_FACE else 256
if not input_path.exists():
io.log_err ('Input directory not found. Please ensure it exists.')
return
@ -710,7 +711,7 @@ def main(detector=None,
if not manual_output_debug_fix and input_path != output_path:
output_images_paths = pathex.get_image_paths(output_path)
if len(output_images_paths) > 0:
io.input(f"WARNING !!! \n {output_path} contains files! \n They will be deleted. \n Press enter to continue.")
io.input(f"\n WARNING !!! \n {output_path} contains files! \n They will be deleted. \n Press enter to continue.\n")
for filename in output_images_paths:
Path(filename).unlink()
else:

View file

@ -180,7 +180,7 @@ class MergeSubprocessor(Subprocessor):
if len (frames) == 0:
raise ValueError ("len (frames) == 0")
super().__init__('Merger', MergeSubprocessor.Cli, 86400 if MERGER_DEBUG else 60, io_loop_sleep_time=0.001)
super().__init__('Merger', MergeSubprocessor.Cli, io_loop_sleep_time=0.001)
self.is_interactive = is_interactive
self.merger_session_filepath = Path(merger_session_filepath)
@ -674,6 +674,7 @@ def main (model_class_name=None,
input_path_image_paths = pathex.get_image_paths(input_path)
if cfg.type == MergerConfig.TYPE_MASKED:
if not aligned_path.exists():
io.log_err('Aligned directory not found. Please ensure it exists.')
@ -783,6 +784,8 @@ def main (model_class_name=None,
elif cfg.type == MergerConfig.TYPE_FACE_AVATAR:
pass
"""
filesdata = []
for filepath in io.progress_bar_generator(input_path_image_paths, "Collecting info"):
filepath = Path(filepath)
@ -812,7 +815,7 @@ def main (model_class_name=None,
frames.append ( MergeSubprocessor.Frame(prev_temporal_frame_infos=prev_temporal_frame_infos,
frame_info=frame_info,
next_temporal_frame_infos=next_temporal_frame_infos) )
"""
if len(frames) == 0:
io.log_info ("No frames to merge in input_dir.")
else:

View file

@ -114,7 +114,7 @@ def sort_by_face_yaw(input_path):
trash_img_list.append ( [str(filepath)] )
continue
pitch, yaw, roll = LandmarksProcessor.estimate_pitch_yaw_roll ( dflimg.get_landmarks() )
pitch, yaw, roll = LandmarksProcessor.estimate_pitch_yaw_roll ( dflimg.get_landmarks(), size=dflimg.get_shape()[1] )
img_list.append( [str(filepath), yaw ] )
@ -137,7 +137,7 @@ def sort_by_face_pitch(input_path):
trash_img_list.append ( [str(filepath)] )
continue
pitch, yaw, roll = LandmarksProcessor.estimate_pitch_yaw_roll ( dflimg.get_landmarks() )
pitch, yaw, roll = LandmarksProcessor.estimate_pitch_yaw_roll ( dflimg.get_landmarks(), size=dflimg.get_shape()[1] )
img_list.append( [str(filepath), pitch ] )
@ -418,7 +418,7 @@ class FinalLoaderSubprocessor(Subprocessor):
gray = cv2.cvtColor(bgr, cv2.COLOR_BGR2GRAY)
sharpness = estimate_sharpness(gray) if self.include_by_blur else 0
pitch, yaw, roll = LandmarksProcessor.estimate_pitch_yaw_roll ( dflimg.get_landmarks() )
pitch, yaw, roll = LandmarksProcessor.estimate_pitch_yaw_roll ( dflimg.get_landmarks(), size=dflimg.get_shape()[1] )
hist = cv2.calcHist([gray], [0], None, [256], [0, 256])
except Exception as e:
@ -723,11 +723,11 @@ def sort_by_absdiff(input_path):
image_paths = pathex.get_image_paths(input_path)
image_paths_len = len(image_paths)
batch_size = 1024
batch_size = 512
batch_size_remain = image_paths_len % batch_size
i_t = tf.placeholder (tf.float32, (None,256,256,3) )
j_t = tf.placeholder (tf.float32, (None,256,256,3) )
i_t = tf.placeholder (tf.float32, (None,None,None,None) )
j_t = tf.placeholder (tf.float32, (None,None,None,None) )
outputs_full = []
outputs_remain = []

View file

@ -394,7 +394,6 @@ def extract_fanseg(input_dir, device_args={} ):
#unused in end user workflow
def extract_umd_csv(input_file_csv,
image_size=256,
face_type='full_face',
device_args={} ):
@ -456,7 +455,7 @@ def extract_umd_csv(input_file_csv,
data = ExtractSubprocessor (data, 'landmarks', multi_gpu=multi_gpu, cpu_only=cpu_only).run()
io.log_info ('Performing 3rd pass...')
data = ExtractSubprocessor (data, 'final', image_size, face_type, None, multi_gpu=multi_gpu, cpu_only=cpu_only, manual=False, final_output_path=output_path).run()
data = ExtractSubprocessor (data, 'final', face_type, None, multi_gpu=multi_gpu, cpu_only=cpu_only, manual=False, final_output_path=output_path).run()
faces_detected += sum([d.faces_detected for d in data])

View file

@ -18,7 +18,6 @@ def MergeMaskedFace (predictor_func, predictor_input_shape, cfg, frame_info, img
out_img = img_bgr.copy()
out_merging_mask_a = None
mask_subres = 4
input_size = predictor_input_shape[0]
mask_subres_size = input_size*4
output_size = input_size
@ -26,12 +25,12 @@ def MergeMaskedFace (predictor_func, predictor_input_shape, cfg, frame_info, img
output_size *= 4
face_mat = LandmarksProcessor.get_transform_mat (img_face_landmarks, output_size, face_type=cfg.face_type)
face_output_mat = LandmarksProcessor.get_transform_mat (img_face_landmarks, output_size, face_type=cfg.face_type, scale= 1.0 + 0.01*cfg.output_face_scale )
face_output_mat = LandmarksProcessor.get_transform_mat (img_face_landmarks, output_size, face_type=cfg.face_type, scale= 1.0 + 0.01*cfg.output_face_scale)
if mask_subres_size == output_size:
face_mask_output_mat = face_output_mat
else:
face_mask_output_mat = LandmarksProcessor.get_transform_mat (img_face_landmarks, mask_subres_size, face_type=cfg.face_type, scale= 1.0 + 0.01*cfg.output_face_scale )
face_mask_output_mat = LandmarksProcessor.get_transform_mat (img_face_landmarks, mask_subres_size, face_type=cfg.face_type, scale= 1.0 + 0.01*cfg.output_face_scale)
dst_face_bgr = cv2.warpAffine( img_bgr , face_mat, (output_size, output_size), flags=cv2.INTER_CUBIC )
dst_face_bgr = np.clip(dst_face_bgr, 0, 1)
@ -56,11 +55,10 @@ def MergeMaskedFace (predictor_func, predictor_input_shape, cfg, frame_info, img
if cfg.super_resolution_power != 0:
prd_face_bgr_enhanced = cfg.superres_func(prd_face_bgr)
mod = cfg.super_resolution_power / 100.0
prd_face_bgr = cv2.resize(prd_face_bgr, (output_size,output_size))*(1.0-mod) + \
prd_face_bgr_enhanced*mod
prd_face_bgr = cv2.resize(prd_face_bgr, (output_size,output_size))*(1.0-mod) + prd_face_bgr_enhanced*mod
prd_face_bgr = np.clip(prd_face_bgr, 0, 1)
if cfg.super_resolution_power != 0:
if predictor_masked:
prd_face_mask_a_0 = cv2.resize (prd_face_mask_a_0, (output_size, output_size), cv2.INTER_CUBIC)
else:
@ -106,13 +104,12 @@ def MergeMaskedFace (predictor_func, predictor_input_shape, cfg, frame_info, img
prd_face_mask_a_0[ prd_face_mask_a_0 < (1.0/255.0) ] = 0.0 # get rid of noise
# process mask in local predicted space
if 'raw' not in cfg.mode:
# resize to mask_subres_size
if prd_face_mask_a_0.shape[0] != mask_subres_size:
prd_face_mask_a_0 = cv2.resize (prd_face_mask_a_0, (mask_subres_size, mask_subres_size), cv2.INTER_CUBIC)
# process mask in local predicted space
if 'raw' not in cfg.mode:
# add zero pad
prd_face_mask_a_0 = np.pad (prd_face_mask_a_0, input_size)
@ -176,9 +173,9 @@ def MergeMaskedFace (predictor_func, predictor_input_shape, cfg, frame_info, img
if 'seamless' not in cfg.mode and cfg.color_transfer_mode != 0:
if cfg.color_transfer_mode == 1: #rct
prd_face_bgr = imagelib.reinhard_color_transfer ( np.clip( prd_face_bgr*255, 0, 255).astype(np.uint8),
np.clip( dst_face_bgr*255, 0, 255).astype(np.uint8),
source_mask=prd_face_mask_area_a, target_mask=prd_face_mask_area_a)
prd_face_bgr = imagelib.reinhard_color_transfer ( np.clip( prd_face_bgr*prd_face_mask_area_a*255, 0, 255).astype(np.uint8),
np.clip( dst_face_bgr*prd_face_mask_area_a*255, 0, 255).astype(np.uint8), )
prd_face_bgr = np.clip( prd_face_bgr.astype(np.float32) / 255.0, 0.0, 1.0)
elif cfg.color_transfer_mode == 2: #lct
prd_face_bgr = imagelib.linear_color_transfer (prd_face_bgr, dst_face_bgr)
@ -247,15 +244,12 @@ def MergeMaskedFace (predictor_func, predictor_input_shape, cfg, frame_info, img
out_img = img_bgr*(1-img_face_mask_a) + (out_img*img_face_mask_a)
out_face_bgr = cv2.warpAffine( out_img, face_mat, (output_size, output_size) )
out_face_bgr = cv2.warpAffine( out_img, face_mat, (output_size, output_size), flags=cv2.INTER_CUBIC )
if 'seamless' in cfg.mode and cfg.color_transfer_mode != 0:
if cfg.color_transfer_mode == 1:
face_mask_a = cv2.warpAffine( img_face_mask_a, face_mat, (output_size, output_size) )[...,None]
out_face_bgr = imagelib.reinhard_color_transfer ( (out_face_bgr*255).astype(np.uint8),
(dst_face_bgr*255).astype(np.uint8),
source_mask=face_mask_a, target_mask=face_mask_a)
out_face_bgr = imagelib.reinhard_color_transfer ( np.clip(out_face_bgr*prd_face_mask_area_a*255, 0, 255).astype(np.uint8),
np.clip(dst_face_bgr*prd_face_mask_area_a*255, 0, 255).astype(np.uint8) )
out_face_bgr = np.clip( out_face_bgr.astype(np.float32) / 255.0, 0.0, 1.0)
elif cfg.color_transfer_mode == 2: #lct
out_face_bgr = imagelib.linear_color_transfer (out_face_bgr, dst_face_bgr)

View file

@ -107,8 +107,6 @@ class MergerConfigMasked(MergerConfig):
def __init__(self, face_type=FaceType.FULL,
default_mode = 'overlay',
clip_hborder_mask_per = 0,
mode='overlay',
masked_hist_match=True,
hist_match_threshold = 238,
@ -128,11 +126,10 @@ class MergerConfigMasked(MergerConfig):
super().__init__(type=MergerConfig.TYPE_MASKED, **kwargs)
self.face_type = face_type
if self.face_type not in [FaceType.HALF, FaceType.MID_FULL, FaceType.FULL ]:
if self.face_type not in [FaceType.HALF, FaceType.MID_FULL, FaceType.FULL, FaceType.WHOLE_FACE ]:
raise ValueError("MergerConfigMasked does not support this type of face.")
self.default_mode = default_mode
self.clip_hborder_mask_per = clip_hborder_mask_per
#default changeable params
if mode not in mode_str_dict:
@ -298,7 +295,7 @@ class MergerConfigMasked(MergerConfig):
r += f"""output_face_scale: {self.output_face_scale}\n"""
if 'raw' not in self.mode:
r += f"""color_transfer_mode: { ctm_dict[self.color_transfer_mode]}\n"""
r += f"""color_transfer_mode: {ctm_dict[self.color_transfer_mode]}\n"""
r += super().to_string(filename)
r += f"""super_resolution_power: {self.super_resolution_power}\n"""

View file

@ -372,14 +372,14 @@ class QModel(ModelBase):
sample_process_options=SampleProcessor.Options(random_flip=True if self.pretrain else False),
output_sample_types = [ {'types' : (t.IMG_WARPED_TRANSFORMED, face_type, t.MODE_BGR), 'data_format':nn.data_format, 'resolution':resolution, },
{'types' : (t.IMG_TRANSFORMED, face_type, t.MODE_BGR), 'data_format':nn.data_format, 'resolution': resolution, },
{'types' : (t.IMG_TRANSFORMED, face_type, t.MODE_FACE_MASK_HULL), 'data_format':nn.data_format, 'resolution': resolution } ],
{'types' : (t.IMG_TRANSFORMED, face_type, t.MODE_FACE_MASK_ALL_HULL), 'data_format':nn.data_format, 'resolution': resolution } ],
generators_count=src_generators_count ),
SampleGeneratorFace(training_data_dst_path, debug=self.is_debug(), batch_size=self.get_batch_size(),
sample_process_options=SampleProcessor.Options(random_flip=True if self.pretrain else False),
output_sample_types = [ {'types' : (t.IMG_WARPED_TRANSFORMED, face_type, t.MODE_BGR), 'data_format':nn.data_format, 'resolution':resolution},
{'types' : (t.IMG_TRANSFORMED, face_type, t.MODE_BGR), 'data_format':nn.data_format, 'resolution': resolution},
{'types' : (t.IMG_TRANSFORMED, face_type, t.MODE_FACE_MASK_HULL), 'data_format':nn.data_format, 'resolution': resolution} ],
{'types' : (t.IMG_TRANSFORMED, face_type, t.MODE_FACE_MASK_ALL_HULL), 'data_format':nn.data_format, 'resolution': resolution} ],
generators_count=dst_generators_count )
])
@ -454,7 +454,6 @@ class QModel(ModelBase):
import merger
return self.predictor_func, (self.resolution, self.resolution, 3), merger.MergerConfigMasked(face_type=face_type,
default_mode = 'overlay',
clip_hborder_mask_per=0.0625 if (face_type != FaceType.HALF) else 0,
)
Model = QModel

View file

@ -33,9 +33,11 @@ class SAEHDModel(ModelBase):
default_archi = self.options['archi'] = self.load_or_def_option('archi', 'df')
default_ae_dims = self.options['ae_dims'] = self.load_or_def_option('ae_dims', 256)
default_e_dims = self.options['e_dims'] = self.load_or_def_option('e_dims', 64)
self.options['d_dims'] = None
self.options['d_mask_dims'] = None
default_d_dims = self.options['d_dims'] = self.options.get('d_dims', None)
default_d_mask_dims = self.options['d_mask_dims'] = self.options.get('d_mask_dims', None)
default_masked_training = self.options['masked_training'] = self.load_or_def_option('masked_training', True)
default_learn_mask = self.options['learn_mask'] = self.load_or_def_option('learn_mask', True)
default_eyes_prio = self.options['eyes_prio'] = self.load_or_def_option('eyes_prio', False)
default_lr_dropout = self.options['lr_dropout'] = self.load_or_def_option('lr_dropout', False)
default_random_warp = self.options['random_warp'] = self.load_or_def_option('random_warp', True)
default_gan_power = self.options['gan_power'] = self.load_or_def_option('gan_power', 0.0)
@ -58,12 +60,13 @@ class SAEHDModel(ModelBase):
resolution = io.input_int("Resolution", default_resolution, add_info="64-256", help_message="More resolution requires more VRAM and time to train. Value will be adjusted to multiple of 16.")
resolution = np.clip ( (resolution // 16) * 16, 64, 256)
self.options['resolution'] = resolution
self.options['face_type'] = io.input_str ("Face type", default_face_type, ['h','mf','f'], help_message="Half / mid face / full face. Half face has better resolution, but covers less area of cheeks. Mid face is 30% wider than half face.").lower()
self.options['face_type'] = io.input_str ("Face type", default_face_type, ['h','mf','f','wf'], help_message="Half / mid face / full face / whole face. Half face has better resolution, but covers less area of cheeks. Mid face is 30% wider than half face. 'Whole face' covers full area of face include forehead, but requires manual merge in Adobe After Effects.").lower()
self.options['archi'] = io.input_str ("AE architecture", default_archi, ['dfhd','liaehd','df','liae'], help_message="'df' keeps faces more natural. 'liae' can fix overly different face shapes. 'hd' is heavyweight version for the best quality.").lower()
default_d_dims = 48 if self.options['archi'] == 'dfhd' else 64
default_d_dims = self.options['d_dims'] = self.load_or_def_option('d_dims', default_d_dims)
default_d_mask_dims = default_d_dims // 3
default_d_mask_dims += default_d_mask_dims % 2
default_d_mask_dims = self.options['d_mask_dims'] = self.load_or_def_option('d_mask_dims', default_d_mask_dims)
@ -82,7 +85,11 @@ class SAEHDModel(ModelBase):
self.options['d_mask_dims'] = d_mask_dims + d_mask_dims % 2
if self.is_first_run() or ask_override:
self.options['learn_mask'] = io.input_bool ("Learn mask", default_learn_mask, help_message="Learning mask can help model to recognize face directions. Learn without mask can reduce model size, in this case merger forced to use 'not predicted mask' that is not smooth as predicted.")
if self.options['face_type'] == 'wf':
self.options['masked_training'] = io.input_bool ("Masked training", default_masked_training, help_message="This option is available only for 'whole_face' type. Masked training clips training area to full_face mask, thus network will train the faces properly. When the face is trained enough, disable this option to train all area of the frame. Merge with 'raw-rgb' mode, then use Adobe After Effects to manually mask and compose whole face include forehead.")
self.options['learn_mask'] = io.input_bool ("Learn mask", default_learn_mask, help_message="Learning mask will produce a smooth mask in the merger. Also it works as guide for neural network to recognize face directions.")
self.options['eyes_prio'] = io.input_bool ("Eyes priority", default_eyes_prio, help_message='Helps to fix eye problems during training like "alien eyes" and wrong eyes direction ( especially on HD architectures ) by forcing the neural network to train eyes with higher priority. before/after https://i.imgur.com/YQHOuSR.jpg ')
if self.is_first_run() or ask_override:
if len(device_config.devices) == 1:
@ -98,10 +105,13 @@ class SAEHDModel(ModelBase):
else:
self.options['true_face_power'] = 0.0
self.options['face_style_power'] = np.clip ( io.input_number("Face style power", default_face_style_power, add_info="0.0..100.0", help_message="Learn to transfer face style details such as light and color conditions. Warning: Enable it only after 10k iters, when predicted face is clear enough to start learn style. Start from 0.1 value and check history changes. Enabling this option increases the chance of model collapse."), 0.0, 100.0 )
if self.options['face_type'] != 'wf':
self.options['face_style_power'] = np.clip ( io.input_number("Face style power", default_face_style_power, add_info="0.0..100.0", help_message="Learn to transfer face style details such as light and color conditions. Warning: Enable it only after 10k iters, when predicted face is clear enough to start learn style. Start from 0.001 value and check history changes. Enabling this option increases the chance of model collapse."), 0.0, 100.0 )
self.options['bg_style_power'] = np.clip ( io.input_number("Background style power", default_bg_style_power, add_info="0.0..100.0", help_message="Learn to transfer background around face. This can make face more like dst. Enabling this option increases the chance of model collapse. Typical value is 2.0"), 0.0, 100.0 )
self.options['ct_mode'] = io.input_str (f"Color transfer for src faceset", default_ct_mode, ['none','rct','lct','mkl','idt','sot'], help_message="Change color distribution of src samples close to dst samples. Try all modes to find the best.")
self.options['clipgrad'] = io.input_bool ("Enable gradient clipping", default_clipgrad, help_message="Gradient clipping reduces chance of model collapse, sacrificing speed of training.")
self.options['pretrain'] = io.input_bool ("Enable pretraining mode", default_pretrain, help_message="Pretrain the model with large amount of various faces. After that, model can be used to train the fakes more quickly.")
if self.options['pretrain'] and self.get_pretraining_data_path() is None:
@ -333,6 +343,7 @@ class SAEHDModel(ModelBase):
self.resolution = resolution = self.options['resolution']
learn_mask = self.options['learn_mask']
eyes_prio = self.options['eyes_prio']
archi = self.options['archi']
ae_dims = self.options['ae_dims']
e_dims = self.options['e_dims']
@ -344,7 +355,7 @@ class SAEHDModel(ModelBase):
self.gan_power = gan_power = self.options['gan_power'] if not self.pretrain else 0.0
masked_training = True
masked_training = self.options['masked_training']
models_opt_on_gpu = False if len(devices) == 0 else True if len(devices) > 1 else self.options['models_opt_on_gpu']
models_opt_device = '/GPU:0' if models_opt_on_gpu and self.is_training else '/CPU:0'
@ -367,8 +378,8 @@ class SAEHDModel(ModelBase):
self.target_src = tf.placeholder (nn.tf_floatx, bgr_shape)
self.target_dst = tf.placeholder (nn.tf_floatx, bgr_shape)
self.target_srcm = tf.placeholder (nn.tf_floatx, mask_shape)
self.target_dstm = tf.placeholder (nn.tf_floatx, mask_shape)
self.target_srcm_all = tf.placeholder (nn.tf_floatx, mask_shape)
self.target_dstm_all = tf.placeholder (nn.tf_floatx, mask_shape)
# Initializing model classes
with tf.device (models_opt_device):
@ -472,8 +483,8 @@ class SAEHDModel(ModelBase):
gpu_warped_dst = self.warped_dst [batch_slice,:,:,:]
gpu_target_src = self.target_src [batch_slice,:,:,:]
gpu_target_dst = self.target_dst [batch_slice,:,:,:]
gpu_target_srcm = self.target_srcm[batch_slice,:,:,:]
gpu_target_dstm = self.target_dstm[batch_slice,:,:,:]
gpu_target_srcm_all = self.target_srcm_all[batch_slice,:,:,:]
gpu_target_dstm_all = self.target_dstm_all[batch_slice,:,:,:]
# process model tensors
if 'df' in archi:
@ -505,6 +516,12 @@ class SAEHDModel(ModelBase):
gpu_pred_dst_dstm_list.append(gpu_pred_dst_dstm)
gpu_pred_src_dstm_list.append(gpu_pred_src_dstm)
# unpack masks from one combined mask
gpu_target_srcm = tf.clip_by_value (gpu_target_srcm_all, 0, 1)
gpu_target_dstm = tf.clip_by_value (gpu_target_dstm_all, 0, 1)
gpu_target_srcm_eyes = tf.clip_by_value (gpu_target_srcm_all-1, 0, 1)
gpu_target_dstm_eyes = tf.clip_by_value (gpu_target_dstm_all-1, 0, 1)
gpu_target_srcm_blur = nn.tf_gaussian_blur(gpu_target_srcm, max(1, resolution // 32) )
gpu_target_dstm_blur = nn.tf_gaussian_blur(gpu_target_dstm, max(1, resolution // 32) )
@ -522,6 +539,10 @@ class SAEHDModel(ModelBase):
gpu_src_loss = tf.reduce_mean ( 10*nn.tf_dssim(gpu_target_src_masked_opt, gpu_pred_src_src_masked_opt, max_val=1.0, filter_size=int(resolution/11.6)), axis=[1])
gpu_src_loss += tf.reduce_mean ( 10*tf.square ( gpu_target_src_masked_opt - gpu_pred_src_src_masked_opt ), axis=[1,2,3])
if eyes_prio:
gpu_src_loss += tf.reduce_mean ( 300*tf.abs ( gpu_target_src*gpu_target_srcm_eyes - gpu_pred_src_src*gpu_target_srcm_eyes ), axis=[1,2,3])
if learn_mask:
gpu_src_loss += tf.reduce_mean ( 10*tf.square( gpu_target_srcm - gpu_pred_src_srcm ),axis=[1,2,3] )
@ -536,6 +557,10 @@ class SAEHDModel(ModelBase):
gpu_dst_loss = tf.reduce_mean ( 10*nn.tf_dssim(gpu_target_dst_masked_opt, gpu_pred_dst_dst_masked_opt, max_val=1.0, filter_size=int(resolution/11.6) ), axis=[1])
gpu_dst_loss += tf.reduce_mean ( 10*tf.square( gpu_target_dst_masked_opt- gpu_pred_dst_dst_masked_opt ), axis=[1,2,3])
if eyes_prio:
gpu_dst_loss += tf.reduce_mean ( 300*tf.abs ( gpu_target_dst*gpu_target_dstm_eyes - gpu_pred_dst_dst*gpu_target_dstm_eyes ), axis=[1,2,3])
if learn_mask:
gpu_dst_loss += tf.reduce_mean ( 10*tf.square( gpu_target_dstm - gpu_pred_dst_dstm ),axis=[1,2,3] )
@ -606,15 +631,15 @@ class SAEHDModel(ModelBase):
# Initializing training and view functions
def src_dst_train(warped_src, target_src, target_srcm, \
warped_dst, target_dst, target_dstm):
def src_dst_train(warped_src, target_src, target_srcm_all, \
warped_dst, target_dst, target_dstm_all):
s, d, _ = nn.tf_sess.run ( [ src_loss, dst_loss, src_dst_loss_gv_op],
feed_dict={self.warped_src :warped_src,
self.target_src :target_src,
self.target_srcm:target_srcm,
self.target_srcm_all:target_srcm_all,
self.warped_dst :warped_dst,
self.target_dst :target_dst,
self.target_dstm:target_dstm,
self.target_dstm_all:target_dstm_all,
})
s = np.mean(s)
d = np.mean(d)
@ -627,14 +652,14 @@ class SAEHDModel(ModelBase):
self.D_train = D_train
if gan_power != 0:
def D_src_dst_train(warped_src, target_src, target_srcm, \
warped_dst, target_dst, target_dstm):
def D_src_dst_train(warped_src, target_src, target_srcm_all, \
warped_dst, target_dst, target_dstm_all):
nn.tf_sess.run ([src_D_src_dst_loss_gv_op], feed_dict={self.warped_src :warped_src,
self.target_src :target_src,
self.target_srcm:target_srcm,
self.target_srcm_all:target_srcm_all,
self.warped_dst :warped_dst,
self.target_dst :target_dst,
self.target_dstm:target_dstm})
self.target_dstm_all:target_dstm_all})
self.D_src_dst_train = D_src_dst_train
if learn_mask:
@ -703,6 +728,8 @@ class SAEHDModel(ModelBase):
face_type = t.FACE_TYPE_MID_FULL
elif self.options['face_type'] == 'f':
face_type = t.FACE_TYPE_FULL
elif self.options['face_type'] == 'wf':
face_type = t.FACE_TYPE_WHOLE_FACE
training_data_src_path = self.training_data_src_path if not self.pretrain else self.get_pretraining_data_path()
training_data_dst_path = self.training_data_dst_path if not self.pretrain else self.get_pretraining_data_path()
@ -722,14 +749,16 @@ class SAEHDModel(ModelBase):
sample_process_options=SampleProcessor.Options(random_flip=self.random_flip),
output_sample_types = [ {'types' : (t_img_warped, face_type, t.MODE_BGR), 'data_format':nn.data_format, 'resolution': resolution, 'ct_mode': self.options['ct_mode'] },
{'types' : (t.IMG_TRANSFORMED, face_type, t.MODE_BGR), 'data_format':nn.data_format, 'resolution': resolution, 'ct_mode': self.options['ct_mode'] },
{'types' : (t.IMG_TRANSFORMED, face_type, t.MODE_FACE_MASK_HULL), 'data_format':nn.data_format, 'resolution': resolution } ],
{'types' : (t.IMG_TRANSFORMED, face_type, t.MODE_FACE_MASK_ALL_EYES_HULL), 'data_format':nn.data_format, 'resolution': resolution },
],
generators_count=src_generators_count ),
SampleGeneratorFace(training_data_dst_path, debug=self.is_debug(), batch_size=self.get_batch_size(),
sample_process_options=SampleProcessor.Options(random_flip=self.random_flip),
output_sample_types = [ {'types' : (t_img_warped, face_type, t.MODE_BGR), 'data_format':nn.data_format, 'resolution': resolution},
{'types' : (t.IMG_TRANSFORMED, face_type, t.MODE_BGR), 'data_format':nn.data_format, 'resolution': resolution},
{'types' : (t.IMG_TRANSFORMED, face_type, t.MODE_FACE_MASK_HULL), 'data_format':nn.data_format, 'resolution': resolution} ],
{'types' : (t.IMG_TRANSFORMED, face_type, t.MODE_FACE_MASK_ALL_EYES_HULL), 'data_format':nn.data_format, 'resolution': resolution},
],
generators_count=dst_generators_count )
])
@ -748,23 +777,23 @@ class SAEHDModel(ModelBase):
#override
def onTrainOneIter(self):
( (warped_src, target_src, target_srcm), \
(warped_dst, target_dst, target_dstm) ) = self.generate_next_samples()
( (warped_src, target_src, target_srcm_all), \
(warped_dst, target_dst, target_dstm_all) ) = self.generate_next_samples()
src_loss, dst_loss = self.src_dst_train (warped_src, target_src, target_srcm, warped_dst, target_dst, target_dstm)
src_loss, dst_loss = self.src_dst_train (warped_src, target_src, target_srcm_all, warped_dst, target_dst, target_dstm_all)
if self.options['true_face_power'] != 0 and not self.pretrain:
self.D_train (warped_src, warped_dst)
if self.gan_power != 0:
self.D_src_dst_train (warped_src, target_src, target_srcm, warped_dst, target_dst, target_dstm)
self.D_src_dst_train (warped_src, target_src, target_srcm_all, warped_dst, target_dst, target_dstm_all)
return ( ('src_loss', src_loss), ('dst_loss', dst_loss), )
#override
def onGetPreview(self, samples):
( (warped_src, target_src, target_srcm),
(warped_dst, target_dst, target_dstm) ) = samples
( (warped_src, target_src, target_srcm_all,),
(warped_dst, target_dst, target_dstm_all,) ) = samples
if self.options['learn_mask']:
S, D, SS, DD, DDM, SD, SDM = [ np.clip( nn.to_data_format(x,"NHWC", self.model_data_format), 0.0, 1.0) for x in ([target_src,target_dst] + self.AE_view (target_src, target_dst) ) ]
@ -772,7 +801,10 @@ class SAEHDModel(ModelBase):
else:
S, D, SS, DD, SD, = [ np.clip( nn.to_data_format(x,"NHWC", self.model_data_format) , 0.0, 1.0) for x in ([target_src,target_dst] + self.AE_view (target_src, target_dst) ) ]
target_srcm, target_dstm = [ nn.to_data_format(x,"NHWC", self.model_data_format) for x in ([target_srcm, target_dstm] )]
target_srcm_all, target_dstm_all = [ nn.to_data_format(x,"NHWC", self.model_data_format) for x in ([target_srcm_all, target_dstm_all] )]
target_srcm = np.clip(target_srcm_all, 0, 1)
target_dstm = np.clip(target_dstm_all, 0, 1)
n_samples = min(4, self.get_batch_size(), 800 // self.resolution )
@ -815,11 +847,12 @@ class SAEHDModel(ModelBase):
face_type = FaceType.MID_FULL
elif self.options['face_type'] == 'f':
face_type = FaceType.FULL
elif self.options['face_type'] == 'wf':
face_type = FaceType.WHOLE_FACE
import merger
return self.predictor_func, (self.options['resolution'], self.options['resolution'], 3), merger.MergerConfigMasked(face_type=face_type,
default_mode = 'overlay' if self.options['ct_mode'] != 'none' or self.options['face_style_power'] or self.options['bg_style_power'] else 'seamless',
clip_hborder_mask_per=0.0625 if (face_type != FaceType.HALF) else 0,
)
Model = SAEHDModel

View file

@ -61,7 +61,7 @@ class Sample(object):
def get_pitch_yaw_roll(self):
if self.pitch_yaw_roll is None:
self.pitch_yaw_roll = LandmarksProcessor.estimate_pitch_yaw_roll(landmarks)
self.pitch_yaw_roll = LandmarksProcessor.estimate_pitch_yaw_roll(landmarks, size=self.shape[1])
return self.pitch_yaw_roll
def set_filename_offset_size(self, filename, offset, size):

View file

@ -60,7 +60,10 @@ class SampleGeneratorFace(SampleGeneratorBase):
if self.debug:
self.generators = [ThisThreadGenerator ( self.batch_func, (pickled_samples, index_host.create_cli(), ct_pickled_samples, ct_index_host.create_cli() if ct_index_host is not None else None) )]
else:
self.generators = [SubprocessGenerator ( self.batch_func, (pickled_samples, index_host.create_cli(), ct_pickled_samples, ct_index_host.create_cli() if ct_index_host is not None else None), start_now=True ) for i in range(self.generators_count) ]
self.generators = [SubprocessGenerator ( self.batch_func, (pickled_samples, index_host.create_cli(), ct_pickled_samples, ct_index_host.create_cli() if ct_index_host is not None else None), start_now=False ) \
for i in range(self.generators_count) ]
SubprocessGenerator.start_in_parallel( self.generators )
self.generator_counter = -1

View file

@ -52,7 +52,7 @@ class SampleGeneratorFacePerson(SampleGeneratorBase):
self.generators = [iter_utils.ThisThreadGenerator ( self.batch_func, (samples_host.create_cli(), index2d_host.create_cli(),) )]
else:
self.generators_count = np.clip(multiprocessing.cpu_count(), 2, 4)
self.generators = [iter_utils.SubprocessGenerator ( self.batch_func, (samples_host.create_cli(), index2d_host.create_cli(),), start_now=True ) for i in range(self.generators_count) ]
self.generators = [iter_utils.SubprocessGenerator ( self.batch_func, (samples_host.create_cli(), index2d_host.create_cli(),) ) for i in range(self.generators_count) ]
self.generator_counter = -1

View file

@ -44,7 +44,7 @@ class SampleGeneratorFaceTemporal(SampleGeneratorBase):
if self.debug:
self.generators = [ThisThreadGenerator ( self.batch_func, (pickled_samples, index_host.create_cli(),) )]
else:
self.generators = [SubprocessGenerator ( self.batch_func, (pickled_samples, index_host.create_cli(),), start_now=True ) for i in range(self.generators_count) ]
self.generators = [SubprocessGenerator ( self.batch_func, (pickled_samples, index_host.create_cli(),) ) for i in range(self.generators_count) ]
self.generator_counter = -1

View file

@ -25,21 +25,24 @@ class SampleProcessor(object):
FACE_TYPE_HALF = 10
FACE_TYPE_MID_FULL = 11
FACE_TYPE_FULL = 12
FACE_TYPE_HEAD = 13 #currently unused
FACE_TYPE_AVATAR = 14 #currently unused
FACE_TYPE_FULL_NO_ALIGN = 15
FACE_TYPE_HEAD_NO_ALIGN = 16
FACE_TYPE_WHOLE_FACE = 13
FACE_TYPE_HEAD = 14 #currently unused
FACE_TYPE_AVATAR = 15 #currently unused
FACE_TYPE_FULL_NO_ALIGN = 16
FACE_TYPE_HEAD_NO_ALIGN = 17
FACE_TYPE_END = 20
MODE_BEGIN = 40
MODE_BGR = 40 #BGR
MODE_G = 41 #Grayscale
MODE_GGG = 42 #3xGrayscale
MODE_FACE_MASK_HULL = 43 #mask hull as grayscale
MODE_FACE_MASK_ALL_HULL = 43 #mask all hull as grayscale
MODE_FACE_MASK_EYES_HULL = 44 #mask eyes hull as grayscale
MODE_FACE_MASK_STRUCT = 45 #mask structure as grayscale
MODE_BGR_SHUFFLE = 46 #BGR shuffle
MODE_BGR_RANDOM_HSV_SHIFT = 47
MODE_FACE_MASK_ALL_EYES_HULL = 45 #combo all + eyes as grayscale
MODE_FACE_MASK_STRUCT = 46 #mask structure as grayscale
MODE_BGR_SHUFFLE = 47 #BGR shuffle
MODE_BGR_RANDOM_HSV_SHIFT = 48
MODE_BGR_RANDOM_RGB_LEVELS = 49
MODE_END = 50
class Options(object):
@ -53,6 +56,7 @@ class SampleProcessor(object):
SPTF_FACETYPE_TO_FACETYPE = { Types.FACE_TYPE_HALF : FaceType.HALF,
Types.FACE_TYPE_MID_FULL : FaceType.MID_FULL,
Types.FACE_TYPE_FULL : FaceType.FULL,
Types.FACE_TYPE_WHOLE_FACE : FaceType.WHOLE_FACE,
Types.FACE_TYPE_HEAD : FaceType.HEAD,
Types.FACE_TYPE_FULL_NO_ALIGN : FaceType.FULL_NO_ALIGN,
Types.FACE_TYPE_HEAD_NO_ALIGN : FaceType.HEAD_NO_ALIGN,
@ -107,11 +111,13 @@ class SampleProcessor(object):
if target_face_type == SPTF.NONE:
raise ValueError("target face type must be defined for face samples")
else:
if mode_type == SPTF.MODE_FACE_MASK_HULL:
raise ValueError("MODE_FACE_MASK_HULL applicable only for face samples")
if mode_type == SPTF.MODE_FACE_MASK_ALL_HULL:
raise ValueError("MODE_FACE_MASK_ALL_HULL applicable only for face samples")
if mode_type == SPTF.MODE_FACE_MASK_EYES_HULL:
raise ValueError("MODE_FACE_MASK_EYES_HULL applicable only for face samples")
elif mode_type == SPTF.MODE_FACE_MASK_STRUCT:
if mode_type == SPTF.MODE_FACE_MASK_ALL_EYES_HULL:
raise ValueError("MODE_FACE_MASK_ALL_EYES_HULL applicable only for face samples")
if mode_type == SPTF.MODE_FACE_MASK_STRUCT:
raise ValueError("MODE_FACE_MASK_STRUCT applicable only for face samples")
can_warp = (img_type==SPTF.IMG_WARPED or img_type==SPTF.IMG_WARPED_TRANSFORMED)
@ -141,16 +147,33 @@ class SampleProcessor(object):
if mode_type == SPTF.NONE:
raise ValueError ('expected MODE_ type')
if mode_type == SPTF.MODE_FACE_MASK_HULL:
if mode_type == SPTF.MODE_FACE_MASK_ALL_HULL or \
mode_type == SPTF.MODE_FACE_MASK_EYES_HULL or \
mode_type == SPTF.MODE_FACE_MASK_ALL_EYES_HULL:
if mode_type == SPTF.MODE_FACE_MASK_ALL_HULL or \
mode_type == SPTF.MODE_FACE_MASK_ALL_EYES_HULL:
if sample.eyebrows_expand_mod is not None:
img = LandmarksProcessor.get_image_hull_mask (sample_bgr.shape, sample.landmarks, eyebrows_expand_mod=sample.eyebrows_expand_mod )
all_mask = LandmarksProcessor.get_image_hull_mask (sample_bgr.shape, sample.landmarks, eyebrows_expand_mod=sample.eyebrows_expand_mod )
else:
img = LandmarksProcessor.get_image_hull_mask (sample_bgr.shape, sample.landmarks)
all_mask = LandmarksProcessor.get_image_hull_mask (sample_bgr.shape, sample.landmarks)
all_mask = np.clip(all_mask, 0, 1)
if mode_type == SPTF.MODE_FACE_MASK_EYES_HULL or \
mode_type == SPTF.MODE_FACE_MASK_ALL_EYES_HULL:
eyes_mask = LandmarksProcessor.get_image_eye_mask (sample_bgr.shape, sample.landmarks)
eyes_mask = np.clip(eyes_mask, 0, 1)
if mode_type == SPTF.MODE_FACE_MASK_ALL_HULL:
img = all_mask
elif mode_type == SPTF.MODE_FACE_MASK_EYES_HULL:
img = eyes_mask
elif mode_type == SPTF.MODE_FACE_MASK_ALL_EYES_HULL:
img = all_mask + eyes_mask
if sample.ie_polys is not None:
sample.ie_polys.overlay_mask(img)
elif mode_type == SPTF.MODE_FACE_MASK_EYES_HULL:
img = LandmarksProcessor.get_image_eye_mask (sample_bgr.shape, sample.landmarks)
elif mode_type == SPTF.MODE_FACE_MASK_STRUCT:
if sample.eyebrows_expand_mod is not None:
@ -175,8 +198,12 @@ class SampleProcessor(object):
chance, kernel_max_size = gaussian_blur
chance = np.clip(chance, 0, 100)
if np.random.randint(100) < chance:
img = cv2.GaussianBlur(img, ( np.random.randint( kernel_max_size )*2+1 ,) *2 , 0)
rnd_state = np.random.RandomState (sample_rnd_seed+1)
gblur_rnd_chance = rnd_state.randint(100)
gblur_rnd_kernel = rnd_state.randint(kernel_max_size)*2+1
if gblur_rnd_chance < chance:
img = cv2.GaussianBlur(img, (gblur_rnd_kernel,) *2 , 0)
if is_face_sample:
target_ft = SampleProcessor.SPTF_FACETYPE_TO_FACETYPE[target_face_type]
@ -186,12 +213,13 @@ class SampleProcessor(object):
if sample.face_type == FaceType.MARK_ONLY:
mat = LandmarksProcessor.get_transform_mat (sample.landmarks, sample.shape[0], target_ft)
if mode_type == SPTF.MODE_FACE_MASK_HULL or \
if mode_type == SPTF.MODE_FACE_MASK_ALL_HULL or \
mode_type == SPTF.MODE_FACE_MASK_EYES_HULL or \
mode_type == SPTF.MODE_FACE_MASK_ALL_EYES_HULL or \
mode_type == SPTF.MODE_FACE_MASK_STRUCT:
img = cv2.warpAffine( img, mat, (sample.shape[0],sample.shape[0]), flags=cv2.INTER_CUBIC )
img = imagelib.warp_by_params (params, img, can_warp, can_transform, can_flip=True, border_replicate=False)
img = cv2.resize( img, (resolution,resolution), cv2.INTER_CUBIC )[...,None]
img = cv2.warpAffine( img, mat, (sample.shape[0],sample.shape[0]), flags=cv2.INTER_LINEAR )
img = imagelib.warp_by_params (params, img, can_warp, can_transform, can_flip=True, border_replicate=False, cv2_inter=cv2.INTER_LINEAR)
img = cv2.resize( img, (resolution,resolution), cv2.INTER_LINEAR )[...,None]
else:
img = cv2.warpAffine( img, mat, (sample.shape[0],sample.shape[0]), flags=cv2.INTER_CUBIC )
img = imagelib.warp_by_params (params, img, can_warp, can_transform, can_flip=True, border_replicate=True)
@ -200,11 +228,12 @@ class SampleProcessor(object):
else:
mat = LandmarksProcessor.get_transform_mat (sample.landmarks, resolution, target_ft)
if mode_type == SPTF.MODE_FACE_MASK_HULL or \
if mode_type == SPTF.MODE_FACE_MASK_ALL_HULL or \
mode_type == SPTF.MODE_FACE_MASK_EYES_HULL or \
mode_type == SPTF.MODE_FACE_MASK_ALL_EYES_HULL or \
mode_type == SPTF.MODE_FACE_MASK_STRUCT:
img = imagelib.warp_by_params (params, img, can_warp, can_transform, can_flip=True, border_replicate=False)
img = cv2.warpAffine( img, mat, (resolution,resolution), borderMode=cv2.BORDER_CONSTANT, flags=cv2.INTER_CUBIC )[...,None]
img = imagelib.warp_by_params (params, img, can_warp, can_transform, can_flip=True, border_replicate=False, cv2_inter=cv2.INTER_LINEAR)
img = cv2.warpAffine( img, mat, (resolution,resolution), borderMode=cv2.BORDER_CONSTANT, flags=cv2.INTER_LINEAR )[...,None]
else:
img = imagelib.warp_by_params (params, img, can_warp, can_transform, can_flip=True, border_replicate=True)
img = cv2.warpAffine( img, mat, (resolution,resolution), borderMode=cv2.BORDER_REPLICATE, flags=cv2.INTER_CUBIC )
@ -213,10 +242,11 @@ class SampleProcessor(object):
img = cv2.resize( img, (resolution,resolution), cv2.INTER_CUBIC )
if mode_type == SPTF.MODE_FACE_MASK_HULL or \
if mode_type == SPTF.MODE_FACE_MASK_ALL_HULL or \
mode_type == SPTF.MODE_FACE_MASK_EYES_HULL or \
mode_type == SPTF.MODE_FACE_MASK_ALL_EYES_HULL or \
mode_type == SPTF.MODE_FACE_MASK_STRUCT:
out_sample = np.clip(img.astype(np.float32), 0, 1)
out_sample = img.astype(np.float32)
else:
img = np.clip(img.astype(np.float32), 0, 1)
@ -242,6 +272,20 @@ class SampleProcessor(object):
v = np.clip ( v + rnd_state.random()-0.5, 0, 1 )
hsv = cv2.merge([h, s, v])
out_sample = np.clip( cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR) , 0, 1 )
elif mode_type == SPTF.MODE_BGR_RANDOM_RGB_LEVELS:
rnd_state = np.random.RandomState (sample_rnd_seed)
np_rnd = rnd_state.rand
inBlack = np.array([np_rnd()*0.25 , np_rnd()*0.25 , np_rnd()*0.25], dtype=np.float32)
inWhite = np.array([1.0-np_rnd()*0.25, 1.0-np_rnd()*0.25, 1.0-np_rnd()*0.25], dtype=np.float32)
inGamma = np.array([0.5+np_rnd(), 0.5+np_rnd(), 0.5+np_rnd()], dtype=np.float32)
outBlack = np.array([0.0, 0.0, 0.0], dtype=np.float32)
outWhite = np.array([1.0, 1.0, 1.0], dtype=np.float32)
out_sample = np.clip( (img - inBlack) / (inWhite - inBlack), 0, 1 )
out_sample = ( out_sample ** (1/inGamma) ) * (outWhite - outBlack) + outBlack
out_sample = np.clip(out_sample, 0, 1)
elif mode_type == SPTF.MODE_G:
out_sample = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)[...,None]
elif mode_type == SPTF.MODE_GGG: