diff --git a/README.md b/README.md
index 22a12db..d82949d 100644
--- a/README.md
+++ b/README.md
@@ -18,8 +18,11 @@ More than 95% of deepfake videos are created with DeepFaceLab.
DeepFaceLab is used by such popular youtube channels as
-| [Ctrl Shift Face](https://www.youtube.com/channel/UCKpH0CKltc73e4wh0_pgL3g)| [Sham00k](https://www.youtube.com/channel/UCZXbWcv7fSZFTAZV4beckyw/videos)| [Collider videos](https://www.youtube.com/watch?v=A91P2qtPT54&list=PLayt6616lBclvOprvrC8qKGCO-mAhPRux)| [iFake](https://www.youtube.com/channel/UCC0lK2Zo2BMXX-k1Ks0r7dg/videos)| [VFXChris Ume](https://www.youtube.com/channel/UCGf4OlX_aTt8DlrgiH3jN3g/videos)|
-|---|---|---|---|---|
+| [Ctrl Shift Face](https://www.youtube.com/channel/UCKpH0CKltc73e4wh0_pgL3g)| [VFXChris Ume](https://www.youtube.com/channel/UCGf4OlX_aTt8DlrgiH3jN3g/videos)|
+|---|---|
+
+| [Sham00k](https://www.youtube.com/channel/UCZXbWcv7fSZFTAZV4beckyw/videos)| [Collider videos](https://www.youtube.com/watch?v=A91P2qtPT54&list=PLayt6616lBclvOprvrC8qKGCO-mAhPRux)| [iFake](https://www.youtube.com/channel/UCC0lK2Zo2BMXX-k1Ks0r7dg/videos)|
+|---|---|---|
@@ -97,7 +100,7 @@ deepfake quality progress
|
-#deepfacelab #deepfakes #faceswap #face-swap #deep-learning #deeplearning #deep-neural-networks #deepface #deep-face-swap #fakeapp #fake-app #neural-networks #neural-nets
+#deepfacelab #deepfakes #faceswap #face-swap #deep-learning #deeplearning #deep-neural-networks #deepface #deep-face-swap #fakeapp #fake-app #neural-networks #neural-nets #tensorflow #cuda #nvidia
|
diff --git a/core/imagelib/color_transfer.py b/core/imagelib/color_transfer.py
index 175920b..0c1760e 100644
--- a/core/imagelib/color_transfer.py
+++ b/core/imagelib/color_transfer.py
@@ -366,8 +366,8 @@ def color_hist_match(src_im, tar_im, hist_match_threshold=255):
return matched
def color_transfer_mix(img_src,img_trg):
- img_src = (img_src*255.0).astype(np.uint8)
- img_trg = (img_trg*255.0).astype(np.uint8)
+ img_src = np.clip(img_src*255.0, 0, 255).astype(np.uint8)
+ img_trg = np.clip(img_trg*255.0, 0, 255).astype(np.uint8)
img_src_lab = cv2.cvtColor(img_src, cv2.COLOR_BGR2LAB)
img_trg_lab = cv2.cvtColor(img_trg, cv2.COLOR_BGR2LAB)
diff --git a/core/imagelib/warp.py b/core/imagelib/warp.py
index 4fd06cf..857b13d 100644
--- a/core/imagelib/warp.py
+++ b/core/imagelib/warp.py
@@ -47,11 +47,11 @@ def gen_warp_params (source, flip, rotation_range=[-10,10], scale_range=[-0.5, 0
return params
-def warp_by_params (params, img, can_warp, can_transform, can_flip, border_replicate):
+def warp_by_params (params, img, can_warp, can_transform, can_flip, border_replicate, cv2_inter=cv2.INTER_CUBIC):
if can_warp:
- img = cv2.remap(img, params['mapx'], params['mapy'], cv2.INTER_CUBIC )
+ img = cv2.remap(img, params['mapx'], params['mapy'], cv2_inter )
if can_transform:
- img = cv2.warpAffine( img, params['rmat'], (params['w'], params['w']), borderMode=(cv2.BORDER_REPLICATE if border_replicate else cv2.BORDER_CONSTANT), flags=cv2.INTER_CUBIC )
+ img = cv2.warpAffine( img, params['rmat'], (params['w'], params['w']), borderMode=(cv2.BORDER_REPLICATE if border_replicate else cv2.BORDER_CONSTANT), flags=cv2_inter )
if len(img.shape) == 2:
img = img[...,None]
if can_flip and params['flip']:
diff --git a/core/joblib/SubprocessGenerator.py b/core/joblib/SubprocessGenerator.py
index 82ccbdb..84a5937 100644
--- a/core/joblib/SubprocessGenerator.py
+++ b/core/joblib/SubprocessGenerator.py
@@ -1,7 +1,28 @@
-import queue as Queue
import multiprocessing
+import queue as Queue
+import threading
+import time
+
class SubprocessGenerator(object):
+
+ @staticmethod
+ def launch_thread(generator):
+ generator._start()
+
+ @staticmethod
+ def start_in_parallel( generator_list ):
+ """
+ Start list of generators in parallel
+ """
+ for generator in generator_list:
+ thread = threading.Thread(target=SubprocessGenerator.launch_thread, args=(generator,) )
+ thread.daemon = True
+ thread.start()
+
+ while not all ([generator._is_started() for generator in generator_list]):
+ time.sleep(0.005)
+
def __init__(self, generator_func, user_param=None, prefetch=2, start_now=True):
super().__init__()
self.prefetch = prefetch
@@ -17,10 +38,14 @@ class SubprocessGenerator(object):
if self.p == None:
user_param = self.user_param
self.user_param = None
- self.p = multiprocessing.Process(target=self.process_func, args=(user_param,) )
- self.p.daemon = True
- self.p.start()
-
+ p = multiprocessing.Process(target=self.process_func, args=(user_param,) )
+ p.daemon = True
+ p.start()
+ self.p = p
+
+ def _is_started(self):
+ return self.p is not None
+
def process_func(self, user_param):
self.generator_func = self.generator_func(user_param)
while True:
diff --git a/core/joblib/SubprocessorBase.py b/core/joblib/SubprocessorBase.py
index 0c72516..a7213f9 100644
--- a/core/joblib/SubprocessorBase.py
+++ b/core/joblib/SubprocessorBase.py
@@ -289,7 +289,7 @@ class Subprocessor(object):
terminate_it = True
break
- if self.no_response_time_sec != 0 and (time.time() - cli.sent_time) > self.no_response_time_sec:
+ if (time.time() - cli.sent_time) > 30:
terminate_it = True
if terminate_it:
diff --git a/core/leras/layers.py b/core/leras/layers.py
index 276e003..0a8191f 100644
--- a/core/leras/layers.py
+++ b/core/leras/layers.py
@@ -318,7 +318,12 @@ def initialize_layers(nn):
class BlurPool(LayerBase):
def __init__(self, filt_size=3, stride=2, **kwargs ):
- self.strides = [1,stride,stride,1]
+
+ if nn.data_format == "NHWC":
+ self.strides = [1,stride,stride,1]
+ else:
+ self.strides = [1,1,stride,stride]
+
self.filt_size = filt_size
pad = [ int(1.*(filt_size-1)/2), int(np.ceil(1.*(filt_size-1)/2)) ]
@@ -352,9 +357,9 @@ def initialize_layers(nn):
self.k = tf.constant (self.a, dtype=nn.tf_floatx )
def __call__(self, x):
- k = tf.tile (self.k, (1,1,x.shape[-1],1) )
+ k = tf.tile (self.k, (1,1,x.shape[nn.conv2d_ch_axis],1) )
x = tf.pad(x, self.padding )
- x = tf.nn.depthwise_conv2d(x, k, self.strides, 'VALID')
+ x = tf.nn.depthwise_conv2d(x, k, self.strides, 'VALID', data_format=nn.data_format)
return x
nn.BlurPool = BlurPool
diff --git a/core/leras/models.py b/core/leras/models.py
index e15d40d..231dc85 100644
--- a/core/leras/models.py
+++ b/core/leras/models.py
@@ -243,15 +243,15 @@ def initialize_models(nn):
nn.ModelBase = ModelBase
class PatchDiscriminator(nn.ModelBase):
- def on_build(self, patch_size, in_ch, base_ch=256, kernel_initializer=None):
+ def on_build(self, patch_size, in_ch, base_ch=256, conv_kernel_initializer=None):
prev_ch = in_ch
self.convs = []
for i, (kernel_size, strides) in enumerate(patch_discriminator_kernels[patch_size]):
cur_ch = base_ch * min( (2**i), 8 )
- self.convs.append ( nn.Conv2D( prev_ch, cur_ch, kernel_size=kernel_size, strides=strides, padding='SAME', kernel_initializer=kernel_initializer) )
+ self.convs.append ( nn.Conv2D( prev_ch, cur_ch, kernel_size=kernel_size, strides=strides, padding='SAME', kernel_initializer=conv_kernel_initializer) )
prev_ch = cur_ch
- self.out_conv = nn.Conv2D( prev_ch, 1, kernel_size=1, padding='VALID', kernel_initializer=kernel_initializer)
+ self.out_conv = nn.Conv2D( prev_ch, 1, kernel_size=1, padding='VALID', kernel_initializer=conv_kernel_initializer)
def forward(self, x):
for conv in self.convs:
@@ -260,7 +260,32 @@ def initialize_models(nn):
nn.PatchDiscriminator = PatchDiscriminator
+ class IllumDiscriminator(nn.ModelBase):
+ def on_build(self, patch_size, in_ch, base_ch=256, conv_kernel_initializer=None):
+ prev_ch = in_ch
+ self.convs = []
+ for i, (kernel_size, strides) in enumerate(patch_discriminator_kernels[patch_size]):
+ cur_ch = base_ch * min( (2**i), 8 )
+ self.convs.append ( nn.Conv2D( prev_ch, cur_ch, kernel_size=kernel_size, strides=strides, padding='SAME', kernel_initializer=conv_kernel_initializer) )
+ prev_ch = cur_ch
+
+ self.out1 = nn.Conv2D( 1, 1024, kernel_size=1, strides=1, padding='SAME', kernel_initializer=conv_kernel_initializer)
+ self.out2 = nn.Conv2D( 1024, 1, kernel_size=1, strides=1, padding='SAME', kernel_initializer=conv_kernel_initializer)
+ def forward(self, x):
+ for conv in self.convs:
+ x = tf.nn.leaky_relu( conv(x), 0.1 )
+
+ x = tf.reduce_mean(x, axis=nn.conv2d_ch_axis, keep_dims=True)
+
+ x = self.out1(x)
+ x = tf.nn.leaky_relu(x, 0.1 )
+ x = self.out2(x)
+
+ return x
+
+ nn.IllumDiscriminator = IllumDiscriminator
+
patch_discriminator_kernels = \
{ 1 : [ [1,1] ],
2 : [ [2,1] ],
@@ -277,4 +302,8 @@ patch_discriminator_kernels = \
13 : [ [3,2], [4,2], [2,1] ],
14 : [ [4,2], [4,2], [2,1] ],
15 : [ [3,2], [3,2], [3,1] ],
- 16 : [ [4,2], [3,2], [3,1] ] }
\ No newline at end of file
+ 16 : [ [4,2], [3,2], [3,1] ],
+
+
+ 28 : [ [4,2], [3,2], [4,2], [2,1] ]
+ }
\ No newline at end of file
diff --git a/core/leras/nn.py b/core/leras/nn.py
index 9199b6d..c5ba9cf 100644
--- a/core/leras/nn.py
+++ b/core/leras/nn.py
@@ -55,6 +55,7 @@ class nn():
tf_upsample2d = None
tf_upsample2d_bilinear = None
tf_flatten = None
+ tf_max_pool = None
tf_reshape_4D = None
tf_random_binomial = None
tf_gaussian_blur = None
@@ -82,7 +83,8 @@ class nn():
# Models
PatchDiscriminator = None
-
+ IllumDiscriminator = None
+
@staticmethod
def initialize(device_config=None, floatx="float32", data_format="NHWC"):
diff --git a/core/leras/tensor_ops.py b/core/leras/tensor_ops.py
index db99f0e..9b0f177 100644
--- a/core/leras/tensor_ops.py
+++ b/core/leras/tensor_ops.py
@@ -129,6 +129,14 @@ def initialize_tensor_ops(nn):
nn.tf_flatten = tf_flatten
+ def tf_max_pool(x, kernel_size, strides):
+ if nn.data_format == "NHWC":
+ return tf.nn.max_pool(x, [1,kernel_size,kernel_size,1], [1,strides,strides,1], "VALID", data_format=nn.data_format)
+ else:
+ return tf.nn.max_pool(x, [1,1,kernel_size,kernel_size], [1,1,strides,strides], "VALID", data_format=nn.data_format)
+
+ nn.tf_max_pool = tf_max_pool
+
def tf_reshape_4D(x, w,h,c):
if nn.data_format == "NHWC":
# match NCHW version in order to switch data_format without problems
diff --git a/doc/logo_tensorflow.png b/doc/logo_tensorflow.png
index b06cdd6..1287842 100644
Binary files a/doc/logo_tensorflow.png and b/doc/logo_tensorflow.png differ
diff --git a/doc/quality_nowadays.jpg b/doc/quality_nowadays.jpg
index ef161bc..821a8d0 100644
Binary files a/doc/quality_nowadays.jpg and b/doc/quality_nowadays.jpg differ
diff --git a/facelib/FANExtractor.py b/facelib/FANExtractor.py
index 7127f33..0c755f1 100644
--- a/facelib/FANExtractor.py
+++ b/facelib/FANExtractor.py
@@ -216,7 +216,7 @@ class FANExtractor(object):
for i, lmrks in enumerate(landmarks):
try:
if lmrks is not None:
- image_to_face_mat = LandmarksProcessor.get_transform_mat (lmrks, 256, FaceType.FULL, full_face_align_top=False)
+ image_to_face_mat = LandmarksProcessor.get_transform_mat (lmrks, 256, FaceType.FULL)
face_image = cv2.warpAffine(input_image, image_to_face_mat, (256, 256), cv2.INTER_CUBIC )
rects2 = second_pass_extractor.extract(face_image, is_bgr=is_bgr)
diff --git a/facelib/FaceType.py b/facelib/FaceType.py
index 613b2ad..816375d 100644
--- a/facelib/FaceType.py
+++ b/facelib/FaceType.py
@@ -6,8 +6,9 @@ class FaceType(IntEnum):
MID_FULL = 1
FULL = 2
FULL_NO_ALIGN = 3
- HEAD = 4
- HEAD_NO_ALIGN = 5
+ WHOLE_FACE = 4
+ HEAD = 5
+ HEAD_NO_ALIGN = 6
MARK_ONLY = 10, #no align at all, just embedded faceinfo
@@ -25,6 +26,7 @@ class FaceType(IntEnum):
from_string_dict = {'half_face': FaceType.HALF,
'midfull_face': FaceType.MID_FULL,
'full_face': FaceType.FULL,
+ 'whole_face': FaceType.WHOLE_FACE,
'head' : FaceType.HEAD,
'mark_only' : FaceType.MARK_ONLY,
'full_face_no_align' : FaceType.FULL_NO_ALIGN,
@@ -33,6 +35,7 @@ from_string_dict = {'half_face': FaceType.HALF,
to_string_dict = { FaceType.HALF : 'half_face',
FaceType.MID_FULL : 'midfull_face',
FaceType.FULL : 'full_face',
+ FaceType.WHOLE_FACE : 'whole_face',
FaceType.HEAD : 'head',
FaceType.MARK_ONLY :'mark_only',
FaceType.FULL_NO_ALIGN : 'full_face_no_align',
diff --git a/facelib/LandmarksProcessor.py b/facelib/LandmarksProcessor.py
index 0480351..88f9f22 100644
--- a/facelib/LandmarksProcessor.py
+++ b/facelib/LandmarksProcessor.py
@@ -188,8 +188,9 @@ FaceType_to_padding_remove_align = {
FaceType.MID_FULL: (0.0675, False),
FaceType.FULL: (0.2109375, False),
FaceType.FULL_NO_ALIGN: (0.2109375, True),
- FaceType.HEAD: (0.369140625, False),
- FaceType.HEAD_NO_ALIGN: (0.369140625, True),
+ FaceType.WHOLE_FACE: (0.40, False),
+ FaceType.HEAD: (1.0, False),
+ FaceType.HEAD_NO_ALIGN: (1.0, True),
}
def convert_98_to_68(lmrks):
@@ -249,77 +250,63 @@ def transform_points(points, mat, invert=False):
points = np.squeeze(points)
return points
-def get_transform_mat (image_landmarks, output_size, face_type, scale=1.0, full_face_align_top=True):
+def get_transform_mat (image_landmarks, output_size, face_type, scale=1.0):
if not isinstance(image_landmarks, np.ndarray):
image_landmarks = np.array (image_landmarks)
- padding, remove_align = FaceType_to_padding_remove_align.get(face_type, 0.0)
-
+ # estimate landmarks transform from global space to local aligned space with bounds [0..1]
mat = umeyama( np.concatenate ( [ image_landmarks[17:49] , image_landmarks[54:55] ] ) , landmarks_2D_new, True)[0:2]
- l_p = transform_points ( np.float32([(0,0),(1,0),(1,1),(0,1),(0.5,0.5)]) , mat, True)
- l_c = l_p[4]
+
+ # get corner points in global space
+ g_p = transform_points ( np.float32([(0,0),(1,0),(1,1),(0,1),(0.5,0.5) ]) , mat, True)
+ g_c = g_p[4]
- tb_diag_vec = (l_p[2]-l_p[0]).astype(np.float32)
+ # calc diagonal vectors between corners in global space
+ tb_diag_vec = (g_p[2]-g_p[0]).astype(np.float32)
tb_diag_vec /= npla.norm(tb_diag_vec)
- bt_diag_vec = (l_p[1]-l_p[3]).astype(np.float32)
+ bt_diag_vec = (g_p[1]-g_p[3]).astype(np.float32)
bt_diag_vec /= npla.norm(bt_diag_vec)
- mod = (1.0 / scale)* ( npla.norm(l_p[0]-l_p[2])*(padding*np.sqrt(2.0) + 0.5) )
-
+ # calc modifier of diagonal vectors for scale and padding value
+ padding, remove_align = FaceType_to_padding_remove_align.get(face_type, 0.0)
+ mod = (1.0 / scale)* ( npla.norm(g_p[0]-g_p[2])*(padding*np.sqrt(2.0) + 0.5) )
+
+ if face_type == FaceType.WHOLE_FACE:
+ vec = (g_p[0]-g_p[3]).astype(np.float32)
+ vec_len = npla.norm(vec)
+ vec /= vec_len
+
+ g_c += vec*vec_len*0.07
+
+ # calc 3 points in global space to estimate 2d affine transform
if not remove_align:
- l_t = np.array( [ np.round( l_c - tb_diag_vec*mod ),
- np.round( l_c + bt_diag_vec*mod ),
- np.round( l_c + tb_diag_vec*mod ) ] )
+ l_t = np.array( [ np.round( g_c - tb_diag_vec*mod ),
+ np.round( g_c + bt_diag_vec*mod ),
+ np.round( g_c + tb_diag_vec*mod ) ] )
else:
- l_t = np.array( [ np.round( l_c - tb_diag_vec*mod ),
- np.round( l_c + bt_diag_vec*mod ),
- np.round( l_c + tb_diag_vec*mod ),
- np.round( l_c - bt_diag_vec*mod ),
+ # remove_align - face will be centered in the frame but not aligned
+ l_t = np.array( [ np.round( g_c - tb_diag_vec*mod ),
+ np.round( g_c + bt_diag_vec*mod ),
+ np.round( g_c + tb_diag_vec*mod ),
+ np.round( g_c - bt_diag_vec*mod ),
] )
+ # get area of face square in global space
area = mathlib.polygon_area(l_t[:,0], l_t[:,1] )
+
+ # calc side of square
side = np.float32(math.sqrt(area) / 2)
- l_t = np.array( [ np.round( l_c + [-side,-side] ),
- np.round( l_c + [ side,-side] ),
- np.round( l_c + [ side, side] ) ] )
+
+ # calc 3 points with unrotated square
+ l_t = np.array( [ np.round( g_c + [-side,-side] ),
+ np.round( g_c + [ side,-side] ),
+ np.round( g_c + [ side, side] ) ] )
+ # calc affine transform from 3 global space points to 3 local space points size of 'output_size'
pts2 = np.float32(( (0,0),(output_size,0),(output_size,output_size) ))
mat = cv2.getAffineTransform(l_t,pts2)
-
-
- #if remove_align:
- # bbox = transform_points ( [ (0,0), (0,output_size), (output_size, output_size), (output_size,0) ], mat, True)
- # #import code
- # #code.interact(local=dict(globals(), **locals()))
- # area = mathlib.polygon_area(bbox[:,0], bbox[:,1] )
- # side = math.sqrt(area) / 2
- # center = transform_points ( [(output_size/2,output_size/2)], mat, True)
- # pts1 = np.float32(( center+[-side,-side], center+[side,-side], center+[side,-side] ))
- # pts2 = np.float32([[0,0],[output_size,0],[0,output_size]])
- # mat = cv2.getAffineTransform(pts1,pts2)
-
return mat
-
-#if full_face_align_top and (face_type == FaceType.FULL or face_type == FaceType.FULL_NO_ALIGN):
-# #lmrks2 = expand_eyebrows(image_landmarks)
-# #lmrks2_ = transform_points( [ lmrks2[19], lmrks2[24] ], mat, False )
-# #y_diff = np.float32( (0,np.min(lmrks2_[:,1])) )
-# #y_diff = transform_points( [ np.float32( (0,0) ), y_diff], mat, True)
-# #y_diff = y_diff[1]-y_diff[0]
-#
-# x_diff = np.float32((0,0))
-#
-# lmrks2_ = transform_points( [ image_landmarks[0], image_landmarks[16] ], mat, False )
-# if lmrks2_[0,0] < 0:
-# x_diff = lmrks2_[0,0]
-# x_diff = transform_points( [ np.float32( (0,0) ), np.float32((x_diff,0)) ], mat, True)
-# x_diff = x_diff[1]-x_diff[0]
-# elif lmrks2_[1,0] >= output_size:
-# x_diff = lmrks2_[1,0]-(output_size-1)
-# x_diff = transform_points( [ np.float32( (0,0) ), np.float32((x_diff,0)) ], mat, True)
-# x_diff = x_diff[1]-x_diff[0]
-#
-# mat = cv2.getAffineTransform( l_t+y_diff+x_diff ,pts2)
+
def expand_eyebrows(lmrks, eyebrows_expand_mod=1.0):
if len(lmrks) != 68:
raise Exception('works only with 68 landmarks')
@@ -349,8 +336,8 @@ def expand_eyebrows(lmrks, eyebrows_expand_mod=1.0):
-def get_image_hull_mask (image_shape, image_landmarks, eyebrows_expand_mod=1.0, ie_polys=None, color=(1,) ):
- hull_mask = np.zeros(image_shape[0:2]+( len(color),),dtype=np.float32)
+def get_image_hull_mask (image_shape, image_landmarks, eyebrows_expand_mod=1.0, ie_polys=None ):
+ hull_mask = np.zeros(image_shape[0:2]+(1,),dtype=np.float32)
lmrks = expand_eyebrows(image_landmarks, eyebrows_expand_mod)
@@ -366,7 +353,7 @@ def get_image_hull_mask (image_shape, image_landmarks, eyebrows_expand_mod=1.0,
for item in parts:
merged = np.concatenate(item)
- cv2.fillConvexPoly(hull_mask, cv2.convexHull(merged), color )
+ cv2.fillConvexPoly(hull_mask, cv2.convexHull(merged), (1,) )
if ie_polys is not None:
ie_polys.overlay_mask(hull_mask)
@@ -411,7 +398,7 @@ def alpha_to_color (img_alpha, color):
def get_cmask (image_shape, lmrks, eyebrows_expand_mod=1.0):
h,w,c = image_shape
- hull = get_image_hull_mask (image_shape, lmrks, eyebrows_expand_mod, color=(1,) )
+ hull = get_image_hull_mask (image_shape, lmrks, eyebrows_expand_mod )
result = np.zeros( (h,w,3), dtype=np.float32 )
@@ -671,26 +658,19 @@ def draw_rect_landmarks (image, rect, image_landmarks, face_size, face_type, tra
points = transform_points ( [ ( int(face_size*0.05), 0), ( int(face_size*0.1), int(face_size*0.1) ), ( 0, int(face_size*0.1) ) ], image_to_face_mat, True)
imagelib.draw_polygon (image, points, (0,0,255), 2)
-
+
def calc_face_pitch(landmarks):
if not isinstance(landmarks, np.ndarray):
landmarks = np.array (landmarks)
t = ( (landmarks[6][1]-landmarks[8][1]) + (landmarks[10][1]-landmarks[8][1]) ) / 2.0
b = landmarks[8][1]
return float(b-t)
-
-def calc_face_yaw(landmarks):
- if not isinstance(landmarks, np.ndarray):
- landmarks = np.array (landmarks)
- l = ( (landmarks[27][0]-landmarks[0][0]) + (landmarks[28][0]-landmarks[1][0]) + (landmarks[29][0]-landmarks[2][0]) ) / 3.0
- r = ( (landmarks[16][0]-landmarks[27][0]) + (landmarks[15][0]-landmarks[28][0]) + (landmarks[14][0]-landmarks[29][0]) ) / 3.0
- return float(r-l)
-
-def estimate_pitch_yaw_roll(aligned_256px_landmarks):
+
+def estimate_pitch_yaw_roll(aligned_landmarks, size=256):
"""
returns pitch,yaw,roll [-pi...+pi]
"""
- shape = (256,256)
+ shape = (size,size)
focal_length = shape[1]
camera_center = (shape[1] / 2, shape[0] / 2)
camera_matrix = np.array(
@@ -700,7 +680,7 @@ def estimate_pitch_yaw_roll(aligned_256px_landmarks):
(_, rotation_vector, translation_vector) = cv2.solvePnP(
landmarks_68_3D,
- aligned_256px_landmarks.astype(np.float32),
+ aligned_landmarks.astype(np.float32),
camera_matrix,
np.zeros((4, 1)) )
@@ -710,3 +690,132 @@ def estimate_pitch_yaw_roll(aligned_256px_landmarks):
roll = np.clip ( roll, -math.pi, math.pi )
return -pitch, yaw, roll
+
+#if remove_align:
+# bbox = transform_points ( [ (0,0), (0,output_size), (output_size, output_size), (output_size,0) ], mat, True)
+# #import code
+# #code.interact(local=dict(globals(), **locals()))
+# area = mathlib.polygon_area(bbox[:,0], bbox[:,1] )
+# side = math.sqrt(area) / 2
+# center = transform_points ( [(output_size/2,output_size/2)], mat, True)
+# pts1 = np.float32(( center+[-side,-side], center+[side,-side], center+[side,-side] ))
+# pts2 = np.float32([[0,0],[output_size,0],[0,output_size]])
+# mat = cv2.getAffineTransform(pts1,pts2)
+#if full_face_align_top and (face_type == FaceType.FULL or face_type == FaceType.FULL_NO_ALIGN):
+# #lmrks2 = expand_eyebrows(image_landmarks)
+# #lmrks2_ = transform_points( [ lmrks2[19], lmrks2[24] ], mat, False )
+# #y_diff = np.float32( (0,np.min(lmrks2_[:,1])) )
+# #y_diff = transform_points( [ np.float32( (0,0) ), y_diff], mat, True)
+# #y_diff = y_diff[1]-y_diff[0]
+#
+# x_diff = np.float32((0,0))
+#
+# lmrks2_ = transform_points( [ image_landmarks[0], image_landmarks[16] ], mat, False )
+# if lmrks2_[0,0] < 0:
+# x_diff = lmrks2_[0,0]
+# x_diff = transform_points( [ np.float32( (0,0) ), np.float32((x_diff,0)) ], mat, True)
+# x_diff = x_diff[1]-x_diff[0]
+# elif lmrks2_[1,0] >= output_size:
+# x_diff = lmrks2_[1,0]-(output_size-1)
+# x_diff = transform_points( [ np.float32( (0,0) ), np.float32((x_diff,0)) ], mat, True)
+# x_diff = x_diff[1]-x_diff[0]
+#
+# mat = cv2.getAffineTransform( l_t+y_diff+x_diff ,pts2)
+
+
+"""
+def get_averaged_transform_mat (img_landmarks,
+ img_landmarks_prev,
+ img_landmarks_next,
+ average_frame_count,
+ average_center_frame_count,
+ output_size, face_type, scale=1.0):
+
+ l_c_list = []
+ tb_diag_vec_list = []
+ bt_diag_vec_list = []
+ mod_list = []
+
+ count = max(average_frame_count,average_center_frame_count)
+ for i in range ( -count, count+1, 1 ):
+ if i < 0:
+ lmrks = img_landmarks_prev[i] if -i < len(img_landmarks_prev) else None
+ elif i > 0:
+ lmrks = img_landmarks_next[i] if i < len(img_landmarks_next) else None
+ else:
+ lmrks = img_landmarks
+
+ if lmrks is None:
+ continue
+
+ l_c, tb_diag_vec, bt_diag_vec, mod = get_transform_mat_data (lmrks, face_type, scale=scale)
+
+ if i >= -average_frame_count and i <= average_frame_count:
+ tb_diag_vec_list.append(tb_diag_vec)
+ bt_diag_vec_list.append(bt_diag_vec)
+ mod_list.append(mod)
+
+ if i >= -average_center_frame_count and i <= average_center_frame_count:
+ l_c_list.append(l_c)
+
+ tb_diag_vec = np.mean( np.array(tb_diag_vec_list), axis=0 )
+ bt_diag_vec = np.mean( np.array(bt_diag_vec_list), axis=0 )
+ mod = np.mean( np.array(mod_list), axis=0 )
+ l_c = np.mean( np.array(l_c_list), axis=0 )
+
+ return get_transform_mat_by_data (l_c, tb_diag_vec, bt_diag_vec, mod, output_size, face_type)
+
+
+def get_transform_mat (image_landmarks, output_size, face_type, scale=1.0):
+ if not isinstance(image_landmarks, np.ndarray):
+ image_landmarks = np.array (image_landmarks)
+
+ # get face padding value for FaceType
+ padding, remove_align = FaceType_to_padding_remove_align.get(face_type, 0.0)
+
+ # estimate landmarks transform from global space to local aligned space with bounds [0..1]
+ mat = umeyama( np.concatenate ( [ image_landmarks[17:49] , image_landmarks[54:55] ] ) , landmarks_2D_new, True)[0:2]
+
+ # get corner points in global space
+ l_p = transform_points ( np.float32([(0,0),(1,0),(1,1),(0,1),(0.5,0.5)]) , mat, True)
+ l_c = l_p[4]
+
+ # calc diagonal vectors between corners in global space
+ tb_diag_vec = (l_p[2]-l_p[0]).astype(np.float32)
+ tb_diag_vec /= npla.norm(tb_diag_vec)
+ bt_diag_vec = (l_p[1]-l_p[3]).astype(np.float32)
+ bt_diag_vec /= npla.norm(bt_diag_vec)
+
+ # calc modifier of diagonal vectors for scale and padding value
+ mod = (1.0 / scale)* ( npla.norm(l_p[0]-l_p[2])*(padding*np.sqrt(2.0) + 0.5) )
+
+ # calc 3 points in global space to estimate 2d affine transform
+ if not remove_align:
+ l_t = np.array( [ np.round( l_c - tb_diag_vec*mod ),
+ np.round( l_c + bt_diag_vec*mod ),
+ np.round( l_c + tb_diag_vec*mod ) ] )
+ else:
+ # remove_align - face will be centered in the frame but not aligned
+ l_t = np.array( [ np.round( l_c - tb_diag_vec*mod ),
+ np.round( l_c + bt_diag_vec*mod ),
+ np.round( l_c + tb_diag_vec*mod ),
+ np.round( l_c - bt_diag_vec*mod ),
+ ] )
+
+ # get area of face square in global space
+ area = mathlib.polygon_area(l_t[:,0], l_t[:,1] )
+
+ # calc side of square
+ side = np.float32(math.sqrt(area) / 2)
+
+ # calc 3 points with unrotated square
+ l_t = np.array( [ np.round( l_c + [-side,-side] ),
+ np.round( l_c + [ side,-side] ),
+ np.round( l_c + [ side, side] ) ] )
+
+ # calc affine transform from 3 global space points to 3 local space points size of 'output_size'
+ pts2 = np.float32(( (0,0),(output_size,0),(output_size,output_size) ))
+ mat = cv2.getAffineTransform(l_t,pts2)
+
+ return mat
+"""
\ No newline at end of file
diff --git a/main.py b/main.py
index b09c2fe..5230746 100644
--- a/main.py
+++ b/main.py
@@ -47,7 +47,7 @@ if __name__ == "__main__":
p.add_argument('--output-dir', required=True, action=fixPathAction, dest="output_dir", help="Output directory. This is where the extracted files will be stored.")
p.add_argument('--output-debug', action="store_true", dest="output_debug", default=None, help="Writes debug images to _debug\ directory.")
p.add_argument('--no-output-debug', action="store_false", dest="output_debug", default=None, help="Don't writes debug images to _debug\ directory.")
- p.add_argument('--face-type', dest="face_type", choices=['half_face', 'full_face', 'head', 'full_face_no_align', 'mark_only'], default='full_face', help="Default 'full_face'. Don't change this option, currently all models uses 'full_face'")
+ p.add_argument('--face-type', dest="face_type", choices=['half_face', 'full_face', 'whole_face', 'head', 'full_face_no_align', 'mark_only'], default='full_face', help="Default 'full_face'. Don't change this option, currently all models uses 'full_face'")
p.add_argument('--manual-fix', action="store_true", dest="manual_fix", default=False, help="Enables manual extract only frames where faces were not recognized.")
p.add_argument('--manual-output-debug-fix', action="store_true", dest="manual_output_debug_fix", default=False, help="Performs manual reextract input-dir frames which were deleted from [output_dir]_debug\ dir.")
p.add_argument('--manual-window-size', type=int, dest="manual_window_size", default=1368, help="Manual fix window size. Default: 1368.")
diff --git a/mainscripts/Extractor.py b/mainscripts/Extractor.py
index 2786156..69c5a30 100644
--- a/mainscripts/Extractor.py
+++ b/mainscripts/Extractor.py
@@ -680,7 +680,6 @@ def main(detector=None,
manual_fix=False,
manual_output_debug_fix=False,
manual_window_size=1368,
- image_size=256,
face_type='full_face',
max_faces_from_image=0,
cpu_only = False,
@@ -688,6 +687,8 @@ def main(detector=None,
):
face_type = FaceType.fromString(face_type)
+ image_size = 512 if face_type == FaceType.WHOLE_FACE else 256
+
if not input_path.exists():
io.log_err ('Input directory not found. Please ensure it exists.')
return
@@ -710,7 +711,7 @@ def main(detector=None,
if not manual_output_debug_fix and input_path != output_path:
output_images_paths = pathex.get_image_paths(output_path)
if len(output_images_paths) > 0:
- io.input(f"WARNING !!! \n {output_path} contains files! \n They will be deleted. \n Press enter to continue.")
+ io.input(f"\n WARNING !!! \n {output_path} contains files! \n They will be deleted. \n Press enter to continue.\n")
for filename in output_images_paths:
Path(filename).unlink()
else:
diff --git a/mainscripts/Merger.py b/mainscripts/Merger.py
index 5244274..2c6edfa 100644
--- a/mainscripts/Merger.py
+++ b/mainscripts/Merger.py
@@ -180,7 +180,7 @@ class MergeSubprocessor(Subprocessor):
if len (frames) == 0:
raise ValueError ("len (frames) == 0")
- super().__init__('Merger', MergeSubprocessor.Cli, 86400 if MERGER_DEBUG else 60, io_loop_sleep_time=0.001)
+ super().__init__('Merger', MergeSubprocessor.Cli, io_loop_sleep_time=0.001)
self.is_interactive = is_interactive
self.merger_session_filepath = Path(merger_session_filepath)
@@ -673,7 +673,8 @@ def main (model_class_name=None,
cfg.ask_settings()
input_path_image_paths = pathex.get_image_paths(input_path)
-
+
+
if cfg.type == MergerConfig.TYPE_MASKED:
if not aligned_path.exists():
io.log_err('Aligned directory not found. Please ensure it exists.')
@@ -783,6 +784,8 @@ def main (model_class_name=None,
elif cfg.type == MergerConfig.TYPE_FACE_AVATAR:
+ pass
+ """
filesdata = []
for filepath in io.progress_bar_generator(input_path_image_paths, "Collecting info"):
filepath = Path(filepath)
@@ -812,7 +815,7 @@ def main (model_class_name=None,
frames.append ( MergeSubprocessor.Frame(prev_temporal_frame_infos=prev_temporal_frame_infos,
frame_info=frame_info,
next_temporal_frame_infos=next_temporal_frame_infos) )
-
+ """
if len(frames) == 0:
io.log_info ("No frames to merge in input_dir.")
else:
diff --git a/mainscripts/Sorter.py b/mainscripts/Sorter.py
index dea0ad5..27e95c0 100644
--- a/mainscripts/Sorter.py
+++ b/mainscripts/Sorter.py
@@ -114,7 +114,7 @@ def sort_by_face_yaw(input_path):
trash_img_list.append ( [str(filepath)] )
continue
- pitch, yaw, roll = LandmarksProcessor.estimate_pitch_yaw_roll ( dflimg.get_landmarks() )
+ pitch, yaw, roll = LandmarksProcessor.estimate_pitch_yaw_roll ( dflimg.get_landmarks(), size=dflimg.get_shape()[1] )
img_list.append( [str(filepath), yaw ] )
@@ -137,7 +137,7 @@ def sort_by_face_pitch(input_path):
trash_img_list.append ( [str(filepath)] )
continue
- pitch, yaw, roll = LandmarksProcessor.estimate_pitch_yaw_roll ( dflimg.get_landmarks() )
+ pitch, yaw, roll = LandmarksProcessor.estimate_pitch_yaw_roll ( dflimg.get_landmarks(), size=dflimg.get_shape()[1] )
img_list.append( [str(filepath), pitch ] )
@@ -418,7 +418,7 @@ class FinalLoaderSubprocessor(Subprocessor):
gray = cv2.cvtColor(bgr, cv2.COLOR_BGR2GRAY)
sharpness = estimate_sharpness(gray) if self.include_by_blur else 0
- pitch, yaw, roll = LandmarksProcessor.estimate_pitch_yaw_roll ( dflimg.get_landmarks() )
+ pitch, yaw, roll = LandmarksProcessor.estimate_pitch_yaw_roll ( dflimg.get_landmarks(), size=dflimg.get_shape()[1] )
hist = cv2.calcHist([gray], [0], None, [256], [0, 256])
except Exception as e:
@@ -723,11 +723,11 @@ def sort_by_absdiff(input_path):
image_paths = pathex.get_image_paths(input_path)
image_paths_len = len(image_paths)
- batch_size = 1024
+ batch_size = 512
batch_size_remain = image_paths_len % batch_size
- i_t = tf.placeholder (tf.float32, (None,256,256,3) )
- j_t = tf.placeholder (tf.float32, (None,256,256,3) )
+ i_t = tf.placeholder (tf.float32, (None,None,None,None) )
+ j_t = tf.placeholder (tf.float32, (None,None,None,None) )
outputs_full = []
outputs_remain = []
diff --git a/mainscripts/dev_misc.py b/mainscripts/dev_misc.py
index 45f4ee1..d711102 100644
--- a/mainscripts/dev_misc.py
+++ b/mainscripts/dev_misc.py
@@ -394,7 +394,6 @@ def extract_fanseg(input_dir, device_args={} ):
#unused in end user workflow
def extract_umd_csv(input_file_csv,
- image_size=256,
face_type='full_face',
device_args={} ):
@@ -456,7 +455,7 @@ def extract_umd_csv(input_file_csv,
data = ExtractSubprocessor (data, 'landmarks', multi_gpu=multi_gpu, cpu_only=cpu_only).run()
io.log_info ('Performing 3rd pass...')
- data = ExtractSubprocessor (data, 'final', image_size, face_type, None, multi_gpu=multi_gpu, cpu_only=cpu_only, manual=False, final_output_path=output_path).run()
+ data = ExtractSubprocessor (data, 'final', face_type, None, multi_gpu=multi_gpu, cpu_only=cpu_only, manual=False, final_output_path=output_path).run()
faces_detected += sum([d.faces_detected for d in data])
diff --git a/merger/MergeMasked.py b/merger/MergeMasked.py
index 4719e04..1f113dd 100644
--- a/merger/MergeMasked.py
+++ b/merger/MergeMasked.py
@@ -18,7 +18,6 @@ def MergeMaskedFace (predictor_func, predictor_input_shape, cfg, frame_info, img
out_img = img_bgr.copy()
out_merging_mask_a = None
- mask_subres = 4
input_size = predictor_input_shape[0]
mask_subres_size = input_size*4
output_size = input_size
@@ -26,12 +25,12 @@ def MergeMaskedFace (predictor_func, predictor_input_shape, cfg, frame_info, img
output_size *= 4
face_mat = LandmarksProcessor.get_transform_mat (img_face_landmarks, output_size, face_type=cfg.face_type)
- face_output_mat = LandmarksProcessor.get_transform_mat (img_face_landmarks, output_size, face_type=cfg.face_type, scale= 1.0 + 0.01*cfg.output_face_scale )
+ face_output_mat = LandmarksProcessor.get_transform_mat (img_face_landmarks, output_size, face_type=cfg.face_type, scale= 1.0 + 0.01*cfg.output_face_scale)
if mask_subres_size == output_size:
face_mask_output_mat = face_output_mat
else:
- face_mask_output_mat = LandmarksProcessor.get_transform_mat (img_face_landmarks, mask_subres_size, face_type=cfg.face_type, scale= 1.0 + 0.01*cfg.output_face_scale )
+ face_mask_output_mat = LandmarksProcessor.get_transform_mat (img_face_landmarks, mask_subres_size, face_type=cfg.face_type, scale= 1.0 + 0.01*cfg.output_face_scale)
dst_face_bgr = cv2.warpAffine( img_bgr , face_mat, (output_size, output_size), flags=cv2.INTER_CUBIC )
dst_face_bgr = np.clip(dst_face_bgr, 0, 1)
@@ -56,11 +55,10 @@ def MergeMaskedFace (predictor_func, predictor_input_shape, cfg, frame_info, img
if cfg.super_resolution_power != 0:
prd_face_bgr_enhanced = cfg.superres_func(prd_face_bgr)
mod = cfg.super_resolution_power / 100.0
-
- prd_face_bgr = cv2.resize(prd_face_bgr, (output_size,output_size))*(1.0-mod) + \
- prd_face_bgr_enhanced*mod
+ prd_face_bgr = cv2.resize(prd_face_bgr, (output_size,output_size))*(1.0-mod) + prd_face_bgr_enhanced*mod
prd_face_bgr = np.clip(prd_face_bgr, 0, 1)
+ if cfg.super_resolution_power != 0:
if predictor_masked:
prd_face_mask_a_0 = cv2.resize (prd_face_mask_a_0, (output_size, output_size), cv2.INTER_CUBIC)
else:
@@ -106,13 +104,12 @@ def MergeMaskedFace (predictor_func, predictor_input_shape, cfg, frame_info, img
prd_face_mask_a_0[ prd_face_mask_a_0 < (1.0/255.0) ] = 0.0 # get rid of noise
+ # resize to mask_subres_size
+ if prd_face_mask_a_0.shape[0] != mask_subres_size:
+ prd_face_mask_a_0 = cv2.resize (prd_face_mask_a_0, (mask_subres_size, mask_subres_size), cv2.INTER_CUBIC)
# process mask in local predicted space
if 'raw' not in cfg.mode:
- # resize to mask_subres_size
- if prd_face_mask_a_0.shape[0] != mask_subres_size:
- prd_face_mask_a_0 = cv2.resize (prd_face_mask_a_0, (mask_subres_size, mask_subres_size), cv2.INTER_CUBIC)
-
# add zero pad
prd_face_mask_a_0 = np.pad (prd_face_mask_a_0, input_size)
@@ -176,9 +173,9 @@ def MergeMaskedFace (predictor_func, predictor_input_shape, cfg, frame_info, img
if 'seamless' not in cfg.mode and cfg.color_transfer_mode != 0:
if cfg.color_transfer_mode == 1: #rct
- prd_face_bgr = imagelib.reinhard_color_transfer ( np.clip( prd_face_bgr*255, 0, 255).astype(np.uint8),
- np.clip( dst_face_bgr*255, 0, 255).astype(np.uint8),
- source_mask=prd_face_mask_area_a, target_mask=prd_face_mask_area_a)
+ prd_face_bgr = imagelib.reinhard_color_transfer ( np.clip( prd_face_bgr*prd_face_mask_area_a*255, 0, 255).astype(np.uint8),
+ np.clip( dst_face_bgr*prd_face_mask_area_a*255, 0, 255).astype(np.uint8), )
+
prd_face_bgr = np.clip( prd_face_bgr.astype(np.float32) / 255.0, 0.0, 1.0)
elif cfg.color_transfer_mode == 2: #lct
prd_face_bgr = imagelib.linear_color_transfer (prd_face_bgr, dst_face_bgr)
@@ -247,15 +244,12 @@ def MergeMaskedFace (predictor_func, predictor_input_shape, cfg, frame_info, img
out_img = img_bgr*(1-img_face_mask_a) + (out_img*img_face_mask_a)
- out_face_bgr = cv2.warpAffine( out_img, face_mat, (output_size, output_size) )
+ out_face_bgr = cv2.warpAffine( out_img, face_mat, (output_size, output_size), flags=cv2.INTER_CUBIC )
if 'seamless' in cfg.mode and cfg.color_transfer_mode != 0:
if cfg.color_transfer_mode == 1:
- face_mask_a = cv2.warpAffine( img_face_mask_a, face_mat, (output_size, output_size) )[...,None]
-
- out_face_bgr = imagelib.reinhard_color_transfer ( (out_face_bgr*255).astype(np.uint8),
- (dst_face_bgr*255).astype(np.uint8),
- source_mask=face_mask_a, target_mask=face_mask_a)
+ out_face_bgr = imagelib.reinhard_color_transfer ( np.clip(out_face_bgr*prd_face_mask_area_a*255, 0, 255).astype(np.uint8),
+ np.clip(dst_face_bgr*prd_face_mask_area_a*255, 0, 255).astype(np.uint8) )
out_face_bgr = np.clip( out_face_bgr.astype(np.float32) / 255.0, 0.0, 1.0)
elif cfg.color_transfer_mode == 2: #lct
out_face_bgr = imagelib.linear_color_transfer (out_face_bgr, dst_face_bgr)
diff --git a/merger/MergerConfig.py b/merger/MergerConfig.py
index 11822a4..ee71215 100644
--- a/merger/MergerConfig.py
+++ b/merger/MergerConfig.py
@@ -107,8 +107,6 @@ class MergerConfigMasked(MergerConfig):
def __init__(self, face_type=FaceType.FULL,
default_mode = 'overlay',
- clip_hborder_mask_per = 0,
-
mode='overlay',
masked_hist_match=True,
hist_match_threshold = 238,
@@ -128,11 +126,10 @@ class MergerConfigMasked(MergerConfig):
super().__init__(type=MergerConfig.TYPE_MASKED, **kwargs)
self.face_type = face_type
- if self.face_type not in [FaceType.HALF, FaceType.MID_FULL, FaceType.FULL ]:
+ if self.face_type not in [FaceType.HALF, FaceType.MID_FULL, FaceType.FULL, FaceType.WHOLE_FACE ]:
raise ValueError("MergerConfigMasked does not support this type of face.")
self.default_mode = default_mode
- self.clip_hborder_mask_per = clip_hborder_mask_per
#default changeable params
if mode not in mode_str_dict:
@@ -242,7 +239,7 @@ class MergerConfigMasked(MergerConfig):
self.color_transfer_mode = ctm_str_dict[self.color_transfer_mode]
super().ask_settings()
-
+
self.super_resolution_power = np.clip ( io.input_int ("Choose super resolution power", 0, add_info="0..100", help_message="Enhance details by applying superresolution network."), 0, 100)
if 'raw' not in self.mode:
@@ -298,11 +295,11 @@ class MergerConfigMasked(MergerConfig):
r += f"""output_face_scale: {self.output_face_scale}\n"""
if 'raw' not in self.mode:
- r += f"""color_transfer_mode: { ctm_dict[self.color_transfer_mode]}\n"""
+ r += f"""color_transfer_mode: {ctm_dict[self.color_transfer_mode]}\n"""
r += super().to_string(filename)
r += f"""super_resolution_power: {self.super_resolution_power}\n"""
-
+
if 'raw' not in self.mode:
r += (f"""image_denoise_power: {self.image_denoise_power}\n"""
f"""bicubic_degrade_power: {self.bicubic_degrade_power}\n"""
diff --git a/models/Model_Quick96/Model.py b/models/Model_Quick96/Model.py
index 5dc3f2e..bb4f0d9 100644
--- a/models/Model_Quick96/Model.py
+++ b/models/Model_Quick96/Model.py
@@ -372,14 +372,14 @@ class QModel(ModelBase):
sample_process_options=SampleProcessor.Options(random_flip=True if self.pretrain else False),
output_sample_types = [ {'types' : (t.IMG_WARPED_TRANSFORMED, face_type, t.MODE_BGR), 'data_format':nn.data_format, 'resolution':resolution, },
{'types' : (t.IMG_TRANSFORMED, face_type, t.MODE_BGR), 'data_format':nn.data_format, 'resolution': resolution, },
- {'types' : (t.IMG_TRANSFORMED, face_type, t.MODE_FACE_MASK_HULL), 'data_format':nn.data_format, 'resolution': resolution } ],
+ {'types' : (t.IMG_TRANSFORMED, face_type, t.MODE_FACE_MASK_ALL_HULL), 'data_format':nn.data_format, 'resolution': resolution } ],
generators_count=src_generators_count ),
SampleGeneratorFace(training_data_dst_path, debug=self.is_debug(), batch_size=self.get_batch_size(),
sample_process_options=SampleProcessor.Options(random_flip=True if self.pretrain else False),
output_sample_types = [ {'types' : (t.IMG_WARPED_TRANSFORMED, face_type, t.MODE_BGR), 'data_format':nn.data_format, 'resolution':resolution},
{'types' : (t.IMG_TRANSFORMED, face_type, t.MODE_BGR), 'data_format':nn.data_format, 'resolution': resolution},
- {'types' : (t.IMG_TRANSFORMED, face_type, t.MODE_FACE_MASK_HULL), 'data_format':nn.data_format, 'resolution': resolution} ],
+ {'types' : (t.IMG_TRANSFORMED, face_type, t.MODE_FACE_MASK_ALL_HULL), 'data_format':nn.data_format, 'resolution': resolution} ],
generators_count=dst_generators_count )
])
@@ -454,7 +454,6 @@ class QModel(ModelBase):
import merger
return self.predictor_func, (self.resolution, self.resolution, 3), merger.MergerConfigMasked(face_type=face_type,
default_mode = 'overlay',
- clip_hborder_mask_per=0.0625 if (face_type != FaceType.HALF) else 0,
)
Model = QModel
diff --git a/models/Model_SAEHD/Model.py b/models/Model_SAEHD/Model.py
index 0ba51f1..0040cf7 100644
--- a/models/Model_SAEHD/Model.py
+++ b/models/Model_SAEHD/Model.py
@@ -33,9 +33,11 @@ class SAEHDModel(ModelBase):
default_archi = self.options['archi'] = self.load_or_def_option('archi', 'df')
default_ae_dims = self.options['ae_dims'] = self.load_or_def_option('ae_dims', 256)
default_e_dims = self.options['e_dims'] = self.load_or_def_option('e_dims', 64)
- self.options['d_dims'] = None
- self.options['d_mask_dims'] = None
+ default_d_dims = self.options['d_dims'] = self.options.get('d_dims', None)
+ default_d_mask_dims = self.options['d_mask_dims'] = self.options.get('d_mask_dims', None)
+ default_masked_training = self.options['masked_training'] = self.load_or_def_option('masked_training', True)
default_learn_mask = self.options['learn_mask'] = self.load_or_def_option('learn_mask', True)
+ default_eyes_prio = self.options['eyes_prio'] = self.load_or_def_option('eyes_prio', False)
default_lr_dropout = self.options['lr_dropout'] = self.load_or_def_option('lr_dropout', False)
default_random_warp = self.options['random_warp'] = self.load_or_def_option('random_warp', True)
default_gan_power = self.options['gan_power'] = self.load_or_def_option('gan_power', 0.0)
@@ -58,12 +60,13 @@ class SAEHDModel(ModelBase):
resolution = io.input_int("Resolution", default_resolution, add_info="64-256", help_message="More resolution requires more VRAM and time to train. Value will be adjusted to multiple of 16.")
resolution = np.clip ( (resolution // 16) * 16, 64, 256)
self.options['resolution'] = resolution
- self.options['face_type'] = io.input_str ("Face type", default_face_type, ['h','mf','f'], help_message="Half / mid face / full face. Half face has better resolution, but covers less area of cheeks. Mid face is 30% wider than half face.").lower()
+ self.options['face_type'] = io.input_str ("Face type", default_face_type, ['h','mf','f','wf'], help_message="Half / mid face / full face / whole face. Half face has better resolution, but covers less area of cheeks. Mid face is 30% wider than half face. 'Whole face' covers full area of face include forehead, but requires manual merge in Adobe After Effects.").lower()
self.options['archi'] = io.input_str ("AE architecture", default_archi, ['dfhd','liaehd','df','liae'], help_message="'df' keeps faces more natural. 'liae' can fix overly different face shapes. 'hd' is heavyweight version for the best quality.").lower()
default_d_dims = 48 if self.options['archi'] == 'dfhd' else 64
default_d_dims = self.options['d_dims'] = self.load_or_def_option('d_dims', default_d_dims)
+
default_d_mask_dims = default_d_dims // 3
default_d_mask_dims += default_d_mask_dims % 2
default_d_mask_dims = self.options['d_mask_dims'] = self.load_or_def_option('d_mask_dims', default_d_mask_dims)
@@ -82,8 +85,12 @@ class SAEHDModel(ModelBase):
self.options['d_mask_dims'] = d_mask_dims + d_mask_dims % 2
if self.is_first_run() or ask_override:
- self.options['learn_mask'] = io.input_bool ("Learn mask", default_learn_mask, help_message="Learning mask can help model to recognize face directions. Learn without mask can reduce model size, in this case merger forced to use 'not predicted mask' that is not smooth as predicted.")
-
+ if self.options['face_type'] == 'wf':
+ self.options['masked_training'] = io.input_bool ("Masked training", default_masked_training, help_message="This option is available only for 'whole_face' type. Masked training clips training area to full_face mask, thus network will train the faces properly. When the face is trained enough, disable this option to train all area of the frame. Merge with 'raw-rgb' mode, then use Adobe After Effects to manually mask and compose whole face include forehead.")
+
+ self.options['learn_mask'] = io.input_bool ("Learn mask", default_learn_mask, help_message="Learning mask will produce a smooth mask in the merger. Also it works as guide for neural network to recognize face directions.")
+ self.options['eyes_prio'] = io.input_bool ("Eyes priority", default_eyes_prio, help_message='Helps to fix eye problems during training like "alien eyes" and wrong eyes direction ( especially on HD architectures ) by forcing the neural network to train eyes with higher priority. before/after https://i.imgur.com/YQHOuSR.jpg ')
+
if self.is_first_run() or ask_override:
if len(device_config.devices) == 1:
self.options['models_opt_on_gpu'] = io.input_bool ("Place models and optimizer on GPU", default_models_opt_on_gpu, help_message="When you train on one GPU, by default model and optimizer weights are placed on GPU to accelerate the process. You can place they on CPU to free up extra VRAM, thus set bigger dimensions.")
@@ -98,10 +105,13 @@ class SAEHDModel(ModelBase):
else:
self.options['true_face_power'] = 0.0
- self.options['face_style_power'] = np.clip ( io.input_number("Face style power", default_face_style_power, add_info="0.0..100.0", help_message="Learn to transfer face style details such as light and color conditions. Warning: Enable it only after 10k iters, when predicted face is clear enough to start learn style. Start from 0.1 value and check history changes. Enabling this option increases the chance of model collapse."), 0.0, 100.0 )
- self.options['bg_style_power'] = np.clip ( io.input_number("Background style power", default_bg_style_power, add_info="0.0..100.0", help_message="Learn to transfer background around face. This can make face more like dst. Enabling this option increases the chance of model collapse. Typical value is 2.0"), 0.0, 100.0 )
+ if self.options['face_type'] != 'wf':
+ self.options['face_style_power'] = np.clip ( io.input_number("Face style power", default_face_style_power, add_info="0.0..100.0", help_message="Learn to transfer face style details such as light and color conditions. Warning: Enable it only after 10k iters, when predicted face is clear enough to start learn style. Start from 0.001 value and check history changes. Enabling this option increases the chance of model collapse."), 0.0, 100.0 )
+ self.options['bg_style_power'] = np.clip ( io.input_number("Background style power", default_bg_style_power, add_info="0.0..100.0", help_message="Learn to transfer background around face. This can make face more like dst. Enabling this option increases the chance of model collapse. Typical value is 2.0"), 0.0, 100.0 )
+
self.options['ct_mode'] = io.input_str (f"Color transfer for src faceset", default_ct_mode, ['none','rct','lct','mkl','idt','sot'], help_message="Change color distribution of src samples close to dst samples. Try all modes to find the best.")
self.options['clipgrad'] = io.input_bool ("Enable gradient clipping", default_clipgrad, help_message="Gradient clipping reduces chance of model collapse, sacrificing speed of training.")
+
self.options['pretrain'] = io.input_bool ("Enable pretraining mode", default_pretrain, help_message="Pretrain the model with large amount of various faces. After that, model can be used to train the fakes more quickly.")
if self.options['pretrain'] and self.get_pretraining_data_path() is None:
@@ -333,6 +343,7 @@ class SAEHDModel(ModelBase):
self.resolution = resolution = self.options['resolution']
learn_mask = self.options['learn_mask']
+ eyes_prio = self.options['eyes_prio']
archi = self.options['archi']
ae_dims = self.options['ae_dims']
e_dims = self.options['e_dims']
@@ -344,7 +355,7 @@ class SAEHDModel(ModelBase):
self.gan_power = gan_power = self.options['gan_power'] if not self.pretrain else 0.0
- masked_training = True
+ masked_training = self.options['masked_training']
models_opt_on_gpu = False if len(devices) == 0 else True if len(devices) > 1 else self.options['models_opt_on_gpu']
models_opt_device = '/GPU:0' if models_opt_on_gpu and self.is_training else '/CPU:0'
@@ -367,9 +378,9 @@ class SAEHDModel(ModelBase):
self.target_src = tf.placeholder (nn.tf_floatx, bgr_shape)
self.target_dst = tf.placeholder (nn.tf_floatx, bgr_shape)
- self.target_srcm = tf.placeholder (nn.tf_floatx, mask_shape)
- self.target_dstm = tf.placeholder (nn.tf_floatx, mask_shape)
-
+ self.target_srcm_all = tf.placeholder (nn.tf_floatx, mask_shape)
+ self.target_dstm_all = tf.placeholder (nn.tf_floatx, mask_shape)
+
# Initializing model classes
with tf.device (models_opt_device):
if 'df' in archi:
@@ -468,13 +479,13 @@ class SAEHDModel(ModelBase):
with tf.device(f'/CPU:0'):
# slice on CPU, otherwise all batch data will be transfered to GPU first
batch_slice = slice( gpu_id*bs_per_gpu, (gpu_id+1)*bs_per_gpu )
- gpu_warped_src = self.warped_src [batch_slice,:,:,:]
- gpu_warped_dst = self.warped_dst [batch_slice,:,:,:]
- gpu_target_src = self.target_src [batch_slice,:,:,:]
- gpu_target_dst = self.target_dst [batch_slice,:,:,:]
- gpu_target_srcm = self.target_srcm[batch_slice,:,:,:]
- gpu_target_dstm = self.target_dstm[batch_slice,:,:,:]
-
+ gpu_warped_src = self.warped_src [batch_slice,:,:,:]
+ gpu_warped_dst = self.warped_dst [batch_slice,:,:,:]
+ gpu_target_src = self.target_src [batch_slice,:,:,:]
+ gpu_target_dst = self.target_dst [batch_slice,:,:,:]
+ gpu_target_srcm_all = self.target_srcm_all[batch_slice,:,:,:]
+ gpu_target_dstm_all = self.target_dstm_all[batch_slice,:,:,:]
+
# process model tensors
if 'df' in archi:
gpu_src_code = self.inter(self.encoder(gpu_warped_src))
@@ -504,7 +515,13 @@ class SAEHDModel(ModelBase):
gpu_pred_src_srcm_list.append(gpu_pred_src_srcm)
gpu_pred_dst_dstm_list.append(gpu_pred_dst_dstm)
gpu_pred_src_dstm_list.append(gpu_pred_src_dstm)
-
+
+ # unpack masks from one combined mask
+ gpu_target_srcm = tf.clip_by_value (gpu_target_srcm_all, 0, 1)
+ gpu_target_dstm = tf.clip_by_value (gpu_target_dstm_all, 0, 1)
+ gpu_target_srcm_eyes = tf.clip_by_value (gpu_target_srcm_all-1, 0, 1)
+ gpu_target_dstm_eyes = tf.clip_by_value (gpu_target_dstm_all-1, 0, 1)
+
gpu_target_srcm_blur = nn.tf_gaussian_blur(gpu_target_srcm, max(1, resolution // 32) )
gpu_target_dstm_blur = nn.tf_gaussian_blur(gpu_target_dstm, max(1, resolution // 32) )
@@ -513,7 +530,7 @@ class SAEHDModel(ModelBase):
gpu_target_src_masked_opt = gpu_target_src*gpu_target_srcm_blur if masked_training else gpu_target_src
gpu_target_dst_masked_opt = gpu_target_dst_masked if masked_training else gpu_target_dst
-
+
gpu_pred_src_src_masked_opt = gpu_pred_src_src*gpu_target_srcm_blur if masked_training else gpu_pred_src_src
gpu_pred_dst_dst_masked_opt = gpu_pred_dst_dst*gpu_target_dstm_blur if masked_training else gpu_pred_dst_dst
@@ -522,6 +539,10 @@ class SAEHDModel(ModelBase):
gpu_src_loss = tf.reduce_mean ( 10*nn.tf_dssim(gpu_target_src_masked_opt, gpu_pred_src_src_masked_opt, max_val=1.0, filter_size=int(resolution/11.6)), axis=[1])
gpu_src_loss += tf.reduce_mean ( 10*tf.square ( gpu_target_src_masked_opt - gpu_pred_src_src_masked_opt ), axis=[1,2,3])
+
+ if eyes_prio:
+ gpu_src_loss += tf.reduce_mean ( 300*tf.abs ( gpu_target_src*gpu_target_srcm_eyes - gpu_pred_src_src*gpu_target_srcm_eyes ), axis=[1,2,3])
+
if learn_mask:
gpu_src_loss += tf.reduce_mean ( 10*tf.square( gpu_target_srcm - gpu_pred_src_srcm ),axis=[1,2,3] )
@@ -534,8 +555,12 @@ class SAEHDModel(ModelBase):
gpu_src_loss += tf.reduce_mean( (10*bg_style_power)*nn.tf_dssim(gpu_psd_target_dst_anti_masked, gpu_target_dst_anti_masked, max_val=1.0, filter_size=int(resolution/11.6)), axis=[1])
gpu_src_loss += tf.reduce_mean( (10*bg_style_power)*tf.square( gpu_psd_target_dst_anti_masked - gpu_target_dst_anti_masked), axis=[1,2,3] )
- gpu_dst_loss = tf.reduce_mean ( 10*nn.tf_dssim(gpu_target_dst_masked_opt, gpu_pred_dst_dst_masked_opt, max_val=1.0, filter_size=int(resolution/11.6) ), axis=[1])
+ gpu_dst_loss = tf.reduce_mean ( 10*nn.tf_dssim(gpu_target_dst_masked_opt, gpu_pred_dst_dst_masked_opt, max_val=1.0, filter_size=int(resolution/11.6) ), axis=[1])
gpu_dst_loss += tf.reduce_mean ( 10*tf.square( gpu_target_dst_masked_opt- gpu_pred_dst_dst_masked_opt ), axis=[1,2,3])
+
+ if eyes_prio:
+ gpu_dst_loss += tf.reduce_mean ( 300*tf.abs ( gpu_target_dst*gpu_target_dstm_eyes - gpu_pred_dst_dst*gpu_target_dstm_eyes ), axis=[1,2,3])
+
if learn_mask:
gpu_dst_loss += tf.reduce_mean ( 10*tf.square( gpu_target_dstm - gpu_pred_dst_dstm ),axis=[1,2,3] )
@@ -606,15 +631,15 @@ class SAEHDModel(ModelBase):
# Initializing training and view functions
- def src_dst_train(warped_src, target_src, target_srcm, \
- warped_dst, target_dst, target_dstm):
+ def src_dst_train(warped_src, target_src, target_srcm_all, \
+ warped_dst, target_dst, target_dstm_all):
s, d, _ = nn.tf_sess.run ( [ src_loss, dst_loss, src_dst_loss_gv_op],
feed_dict={self.warped_src :warped_src,
self.target_src :target_src,
- self.target_srcm:target_srcm,
+ self.target_srcm_all:target_srcm_all,
self.warped_dst :warped_dst,
self.target_dst :target_dst,
- self.target_dstm:target_dstm,
+ self.target_dstm_all:target_dstm_all,
})
s = np.mean(s)
d = np.mean(d)
@@ -627,14 +652,14 @@ class SAEHDModel(ModelBase):
self.D_train = D_train
if gan_power != 0:
- def D_src_dst_train(warped_src, target_src, target_srcm, \
- warped_dst, target_dst, target_dstm):
+ def D_src_dst_train(warped_src, target_src, target_srcm_all, \
+ warped_dst, target_dst, target_dstm_all):
nn.tf_sess.run ([src_D_src_dst_loss_gv_op], feed_dict={self.warped_src :warped_src,
self.target_src :target_src,
- self.target_srcm:target_srcm,
+ self.target_srcm_all:target_srcm_all,
self.warped_dst :warped_dst,
self.target_dst :target_dst,
- self.target_dstm:target_dstm})
+ self.target_dstm_all:target_dstm_all})
self.D_src_dst_train = D_src_dst_train
if learn_mask:
@@ -703,7 +728,9 @@ class SAEHDModel(ModelBase):
face_type = t.FACE_TYPE_MID_FULL
elif self.options['face_type'] == 'f':
face_type = t.FACE_TYPE_FULL
-
+ elif self.options['face_type'] == 'wf':
+ face_type = t.FACE_TYPE_WHOLE_FACE
+
training_data_src_path = self.training_data_src_path if not self.pretrain else self.get_pretraining_data_path()
training_data_dst_path = self.training_data_dst_path if not self.pretrain else self.get_pretraining_data_path()
@@ -722,14 +749,16 @@ class SAEHDModel(ModelBase):
sample_process_options=SampleProcessor.Options(random_flip=self.random_flip),
output_sample_types = [ {'types' : (t_img_warped, face_type, t.MODE_BGR), 'data_format':nn.data_format, 'resolution': resolution, 'ct_mode': self.options['ct_mode'] },
{'types' : (t.IMG_TRANSFORMED, face_type, t.MODE_BGR), 'data_format':nn.data_format, 'resolution': resolution, 'ct_mode': self.options['ct_mode'] },
- {'types' : (t.IMG_TRANSFORMED, face_type, t.MODE_FACE_MASK_HULL), 'data_format':nn.data_format, 'resolution': resolution } ],
+ {'types' : (t.IMG_TRANSFORMED, face_type, t.MODE_FACE_MASK_ALL_EYES_HULL), 'data_format':nn.data_format, 'resolution': resolution },
+ ],
generators_count=src_generators_count ),
SampleGeneratorFace(training_data_dst_path, debug=self.is_debug(), batch_size=self.get_batch_size(),
sample_process_options=SampleProcessor.Options(random_flip=self.random_flip),
output_sample_types = [ {'types' : (t_img_warped, face_type, t.MODE_BGR), 'data_format':nn.data_format, 'resolution': resolution},
{'types' : (t.IMG_TRANSFORMED, face_type, t.MODE_BGR), 'data_format':nn.data_format, 'resolution': resolution},
- {'types' : (t.IMG_TRANSFORMED, face_type, t.MODE_FACE_MASK_HULL), 'data_format':nn.data_format, 'resolution': resolution} ],
+ {'types' : (t.IMG_TRANSFORMED, face_type, t.MODE_FACE_MASK_ALL_EYES_HULL), 'data_format':nn.data_format, 'resolution': resolution},
+ ],
generators_count=dst_generators_count )
])
@@ -748,23 +777,23 @@ class SAEHDModel(ModelBase):
#override
def onTrainOneIter(self):
- ( (warped_src, target_src, target_srcm), \
- (warped_dst, target_dst, target_dstm) ) = self.generate_next_samples()
+ ( (warped_src, target_src, target_srcm_all), \
+ (warped_dst, target_dst, target_dstm_all) ) = self.generate_next_samples()
- src_loss, dst_loss = self.src_dst_train (warped_src, target_src, target_srcm, warped_dst, target_dst, target_dstm)
+ src_loss, dst_loss = self.src_dst_train (warped_src, target_src, target_srcm_all, warped_dst, target_dst, target_dstm_all)
if self.options['true_face_power'] != 0 and not self.pretrain:
self.D_train (warped_src, warped_dst)
if self.gan_power != 0:
- self.D_src_dst_train (warped_src, target_src, target_srcm, warped_dst, target_dst, target_dstm)
+ self.D_src_dst_train (warped_src, target_src, target_srcm_all, warped_dst, target_dst, target_dstm_all)
return ( ('src_loss', src_loss), ('dst_loss', dst_loss), )
#override
def onGetPreview(self, samples):
- ( (warped_src, target_src, target_srcm),
- (warped_dst, target_dst, target_dstm) ) = samples
+ ( (warped_src, target_src, target_srcm_all,),
+ (warped_dst, target_dst, target_dstm_all,) ) = samples
if self.options['learn_mask']:
S, D, SS, DD, DDM, SD, SDM = [ np.clip( nn.to_data_format(x,"NHWC", self.model_data_format), 0.0, 1.0) for x in ([target_src,target_dst] + self.AE_view (target_src, target_dst) ) ]
@@ -772,8 +801,11 @@ class SAEHDModel(ModelBase):
else:
S, D, SS, DD, SD, = [ np.clip( nn.to_data_format(x,"NHWC", self.model_data_format) , 0.0, 1.0) for x in ([target_src,target_dst] + self.AE_view (target_src, target_dst) ) ]
- target_srcm, target_dstm = [ nn.to_data_format(x,"NHWC", self.model_data_format) for x in ([target_srcm, target_dstm] )]
-
+ target_srcm_all, target_dstm_all = [ nn.to_data_format(x,"NHWC", self.model_data_format) for x in ([target_srcm_all, target_dstm_all] )]
+
+ target_srcm = np.clip(target_srcm_all, 0, 1)
+ target_dstm = np.clip(target_dstm_all, 0, 1)
+
n_samples = min(4, self.get_batch_size(), 800 // self.resolution )
result = []
@@ -815,11 +847,12 @@ class SAEHDModel(ModelBase):
face_type = FaceType.MID_FULL
elif self.options['face_type'] == 'f':
face_type = FaceType.FULL
-
+ elif self.options['face_type'] == 'wf':
+ face_type = FaceType.WHOLE_FACE
+
import merger
return self.predictor_func, (self.options['resolution'], self.options['resolution'], 3), merger.MergerConfigMasked(face_type=face_type,
default_mode = 'overlay' if self.options['ct_mode'] != 'none' or self.options['face_style_power'] or self.options['bg_style_power'] else 'seamless',
- clip_hborder_mask_per=0.0625 if (face_type != FaceType.HALF) else 0,
)
Model = SAEHDModel
diff --git a/samplelib/Sample.py b/samplelib/Sample.py
index 58c92d5..80910d5 100644
--- a/samplelib/Sample.py
+++ b/samplelib/Sample.py
@@ -61,7 +61,7 @@ class Sample(object):
def get_pitch_yaw_roll(self):
if self.pitch_yaw_roll is None:
- self.pitch_yaw_roll = LandmarksProcessor.estimate_pitch_yaw_roll(landmarks)
+ self.pitch_yaw_roll = LandmarksProcessor.estimate_pitch_yaw_roll(landmarks, size=self.shape[1])
return self.pitch_yaw_roll
def set_filename_offset_size(self, filename, offset, size):
diff --git a/samplelib/SampleGeneratorFace.py b/samplelib/SampleGeneratorFace.py
index 696a4f2..a7e622f 100644
--- a/samplelib/SampleGeneratorFace.py
+++ b/samplelib/SampleGeneratorFace.py
@@ -60,7 +60,10 @@ class SampleGeneratorFace(SampleGeneratorBase):
if self.debug:
self.generators = [ThisThreadGenerator ( self.batch_func, (pickled_samples, index_host.create_cli(), ct_pickled_samples, ct_index_host.create_cli() if ct_index_host is not None else None) )]
else:
- self.generators = [SubprocessGenerator ( self.batch_func, (pickled_samples, index_host.create_cli(), ct_pickled_samples, ct_index_host.create_cli() if ct_index_host is not None else None), start_now=True ) for i in range(self.generators_count) ]
+ self.generators = [SubprocessGenerator ( self.batch_func, (pickled_samples, index_host.create_cli(), ct_pickled_samples, ct_index_host.create_cli() if ct_index_host is not None else None), start_now=False ) \
+ for i in range(self.generators_count) ]
+
+ SubprocessGenerator.start_in_parallel( self.generators )
self.generator_counter = -1
diff --git a/samplelib/SampleGeneratorFacePerson.py b/samplelib/SampleGeneratorFacePerson.py
index d6be2d8..ba69f44 100644
--- a/samplelib/SampleGeneratorFacePerson.py
+++ b/samplelib/SampleGeneratorFacePerson.py
@@ -52,7 +52,7 @@ class SampleGeneratorFacePerson(SampleGeneratorBase):
self.generators = [iter_utils.ThisThreadGenerator ( self.batch_func, (samples_host.create_cli(), index2d_host.create_cli(),) )]
else:
self.generators_count = np.clip(multiprocessing.cpu_count(), 2, 4)
- self.generators = [iter_utils.SubprocessGenerator ( self.batch_func, (samples_host.create_cli(), index2d_host.create_cli(),), start_now=True ) for i in range(self.generators_count) ]
+ self.generators = [iter_utils.SubprocessGenerator ( self.batch_func, (samples_host.create_cli(), index2d_host.create_cli(),) ) for i in range(self.generators_count) ]
self.generator_counter = -1
diff --git a/samplelib/SampleGeneratorFaceTemporal.py b/samplelib/SampleGeneratorFaceTemporal.py
index 7a9215f..5ffb8e4 100644
--- a/samplelib/SampleGeneratorFaceTemporal.py
+++ b/samplelib/SampleGeneratorFaceTemporal.py
@@ -44,7 +44,7 @@ class SampleGeneratorFaceTemporal(SampleGeneratorBase):
if self.debug:
self.generators = [ThisThreadGenerator ( self.batch_func, (pickled_samples, index_host.create_cli(),) )]
else:
- self.generators = [SubprocessGenerator ( self.batch_func, (pickled_samples, index_host.create_cli(),), start_now=True ) for i in range(self.generators_count) ]
+ self.generators = [SubprocessGenerator ( self.batch_func, (pickled_samples, index_host.create_cli(),) ) for i in range(self.generators_count) ]
self.generator_counter = -1
diff --git a/samplelib/SampleProcessor.py b/samplelib/SampleProcessor.py
index fa7ba9c..929933c 100644
--- a/samplelib/SampleProcessor.py
+++ b/samplelib/SampleProcessor.py
@@ -25,21 +25,24 @@ class SampleProcessor(object):
FACE_TYPE_HALF = 10
FACE_TYPE_MID_FULL = 11
FACE_TYPE_FULL = 12
- FACE_TYPE_HEAD = 13 #currently unused
- FACE_TYPE_AVATAR = 14 #currently unused
- FACE_TYPE_FULL_NO_ALIGN = 15
- FACE_TYPE_HEAD_NO_ALIGN = 16
+ FACE_TYPE_WHOLE_FACE = 13
+ FACE_TYPE_HEAD = 14 #currently unused
+ FACE_TYPE_AVATAR = 15 #currently unused
+ FACE_TYPE_FULL_NO_ALIGN = 16
+ FACE_TYPE_HEAD_NO_ALIGN = 17
FACE_TYPE_END = 20
MODE_BEGIN = 40
MODE_BGR = 40 #BGR
MODE_G = 41 #Grayscale
MODE_GGG = 42 #3xGrayscale
- MODE_FACE_MASK_HULL = 43 #mask hull as grayscale
+ MODE_FACE_MASK_ALL_HULL = 43 #mask all hull as grayscale
MODE_FACE_MASK_EYES_HULL = 44 #mask eyes hull as grayscale
- MODE_FACE_MASK_STRUCT = 45 #mask structure as grayscale
- MODE_BGR_SHUFFLE = 46 #BGR shuffle
- MODE_BGR_RANDOM_HSV_SHIFT = 47
+ MODE_FACE_MASK_ALL_EYES_HULL = 45 #combo all + eyes as grayscale
+ MODE_FACE_MASK_STRUCT = 46 #mask structure as grayscale
+ MODE_BGR_SHUFFLE = 47 #BGR shuffle
+ MODE_BGR_RANDOM_HSV_SHIFT = 48
+ MODE_BGR_RANDOM_RGB_LEVELS = 49
MODE_END = 50
class Options(object):
@@ -53,6 +56,7 @@ class SampleProcessor(object):
SPTF_FACETYPE_TO_FACETYPE = { Types.FACE_TYPE_HALF : FaceType.HALF,
Types.FACE_TYPE_MID_FULL : FaceType.MID_FULL,
Types.FACE_TYPE_FULL : FaceType.FULL,
+ Types.FACE_TYPE_WHOLE_FACE : FaceType.WHOLE_FACE,
Types.FACE_TYPE_HEAD : FaceType.HEAD,
Types.FACE_TYPE_FULL_NO_ALIGN : FaceType.FULL_NO_ALIGN,
Types.FACE_TYPE_HEAD_NO_ALIGN : FaceType.HEAD_NO_ALIGN,
@@ -107,11 +111,13 @@ class SampleProcessor(object):
if target_face_type == SPTF.NONE:
raise ValueError("target face type must be defined for face samples")
else:
- if mode_type == SPTF.MODE_FACE_MASK_HULL:
- raise ValueError("MODE_FACE_MASK_HULL applicable only for face samples")
+ if mode_type == SPTF.MODE_FACE_MASK_ALL_HULL:
+ raise ValueError("MODE_FACE_MASK_ALL_HULL applicable only for face samples")
if mode_type == SPTF.MODE_FACE_MASK_EYES_HULL:
raise ValueError("MODE_FACE_MASK_EYES_HULL applicable only for face samples")
- elif mode_type == SPTF.MODE_FACE_MASK_STRUCT:
+ if mode_type == SPTF.MODE_FACE_MASK_ALL_EYES_HULL:
+ raise ValueError("MODE_FACE_MASK_ALL_EYES_HULL applicable only for face samples")
+ if mode_type == SPTF.MODE_FACE_MASK_STRUCT:
raise ValueError("MODE_FACE_MASK_STRUCT applicable only for face samples")
can_warp = (img_type==SPTF.IMG_WARPED or img_type==SPTF.IMG_WARPED_TRANSFORMED)
@@ -141,16 +147,33 @@ class SampleProcessor(object):
if mode_type == SPTF.NONE:
raise ValueError ('expected MODE_ type')
- if mode_type == SPTF.MODE_FACE_MASK_HULL:
- if sample.eyebrows_expand_mod is not None:
- img = LandmarksProcessor.get_image_hull_mask (sample_bgr.shape, sample.landmarks, eyebrows_expand_mod=sample.eyebrows_expand_mod )
- else:
- img = LandmarksProcessor.get_image_hull_mask (sample_bgr.shape, sample.landmarks)
+ if mode_type == SPTF.MODE_FACE_MASK_ALL_HULL or \
+ mode_type == SPTF.MODE_FACE_MASK_EYES_HULL or \
+ mode_type == SPTF.MODE_FACE_MASK_ALL_EYES_HULL:
+ if mode_type == SPTF.MODE_FACE_MASK_ALL_HULL or \
+ mode_type == SPTF.MODE_FACE_MASK_ALL_EYES_HULL:
+ if sample.eyebrows_expand_mod is not None:
+ all_mask = LandmarksProcessor.get_image_hull_mask (sample_bgr.shape, sample.landmarks, eyebrows_expand_mod=sample.eyebrows_expand_mod )
+ else:
+ all_mask = LandmarksProcessor.get_image_hull_mask (sample_bgr.shape, sample.landmarks)
+
+ all_mask = np.clip(all_mask, 0, 1)
+
+ if mode_type == SPTF.MODE_FACE_MASK_EYES_HULL or \
+ mode_type == SPTF.MODE_FACE_MASK_ALL_EYES_HULL:
+ eyes_mask = LandmarksProcessor.get_image_eye_mask (sample_bgr.shape, sample.landmarks)
+ eyes_mask = np.clip(eyes_mask, 0, 1)
+
+ if mode_type == SPTF.MODE_FACE_MASK_ALL_HULL:
+ img = all_mask
+ elif mode_type == SPTF.MODE_FACE_MASK_EYES_HULL:
+ img = eyes_mask
+ elif mode_type == SPTF.MODE_FACE_MASK_ALL_EYES_HULL:
+ img = all_mask + eyes_mask
+
if sample.ie_polys is not None:
sample.ie_polys.overlay_mask(img)
- elif mode_type == SPTF.MODE_FACE_MASK_EYES_HULL:
- img = LandmarksProcessor.get_image_eye_mask (sample_bgr.shape, sample.landmarks)
elif mode_type == SPTF.MODE_FACE_MASK_STRUCT:
if sample.eyebrows_expand_mod is not None:
@@ -174,9 +197,13 @@ class SampleProcessor(object):
if gaussian_blur is not None:
chance, kernel_max_size = gaussian_blur
chance = np.clip(chance, 0, 100)
+
+ rnd_state = np.random.RandomState (sample_rnd_seed+1)
+ gblur_rnd_chance = rnd_state.randint(100)
+ gblur_rnd_kernel = rnd_state.randint(kernel_max_size)*2+1
- if np.random.randint(100) < chance:
- img = cv2.GaussianBlur(img, ( np.random.randint( kernel_max_size )*2+1 ,) *2 , 0)
+ if gblur_rnd_chance < chance:
+ img = cv2.GaussianBlur(img, (gblur_rnd_kernel,) *2 , 0)
if is_face_sample:
target_ft = SampleProcessor.SPTF_FACETYPE_TO_FACETYPE[target_face_type]
@@ -186,12 +213,13 @@ class SampleProcessor(object):
if sample.face_type == FaceType.MARK_ONLY:
mat = LandmarksProcessor.get_transform_mat (sample.landmarks, sample.shape[0], target_ft)
- if mode_type == SPTF.MODE_FACE_MASK_HULL or \
+ if mode_type == SPTF.MODE_FACE_MASK_ALL_HULL or \
mode_type == SPTF.MODE_FACE_MASK_EYES_HULL or \
+ mode_type == SPTF.MODE_FACE_MASK_ALL_EYES_HULL or \
mode_type == SPTF.MODE_FACE_MASK_STRUCT:
- img = cv2.warpAffine( img, mat, (sample.shape[0],sample.shape[0]), flags=cv2.INTER_CUBIC )
- img = imagelib.warp_by_params (params, img, can_warp, can_transform, can_flip=True, border_replicate=False)
- img = cv2.resize( img, (resolution,resolution), cv2.INTER_CUBIC )[...,None]
+ img = cv2.warpAffine( img, mat, (sample.shape[0],sample.shape[0]), flags=cv2.INTER_LINEAR )
+ img = imagelib.warp_by_params (params, img, can_warp, can_transform, can_flip=True, border_replicate=False, cv2_inter=cv2.INTER_LINEAR)
+ img = cv2.resize( img, (resolution,resolution), cv2.INTER_LINEAR )[...,None]
else:
img = cv2.warpAffine( img, mat, (sample.shape[0],sample.shape[0]), flags=cv2.INTER_CUBIC )
img = imagelib.warp_by_params (params, img, can_warp, can_transform, can_flip=True, border_replicate=True)
@@ -200,11 +228,12 @@ class SampleProcessor(object):
else:
mat = LandmarksProcessor.get_transform_mat (sample.landmarks, resolution, target_ft)
- if mode_type == SPTF.MODE_FACE_MASK_HULL or \
+ if mode_type == SPTF.MODE_FACE_MASK_ALL_HULL or \
mode_type == SPTF.MODE_FACE_MASK_EYES_HULL or \
- mode_type == SPTF.MODE_FACE_MASK_STRUCT:
- img = imagelib.warp_by_params (params, img, can_warp, can_transform, can_flip=True, border_replicate=False)
- img = cv2.warpAffine( img, mat, (resolution,resolution), borderMode=cv2.BORDER_CONSTANT, flags=cv2.INTER_CUBIC )[...,None]
+ mode_type == SPTF.MODE_FACE_MASK_ALL_EYES_HULL or \
+ mode_type == SPTF.MODE_FACE_MASK_STRUCT:
+ img = imagelib.warp_by_params (params, img, can_warp, can_transform, can_flip=True, border_replicate=False, cv2_inter=cv2.INTER_LINEAR)
+ img = cv2.warpAffine( img, mat, (resolution,resolution), borderMode=cv2.BORDER_CONSTANT, flags=cv2.INTER_LINEAR )[...,None]
else:
img = imagelib.warp_by_params (params, img, can_warp, can_transform, can_flip=True, border_replicate=True)
img = cv2.warpAffine( img, mat, (resolution,resolution), borderMode=cv2.BORDER_REPLICATE, flags=cv2.INTER_CUBIC )
@@ -213,10 +242,11 @@ class SampleProcessor(object):
img = cv2.resize( img, (resolution,resolution), cv2.INTER_CUBIC )
- if mode_type == SPTF.MODE_FACE_MASK_HULL or \
+ if mode_type == SPTF.MODE_FACE_MASK_ALL_HULL or \
mode_type == SPTF.MODE_FACE_MASK_EYES_HULL or \
+ mode_type == SPTF.MODE_FACE_MASK_ALL_EYES_HULL or \
mode_type == SPTF.MODE_FACE_MASK_STRUCT:
- out_sample = np.clip(img.astype(np.float32), 0, 1)
+ out_sample = img.astype(np.float32)
else:
img = np.clip(img.astype(np.float32), 0, 1)
@@ -242,6 +272,20 @@ class SampleProcessor(object):
v = np.clip ( v + rnd_state.random()-0.5, 0, 1 )
hsv = cv2.merge([h, s, v])
out_sample = np.clip( cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR) , 0, 1 )
+
+ elif mode_type == SPTF.MODE_BGR_RANDOM_RGB_LEVELS:
+ rnd_state = np.random.RandomState (sample_rnd_seed)
+ np_rnd = rnd_state.rand
+
+ inBlack = np.array([np_rnd()*0.25 , np_rnd()*0.25 , np_rnd()*0.25], dtype=np.float32)
+ inWhite = np.array([1.0-np_rnd()*0.25, 1.0-np_rnd()*0.25, 1.0-np_rnd()*0.25], dtype=np.float32)
+ inGamma = np.array([0.5+np_rnd(), 0.5+np_rnd(), 0.5+np_rnd()], dtype=np.float32)
+ outBlack = np.array([0.0, 0.0, 0.0], dtype=np.float32)
+ outWhite = np.array([1.0, 1.0, 1.0], dtype=np.float32)
+
+ out_sample = np.clip( (img - inBlack) / (inWhite - inBlack), 0, 1 )
+ out_sample = ( out_sample ** (1/inGamma) ) * (outWhite - outBlack) + outBlack
+ out_sample = np.clip(out_sample, 0, 1)
elif mode_type == SPTF.MODE_G:
out_sample = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)[...,None]
elif mode_type == SPTF.MODE_GGG: