mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-07-07 05:22:06 -07:00
refactoring
This commit is contained in:
parent
44798c2b85
commit
8a223845fb
19 changed files with 963 additions and 468 deletions
|
@ -10,7 +10,7 @@ from utils import image_utils
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import cv2
|
import cv2
|
||||||
import gpufmkmgr
|
import gpufmkmgr
|
||||||
from .TrainingDataGeneratorBase import TrainingDataGeneratorBase
|
from samples import SampleGeneratorBase
|
||||||
|
|
||||||
'''
|
'''
|
||||||
You can implement your own model. Check examples.
|
You can implement your own model. Check examples.
|
||||||
|
@ -47,13 +47,11 @@ class ModelBase(object):
|
||||||
self.epoch = model_data['epoch']
|
self.epoch = model_data['epoch']
|
||||||
self.options = model_data['options']
|
self.options = model_data['options']
|
||||||
self.loss_history = model_data['loss_history'] if 'loss_history' in model_data.keys() else []
|
self.loss_history = model_data['loss_history'] if 'loss_history' in model_data.keys() else []
|
||||||
self.generator_dict_states = model_data['generator_dict_states'] if 'generator_dict_states' in model_data.keys() else None
|
|
||||||
self.sample_for_preview = model_data['sample_for_preview'] if 'sample_for_preview' in model_data.keys() else None
|
self.sample_for_preview = model_data['sample_for_preview'] if 'sample_for_preview' in model_data.keys() else None
|
||||||
else:
|
else:
|
||||||
self.epoch = 0
|
self.epoch = 0
|
||||||
self.options = {}
|
self.options = {}
|
||||||
self.loss_history = []
|
self.loss_history = []
|
||||||
self.generator_dict_states = None
|
|
||||||
self.sample_for_preview = None
|
self.sample_for_preview = None
|
||||||
|
|
||||||
if self.write_preview_history:
|
if self.write_preview_history:
|
||||||
|
@ -97,11 +95,8 @@ class ModelBase(object):
|
||||||
raise Exception( 'You didnt set_training_data_generators()')
|
raise Exception( 'You didnt set_training_data_generators()')
|
||||||
else:
|
else:
|
||||||
for i, generator in enumerate(self.generator_list):
|
for i, generator in enumerate(self.generator_list):
|
||||||
if not isinstance(generator, TrainingDataGeneratorBase):
|
if not isinstance(generator, SampleGeneratorBase):
|
||||||
raise Exception('training data generator is not subclass of TrainingDataGeneratorBase')
|
raise Exception('training data generator is not subclass of SampleGeneratorBase')
|
||||||
|
|
||||||
if self.generator_dict_states is not None and i < len(self.generator_dict_states):
|
|
||||||
generator.set_dict_state ( self.generator_dict_states[i] )
|
|
||||||
|
|
||||||
if self.sample_for_preview is None:
|
if self.sample_for_preview is None:
|
||||||
self.sample_for_preview = self.generate_next_sample()
|
self.sample_for_preview = self.generate_next_sample()
|
||||||
|
@ -212,7 +207,6 @@ class ModelBase(object):
|
||||||
'epoch': self.epoch,
|
'epoch': self.epoch,
|
||||||
'options': self.options,
|
'options': self.options,
|
||||||
'loss_history': self.loss_history,
|
'loss_history': self.loss_history,
|
||||||
'generator_dict_states' : [generator.get_dict_state() for generator in self.generator_list],
|
|
||||||
'sample_for_preview' : self.sample_for_preview
|
'sample_for_preview' : self.sample_for_preview
|
||||||
}
|
}
|
||||||
self.model_data_path.write_bytes( pickle.dumps(model_data) )
|
self.model_data_path.write_bytes( pickle.dumps(model_data) )
|
||||||
|
|
|
@ -1,7 +1,7 @@
|
||||||
from models import ModelBase
|
|
||||||
from models import TrainingDataType
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import cv2
|
import cv2
|
||||||
|
from models import ModelBase
|
||||||
|
from samples import *
|
||||||
from nnlib import tf_dssim
|
from nnlib import tf_dssim
|
||||||
from nnlib import DSSIMLossClass
|
from nnlib import DSSIMLossClass
|
||||||
from nnlib import conv
|
from nnlib import conv
|
||||||
|
@ -72,21 +72,20 @@ class Model(ModelBase):
|
||||||
self.BA256_view = K.function ([input_B_warped64], [BA_rec256])
|
self.BA256_view = K.function ([input_B_warped64], [BA_rec256])
|
||||||
|
|
||||||
if self.is_training_mode:
|
if self.is_training_mode:
|
||||||
from models import TrainingDataGenerator
|
f = SampleProcessor.TypeFlags
|
||||||
f = TrainingDataGenerator.SampleTypeFlags
|
|
||||||
self.set_training_data_generators ([
|
self.set_training_data_generators ([
|
||||||
TrainingDataGenerator(TrainingDataType.FACE, self.training_data_src_path, debug=self.is_debug(), batch_size=self.batch_size, output_sample_types=[
|
SampleGeneratorFace(self.training_data_src_path, debug=self.is_debug(), batch_size=self.batch_size, output_sample_types=[
|
||||||
[f.WARPED_TRANSFORMED | f.HALF_FACE | f.MODE_BGR, 64],
|
[f.WARPED_TRANSFORMED | f.FACE_ALIGN_HALF | f.MODE_BGR, 64],
|
||||||
[f.TRANSFORMED | f.HALF_FACE | f.MODE_BGR, 64],
|
[f.TRANSFORMED | f.FACE_ALIGN_HALF | f.MODE_BGR, 64],
|
||||||
[f.TRANSFORMED | f.FULL_FACE | f.MODE_BGR, 256],
|
[f.TRANSFORMED | f.FACE_ALIGN_FULL | f.MODE_BGR, 256],
|
||||||
[f.SOURCE | f.HALF_FACE | f.MODE_BGR, 64],
|
[f.SOURCE | f.FACE_ALIGN_HALF | f.MODE_BGR, 64],
|
||||||
[f.SOURCE | f.HALF_FACE | f.MODE_BGR, 256] ] ),
|
[f.SOURCE | f.FACE_ALIGN_HALF | f.MODE_BGR, 256] ] ),
|
||||||
|
|
||||||
TrainingDataGenerator(TrainingDataType.FACE, self.training_data_dst_path, debug=self.is_debug(), batch_size=self.batch_size, output_sample_types=[
|
SampleGeneratorFace(self.training_data_dst_path, debug=self.is_debug(), batch_size=self.batch_size, output_sample_types=[
|
||||||
[f.WARPED_TRANSFORMED | f.HALF_FACE | f.MODE_BGR, 64],
|
[f.WARPED_TRANSFORMED | f.FACE_ALIGN_HALF | f.MODE_BGR, 64],
|
||||||
[f.TRANSFORMED | f.HALF_FACE | f.MODE_BGR, 64],
|
[f.TRANSFORMED | f.FACE_ALIGN_HALF | f.MODE_BGR, 64],
|
||||||
[f.SOURCE | f.HALF_FACE | f.MODE_BGR, 64],
|
[f.SOURCE | f.FACE_ALIGN_HALF | f.MODE_BGR, 64],
|
||||||
[f.SOURCE | f.HALF_FACE | f.MODE_BGR, 256] ] )
|
[f.SOURCE | f.FACE_ALIGN_HALF | f.MODE_BGR, 256] ] )
|
||||||
])
|
])
|
||||||
#override
|
#override
|
||||||
def onSave(self):
|
def onSave(self):
|
||||||
|
|
|
@ -1,5 +1,4 @@
|
||||||
from models import ModelBase
|
from models import ModelBase
|
||||||
from models import TrainingDataType
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import cv2
|
import cv2
|
||||||
|
|
||||||
|
@ -7,7 +6,7 @@ from nnlib import DSSIMMaskLossClass
|
||||||
from nnlib import conv
|
from nnlib import conv
|
||||||
from nnlib import upscale
|
from nnlib import upscale
|
||||||
from facelib import FaceType
|
from facelib import FaceType
|
||||||
|
from samples import *
|
||||||
class Model(ModelBase):
|
class Model(ModelBase):
|
||||||
|
|
||||||
encoderH5 = 'encoder.h5'
|
encoderH5 = 'encoder.h5'
|
||||||
|
@ -42,11 +41,17 @@ class Model(ModelBase):
|
||||||
self.autoencoder_dst.compile(optimizer=optimizer, loss=[dssimloss, 'mse'] )
|
self.autoencoder_dst.compile(optimizer=optimizer, loss=[dssimloss, 'mse'] )
|
||||||
|
|
||||||
if self.is_training_mode:
|
if self.is_training_mode:
|
||||||
from models import TrainingDataGenerator
|
f = SampleProcessor.TypeFlags
|
||||||
f = TrainingDataGenerator.SampleTypeFlags
|
|
||||||
self.set_training_data_generators ([
|
self.set_training_data_generators ([
|
||||||
TrainingDataGenerator(TrainingDataType.FACE, self.training_data_src_path, debug=self.is_debug(), batch_size=self.batch_size, output_sample_types=[ [f.WARPED_TRANSFORMED | f.FULL_FACE | f.MODE_BGR, 128], [f.TRANSFORMED | f.FULL_FACE | f.MODE_BGR, 128], [f.TRANSFORMED | f.FULL_FACE | f.MODE_M | f.MASK_FULL, 128] ], random_flip=True ),
|
SampleGeneratorFace(self.training_data_src_path, debug=self.is_debug(), batch_size=self.batch_size,
|
||||||
TrainingDataGenerator(TrainingDataType.FACE, self.training_data_dst_path, debug=self.is_debug(), batch_size=self.batch_size, output_sample_types=[ [f.WARPED_TRANSFORMED | f.FULL_FACE | f.MODE_BGR, 128], [f.TRANSFORMED | f.FULL_FACE | f.MODE_BGR, 128], [f.TRANSFORMED | f.FULL_FACE | f.MODE_M | f.MASK_FULL, 128] ], random_flip=True )
|
output_sample_types=[ [f.WARPED_TRANSFORMED | f.FACE_ALIGN_FULL | f.MODE_BGR, 128],
|
||||||
|
[f.TRANSFORMED | f.FACE_ALIGN_FULL | f.MODE_BGR, 128],
|
||||||
|
[f.TRANSFORMED | f.FACE_ALIGN_FULL | f.MODE_M | f.FACE_MASK_FULL, 128] ] ),
|
||||||
|
|
||||||
|
SampleGeneratorFace(self.training_data_dst_path, debug=self.is_debug(), batch_size=self.batch_size,
|
||||||
|
output_sample_types=[ [f.WARPED_TRANSFORMED | f.FACE_ALIGN_FULL | f.MODE_BGR, 128],
|
||||||
|
[f.TRANSFORMED | f.FACE_ALIGN_FULL | f.MODE_BGR, 128],
|
||||||
|
[f.TRANSFORMED | f.FACE_ALIGN_FULL | f.MODE_M | f.FACE_MASK_FULL, 128] ] )
|
||||||
])
|
])
|
||||||
#override
|
#override
|
||||||
def onSave(self):
|
def onSave(self):
|
||||||
|
|
|
@ -1,13 +1,12 @@
|
||||||
from models import ModelBase
|
|
||||||
from models import TrainingDataType
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
import cv2
|
||||||
|
|
||||||
from nnlib import DSSIMMaskLossClass
|
from nnlib import DSSIMMaskLossClass
|
||||||
from nnlib import conv
|
from nnlib import conv
|
||||||
from nnlib import upscale
|
from nnlib import upscale
|
||||||
|
from models import ModelBase
|
||||||
from facelib import FaceType
|
from facelib import FaceType
|
||||||
|
from samples import *
|
||||||
import cv2
|
|
||||||
|
|
||||||
class Model(ModelBase):
|
class Model(ModelBase):
|
||||||
|
|
||||||
|
@ -48,11 +47,17 @@ class Model(ModelBase):
|
||||||
self.dst_view = K.function([input_dst_bgr],[rec_dst_bgr, rec_dst_mask])
|
self.dst_view = K.function([input_dst_bgr],[rec_dst_bgr, rec_dst_mask])
|
||||||
|
|
||||||
if self.is_training_mode:
|
if self.is_training_mode:
|
||||||
from models import TrainingDataGenerator
|
f = SampleProcessor.TypeFlags
|
||||||
f = TrainingDataGenerator.SampleTypeFlags
|
|
||||||
self.set_training_data_generators ([
|
self.set_training_data_generators ([
|
||||||
TrainingDataGenerator(TrainingDataType.FACE, self.training_data_src_path, debug=self.is_debug(), batch_size=self.batch_size, output_sample_types=[ [f.WARPED_TRANSFORMED | f.HALF_FACE | f.MODE_BGR, 128], [f.TRANSFORMED | f.HALF_FACE | f.MODE_BGR, 128], [f.TRANSFORMED | f.HALF_FACE | f.MODE_M | f.MASK_FULL, 128] ], random_flip=True ),
|
SampleGeneratorFace(self.training_data_src_path, debug=self.is_debug(), batch_size=self.batch_size,
|
||||||
TrainingDataGenerator(TrainingDataType.FACE, self.training_data_dst_path, debug=self.is_debug(), batch_size=self.batch_size, output_sample_types=[ [f.WARPED_TRANSFORMED | f.HALF_FACE | f.MODE_BGR, 128], [f.TRANSFORMED | f.HALF_FACE | f.MODE_BGR, 128], [f.TRANSFORMED | f.HALF_FACE | f.MODE_M | f.MASK_FULL, 128] ], random_flip=True )
|
output_sample_types=[ [f.WARPED_TRANSFORMED | f.FACE_ALIGN_HALF | f.MODE_BGR, 128],
|
||||||
|
[f.TRANSFORMED | f.FACE_ALIGN_HALF | f.MODE_BGR, 128],
|
||||||
|
[f.TRANSFORMED | f.FACE_ALIGN_HALF | f.MODE_M | f.FACE_MASK_FULL, 128] ] ),
|
||||||
|
|
||||||
|
SampleGeneratorFace(self.training_data_dst_path, debug=self.is_debug(), batch_size=self.batch_size,
|
||||||
|
output_sample_types=[ [f.WARPED_TRANSFORMED | f.FACE_ALIGN_HALF | f.MODE_BGR, 128],
|
||||||
|
[f.TRANSFORMED | f.FACE_ALIGN_HALF | f.MODE_BGR, 128],
|
||||||
|
[f.TRANSFORMED | f.FACE_ALIGN_HALF | f.MODE_M | f.FACE_MASK_FULL, 128] ] )
|
||||||
])
|
])
|
||||||
|
|
||||||
#override
|
#override
|
||||||
|
|
|
@ -1,6 +1,6 @@
|
||||||
from models import ModelBase
|
from models import ModelBase
|
||||||
from models import TrainingDataType
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
from samples import *
|
||||||
|
|
||||||
from nnlib import DSSIMMaskLossClass
|
from nnlib import DSSIMMaskLossClass
|
||||||
from nnlib import conv
|
from nnlib import conv
|
||||||
|
@ -46,11 +46,17 @@ class Model(ModelBase):
|
||||||
self.dst_view = K.function([input_dst_bgr],[rec_dst_bgr, rec_dst_mask])
|
self.dst_view = K.function([input_dst_bgr],[rec_dst_bgr, rec_dst_mask])
|
||||||
|
|
||||||
if self.is_training_mode:
|
if self.is_training_mode:
|
||||||
from models import TrainingDataGenerator
|
f = SampleProcessor.TypeFlags
|
||||||
f = TrainingDataGenerator.SampleTypeFlags
|
|
||||||
self.set_training_data_generators ([
|
self.set_training_data_generators ([
|
||||||
TrainingDataGenerator(TrainingDataType.FACE, self.training_data_src_path, debug=self.is_debug(), batch_size=self.batch_size, output_sample_types=[ [f.WARPED_TRANSFORMED | f.HALF_FACE | f.MODE_BGR, 64], [f.TRANSFORMED | f.HALF_FACE | f.MODE_BGR, 64], [f.TRANSFORMED | f.HALF_FACE | f.MODE_M | f.MASK_FULL, 64] ], random_flip=True ),
|
SampleGeneratorFace(self.training_data_src_path, debug=self.is_debug(), batch_size=self.batch_size,
|
||||||
TrainingDataGenerator(TrainingDataType.FACE, self.training_data_dst_path, debug=self.is_debug(), batch_size=self.batch_size, output_sample_types=[ [f.WARPED_TRANSFORMED | f.HALF_FACE | f.MODE_BGR, 64], [f.TRANSFORMED | f.HALF_FACE | f.MODE_BGR, 64], [f.TRANSFORMED | f.HALF_FACE | f.MODE_M | f.MASK_FULL, 64] ], random_flip=True )
|
output_sample_types=[ [f.WARPED_TRANSFORMED | f.FACE_ALIGN_HALF | f.MODE_BGR, 64],
|
||||||
|
[f.TRANSFORMED | f.FACE_ALIGN_HALF | f.MODE_BGR, 64],
|
||||||
|
[f.TRANSFORMED | f.FACE_ALIGN_HALF | f.MODE_M | f.FACE_MASK_FULL, 64] ] ),
|
||||||
|
|
||||||
|
SampleGeneratorFace(self.training_data_dst_path, debug=self.is_debug(), batch_size=self.batch_size,
|
||||||
|
output_sample_types=[ [f.WARPED_TRANSFORMED | f.FACE_ALIGN_HALF | f.MODE_BGR, 64],
|
||||||
|
[f.TRANSFORMED | f.FACE_ALIGN_HALF | f.MODE_BGR, 64],
|
||||||
|
[f.TRANSFORMED | f.FACE_ALIGN_HALF | f.MODE_M | f.FACE_MASK_FULL, 64] ] )
|
||||||
])
|
])
|
||||||
|
|
||||||
#override
|
#override
|
||||||
|
|
|
@ -1,5 +1,4 @@
|
||||||
from models import ModelBase
|
from models import ModelBase
|
||||||
from models import TrainingDataType
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import cv2
|
import cv2
|
||||||
|
|
||||||
|
@ -7,6 +6,7 @@ from nnlib import DSSIMMaskLossClass
|
||||||
from nnlib import conv
|
from nnlib import conv
|
||||||
from nnlib import upscale
|
from nnlib import upscale
|
||||||
from facelib import FaceType
|
from facelib import FaceType
|
||||||
|
from samples import *
|
||||||
|
|
||||||
class Model(ModelBase):
|
class Model(ModelBase):
|
||||||
|
|
||||||
|
@ -48,11 +48,17 @@ class Model(ModelBase):
|
||||||
self.autoencoder_dst.compile(optimizer=optimizer, loss=[dssimloss, 'mse'] )
|
self.autoencoder_dst.compile(optimizer=optimizer, loss=[dssimloss, 'mse'] )
|
||||||
|
|
||||||
if self.is_training_mode:
|
if self.is_training_mode:
|
||||||
from models import TrainingDataGenerator
|
f = SampleProcessor.TypeFlags
|
||||||
f = TrainingDataGenerator.SampleTypeFlags
|
|
||||||
self.set_training_data_generators ([
|
self.set_training_data_generators ([
|
||||||
TrainingDataGenerator(TrainingDataType.FACE, self.training_data_src_path, debug=self.is_debug(), batch_size=self.batch_size, output_sample_types=[ [f.WARPED_TRANSFORMED | f.FULL_FACE | f.MODE_BGR, 128], [f.TRANSFORMED | f.FULL_FACE | f.MODE_BGR, 128], [f.TRANSFORMED | f.FULL_FACE | f.MODE_M | f.MASK_FULL, 128] ], random_flip=True ),
|
SampleGeneratorFace(self.training_data_src_path, debug=self.is_debug(), batch_size=self.batch_size,
|
||||||
TrainingDataGenerator(TrainingDataType.FACE, self.training_data_dst_path, debug=self.is_debug(), batch_size=self.batch_size, output_sample_types=[ [f.WARPED_TRANSFORMED | f.FULL_FACE | f.MODE_BGR, 128], [f.TRANSFORMED | f.FULL_FACE | f.MODE_BGR, 128], [f.TRANSFORMED | f.FULL_FACE | f.MODE_M | f.MASK_FULL, 128] ], random_flip=True )
|
output_sample_types=[ [f.WARPED_TRANSFORMED | f.FACE_ALIGN_FULL | f.MODE_BGR, 128],
|
||||||
|
[f.TRANSFORMED | f.FACE_ALIGN_FULL | f.MODE_BGR, 128],
|
||||||
|
[f.TRANSFORMED | f.FACE_ALIGN_FULL | f.MODE_M | f.FACE_MASK_FULL, 128] ] ),
|
||||||
|
|
||||||
|
SampleGeneratorFace(self.training_data_dst_path, debug=self.is_debug(), batch_size=self.batch_size,
|
||||||
|
output_sample_types=[ [f.WARPED_TRANSFORMED | f.FACE_ALIGN_FULL | f.MODE_BGR, 128],
|
||||||
|
[f.TRANSFORMED | f.FACE_ALIGN_FULL | f.MODE_BGR, 128],
|
||||||
|
[f.TRANSFORMED | f.FACE_ALIGN_FULL | f.MODE_M | f.FACE_MASK_FULL, 128] ] )
|
||||||
])
|
])
|
||||||
|
|
||||||
#override
|
#override
|
||||||
|
|
|
@ -1,5 +1,4 @@
|
||||||
from models import ModelBase
|
from models import ModelBase
|
||||||
from models import TrainingDataType
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import cv2
|
import cv2
|
||||||
|
|
||||||
|
@ -7,7 +6,8 @@ from nnlib import DSSIMMaskLossClass
|
||||||
from nnlib import conv
|
from nnlib import conv
|
||||||
from nnlib import upscale
|
from nnlib import upscale
|
||||||
from facelib import FaceType
|
from facelib import FaceType
|
||||||
|
from samples import *
|
||||||
|
|
||||||
class Model(ModelBase):
|
class Model(ModelBase):
|
||||||
|
|
||||||
encoderH5 = 'encoder.h5'
|
encoderH5 = 'encoder.h5'
|
||||||
|
@ -47,12 +47,18 @@ class Model(ModelBase):
|
||||||
self.autoencoder_src.compile(optimizer=optimizer, loss=[dssimloss, 'mse'] )
|
self.autoencoder_src.compile(optimizer=optimizer, loss=[dssimloss, 'mse'] )
|
||||||
self.autoencoder_dst.compile(optimizer=optimizer, loss=[dssimloss, 'mse'] )
|
self.autoencoder_dst.compile(optimizer=optimizer, loss=[dssimloss, 'mse'] )
|
||||||
|
|
||||||
if self.is_training_mode:
|
if self.is_training_mode:
|
||||||
from models import TrainingDataGenerator
|
f = SampleProcessor.TypeFlags
|
||||||
f = TrainingDataGenerator.SampleTypeFlags
|
|
||||||
self.set_training_data_generators ([
|
self.set_training_data_generators ([
|
||||||
TrainingDataGenerator(TrainingDataType.FACE_YAW_SORTED_AS_TARGET, self.training_data_src_path, target_training_data_path=self.training_data_dst_path, debug=self.is_debug(), batch_size=self.batch_size, output_sample_types=[ [f.WARPED_TRANSFORMED | f.FULL_FACE | f.MODE_BGR, 128], [f.TRANSFORMED | f.FULL_FACE | f.MODE_BGR, 128], [f.TRANSFORMED | f.FULL_FACE | f.MODE_M | f.MASK_FULL, 128] ], random_flip=True ),
|
SampleGeneratorFace(self.training_data_src_path, sort_by_yaw_target_samples_path=self.training_data_dst_path, debug=self.is_debug(), batch_size=self.batch_size,
|
||||||
TrainingDataGenerator(TrainingDataType.FACE, self.training_data_dst_path, debug=self.is_debug(), batch_size=self.batch_size, output_sample_types=[ [f.WARPED_TRANSFORMED | f.FULL_FACE | f.MODE_BGR, 128], [f.TRANSFORMED | f.FULL_FACE | f.MODE_BGR, 128], [f.TRANSFORMED | f.FULL_FACE | f.MODE_M | f.MASK_FULL, 128] ], random_flip=True )
|
output_sample_types=[ [f.WARPED_TRANSFORMED | f.FACE_ALIGN_FULL | f.MODE_BGR, 128],
|
||||||
|
[f.TRANSFORMED | f.FACE_ALIGN_FULL | f.MODE_BGR, 128],
|
||||||
|
[f.TRANSFORMED | f.FACE_ALIGN_FULL | f.MODE_M | f.FACE_MASK_FULL, 128] ] ),
|
||||||
|
|
||||||
|
SampleGeneratorFace(self.training_data_dst_path, debug=self.is_debug(), batch_size=self.batch_size,
|
||||||
|
output_sample_types=[ [f.WARPED_TRANSFORMED | f.FACE_ALIGN_FULL | f.MODE_BGR, 128],
|
||||||
|
[f.TRANSFORMED | f.FACE_ALIGN_FULL | f.MODE_BGR, 128],
|
||||||
|
[f.TRANSFORMED | f.FACE_ALIGN_FULL | f.MODE_M | f.FACE_MASK_FULL, 128] ] )
|
||||||
])
|
])
|
||||||
|
|
||||||
#override
|
#override
|
||||||
|
|
|
@ -1,12 +1,12 @@
|
||||||
from models import ModelBase
|
|
||||||
from models import TrainingDataType
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import cv2
|
import cv2
|
||||||
|
|
||||||
|
from models import ModelBase
|
||||||
from nnlib import DSSIMMaskLossClass
|
from nnlib import DSSIMMaskLossClass
|
||||||
from nnlib import conv
|
from nnlib import conv
|
||||||
from nnlib import upscale
|
from nnlib import upscale
|
||||||
from facelib import FaceType
|
from facelib import FaceType
|
||||||
|
from samples import *
|
||||||
|
|
||||||
class Model(ModelBase):
|
class Model(ModelBase):
|
||||||
|
|
||||||
|
@ -82,11 +82,18 @@ class Model(ModelBase):
|
||||||
self.autoencoder_dst.compile(optimizer=optimizer, loss=[dssimloss, 'mse'] )
|
self.autoencoder_dst.compile(optimizer=optimizer, loss=[dssimloss, 'mse'] )
|
||||||
|
|
||||||
if self.is_training_mode:
|
if self.is_training_mode:
|
||||||
from models import TrainingDataGenerator
|
f = SampleProcessor.TypeFlags
|
||||||
f = TrainingDataGenerator.SampleTypeFlags
|
|
||||||
self.set_training_data_generators ([
|
self.set_training_data_generators ([
|
||||||
TrainingDataGenerator(TrainingDataType.FACE, self.training_data_src_path, debug=self.is_debug(), batch_size=self.batch_size, output_sample_types=[ [f.WARPED_TRANSFORMED | f.FULL_FACE | f.MODE_GGG, 128], [f.TRANSFORMED | f.FULL_FACE | f.MODE_G , 128], [f.TRANSFORMED | f.FULL_FACE | f.MODE_M | f.MASK_FULL, 128], [f.TRANSFORMED | f.FULL_FACE | f.MODE_GGG, 128] ], random_flip=True ),
|
SampleGeneratorFace(self.training_data_src_path, debug=self.is_debug(), batch_size=self.batch_size,
|
||||||
TrainingDataGenerator(TrainingDataType.FACE, self.training_data_dst_path, debug=self.is_debug(), batch_size=self.batch_size, output_sample_types=[ [f.WARPED_TRANSFORMED | f.FULL_FACE | f.MODE_BGR, 128], [f.TRANSFORMED | f.FULL_FACE | f.MODE_BGR, 128], [f.TRANSFORMED | f.FULL_FACE | f.MODE_M | f.MASK_FULL, 128]], random_flip=True )
|
output_sample_types=[ [f.WARPED_TRANSFORMED | f.FACE_ALIGN_FULL | f.MODE_GGG, 128],
|
||||||
|
[f.TRANSFORMED | f.FACE_ALIGN_FULL | f.MODE_G , 128],
|
||||||
|
[f.TRANSFORMED | f.FACE_ALIGN_FULL | f.MODE_M | f.FACE_MASK_FULL, 128],
|
||||||
|
[f.TRANSFORMED | f.FACE_ALIGN_FULL | f.MODE_GGG, 128] ] ),
|
||||||
|
|
||||||
|
SampleGeneratorFace(self.training_data_dst_path, debug=self.is_debug(), batch_size=self.batch_size,
|
||||||
|
output_sample_types=[ [f.WARPED_TRANSFORMED | f.FACE_ALIGN_FULL | f.MODE_BGR, 128],
|
||||||
|
[f.TRANSFORMED | f.FACE_ALIGN_FULL | f.MODE_BGR, 128],
|
||||||
|
[f.TRANSFORMED | f.FACE_ALIGN_FULL | f.MODE_M | f.FACE_MASK_FULL, 128]] )
|
||||||
])
|
])
|
||||||
#override
|
#override
|
||||||
def onSave(self):
|
def onSave(self):
|
||||||
|
|
|
@ -1,149 +0,0 @@
|
||||||
from facelib import FaceType
|
|
||||||
from facelib import LandmarksProcessor
|
|
||||||
import cv2
|
|
||||||
import numpy as np
|
|
||||||
from models import TrainingDataGeneratorBase
|
|
||||||
from utils import image_utils
|
|
||||||
from utils import random_utils
|
|
||||||
from enum import IntEnum
|
|
||||||
from models import TrainingDataType
|
|
||||||
|
|
||||||
class TrainingDataGenerator(TrainingDataGeneratorBase):
|
|
||||||
class SampleTypeFlags(IntEnum):
|
|
||||||
SOURCE = 0x000001,
|
|
||||||
WARPED = 0x000002,
|
|
||||||
WARPED_TRANSFORMED = 0x000004,
|
|
||||||
TRANSFORMED = 0x000008,
|
|
||||||
|
|
||||||
HALF_FACE = 0x000010,
|
|
||||||
FULL_FACE = 0x000020,
|
|
||||||
HEAD_FACE = 0x000040,
|
|
||||||
AVATAR_FACE = 0x000080,
|
|
||||||
MARK_ONLY_FACE = 0x000100,
|
|
||||||
|
|
||||||
MODE_BGR = 0x001000, #BGR
|
|
||||||
MODE_G = 0x002000, #Grayscale
|
|
||||||
MODE_GGG = 0x004000, #3xGrayscale
|
|
||||||
MODE_M = 0x008000, #mask only
|
|
||||||
MODE_BGR_SHUFFLE = 0x010000, #BGR shuffle
|
|
||||||
|
|
||||||
MASK_FULL = 0x100000,
|
|
||||||
MASK_EYES = 0x200000,
|
|
||||||
|
|
||||||
#overrided
|
|
||||||
def onInitialize(self, random_flip=False, normalize_tanh=False, rotation_range=[-10,10], scale_range=[-0.05, 0.05], tx_range=[-0.05, 0.05], ty_range=[-0.05, 0.05], output_sample_types=[], **kwargs):
|
|
||||||
self.random_flip = random_flip
|
|
||||||
self.normalize_tanh = normalize_tanh
|
|
||||||
self.output_sample_types = output_sample_types
|
|
||||||
self.rotation_range = rotation_range
|
|
||||||
self.scale_range = scale_range
|
|
||||||
self.tx_range = tx_range
|
|
||||||
self.ty_range = ty_range
|
|
||||||
|
|
||||||
#overrided
|
|
||||||
def onProcessSample(self, sample, debug):
|
|
||||||
source = sample.load_bgr()
|
|
||||||
h,w,c = source.shape
|
|
||||||
|
|
||||||
is_face_sample = self.trainingdatatype >= TrainingDataType.FACE_BEGIN and self.trainingdatatype <= TrainingDataType.FACE_END
|
|
||||||
|
|
||||||
if debug and is_face_sample:
|
|
||||||
LandmarksProcessor.draw_landmarks (source, sample.landmarks, (0, 1, 0))
|
|
||||||
|
|
||||||
params = image_utils.gen_warp_params(source, self.random_flip, rotation_range=self.rotation_range, scale_range=self.scale_range, tx_range=self.tx_range, ty_range=self.ty_range )
|
|
||||||
|
|
||||||
images = [[None]*3 for _ in range(4)]
|
|
||||||
|
|
||||||
outputs = []
|
|
||||||
for t,size in self.output_sample_types:
|
|
||||||
if t & self.SampleTypeFlags.SOURCE != 0:
|
|
||||||
img_type = 0
|
|
||||||
elif t & self.SampleTypeFlags.WARPED != 0:
|
|
||||||
img_type = 1
|
|
||||||
elif t & self.SampleTypeFlags.WARPED_TRANSFORMED != 0:
|
|
||||||
img_type = 2
|
|
||||||
elif t & self.SampleTypeFlags.TRANSFORMED != 0:
|
|
||||||
img_type = 3
|
|
||||||
else:
|
|
||||||
raise ValueError ('expected SampleTypeFlags type')
|
|
||||||
|
|
||||||
mask_type = 0
|
|
||||||
if t & self.SampleTypeFlags.MASK_FULL != 0:
|
|
||||||
mask_type = 1
|
|
||||||
elif t & self.SampleTypeFlags.MASK_EYES != 0:
|
|
||||||
mask_type = 2
|
|
||||||
|
|
||||||
if images[img_type][mask_type] is None:
|
|
||||||
img = source
|
|
||||||
if is_face_sample:
|
|
||||||
if mask_type == 1:
|
|
||||||
img = np.concatenate( (img, LandmarksProcessor.get_image_hull_mask (source, sample.landmarks) ), -1 )
|
|
||||||
elif mask_type == 2:
|
|
||||||
mask = LandmarksProcessor.get_image_eye_mask (source, sample.landmarks)
|
|
||||||
mask = np.expand_dims (cv2.blur (mask, ( w // 32, w // 32 ) ), -1)
|
|
||||||
mask[mask > 0.0] = 1.0
|
|
||||||
img = np.concatenate( (img, mask ), -1 )
|
|
||||||
|
|
||||||
images[img_type][mask_type] = image_utils.warp_by_params (params, img, (img_type==1 or img_type==2), (img_type==2 or img_type==3), img_type != 0)
|
|
||||||
|
|
||||||
img = images[img_type][mask_type]
|
|
||||||
|
|
||||||
target_face_type = -1
|
|
||||||
if t & self.SampleTypeFlags.HALF_FACE != 0:
|
|
||||||
target_face_type = FaceType.HALF
|
|
||||||
elif t & self.SampleTypeFlags.FULL_FACE != 0:
|
|
||||||
target_face_type = FaceType.FULL
|
|
||||||
elif t & self.SampleTypeFlags.HEAD_FACE != 0:
|
|
||||||
target_face_type = FaceType.HEAD
|
|
||||||
elif t & self.SampleTypeFlags.AVATAR_FACE != 0:
|
|
||||||
target_face_type = FaceType.AVATAR
|
|
||||||
elif t & self.SampleTypeFlags.MARK_ONLY_FACE != 0:
|
|
||||||
target_face_type = FaceType.MARK_ONLY
|
|
||||||
|
|
||||||
if is_face_sample and target_face_type != -1 and target_face_type != FaceType.MARK_ONLY:
|
|
||||||
if target_face_type > sample.face_type:
|
|
||||||
raise Exception ('sample %s type %s does not match model requirement %s. Consider extract necessary type of faces.' % (sample.filename, sample.face_type, target_face_type) )
|
|
||||||
|
|
||||||
img = cv2.warpAffine( img, LandmarksProcessor.get_transform_mat (sample.landmarks, size, target_face_type), (size,size), flags=cv2.INTER_LANCZOS4 )
|
|
||||||
else:
|
|
||||||
img = cv2.resize( img, (size,size), cv2.INTER_LANCZOS4 )
|
|
||||||
|
|
||||||
img_bgr = img[...,0:3]
|
|
||||||
img_mask = img[...,3:4]
|
|
||||||
|
|
||||||
if t & self.SampleTypeFlags.MODE_BGR != 0:
|
|
||||||
img = img
|
|
||||||
elif t & self.SampleTypeFlags.MODE_BGR_SHUFFLE != 0:
|
|
||||||
img_bgr = np.take (img_bgr, np.random.permutation(img_bgr.shape[-1]), axis=-1)
|
|
||||||
img = np.concatenate ( (img_bgr,img_mask) , -1 )
|
|
||||||
elif t & self.SampleTypeFlags.MODE_G != 0:
|
|
||||||
img = np.concatenate ( (np.expand_dims(cv2.cvtColor(img_bgr, cv2.COLOR_BGR2GRAY),-1),img_mask) , -1 )
|
|
||||||
elif t & self.SampleTypeFlags.MODE_GGG != 0:
|
|
||||||
img = np.concatenate ( ( np.repeat ( np.expand_dims(cv2.cvtColor(img_bgr, cv2.COLOR_BGR2GRAY),-1), (3,), -1), img_mask), -1)
|
|
||||||
elif is_face_sample and t & self.SampleTypeFlags.MODE_M != 0:
|
|
||||||
if mask_type== 0:
|
|
||||||
raise ValueError ('no mask mode defined')
|
|
||||||
img = img_mask
|
|
||||||
else:
|
|
||||||
raise ValueError ('expected SampleTypeFlags mode')
|
|
||||||
|
|
||||||
if not debug and self.normalize_tanh:
|
|
||||||
img = img * 2.0 - 1.0
|
|
||||||
|
|
||||||
outputs.append ( img )
|
|
||||||
|
|
||||||
if debug:
|
|
||||||
result = ()
|
|
||||||
|
|
||||||
for output in outputs:
|
|
||||||
if output.shape[2] < 4:
|
|
||||||
result += (output,)
|
|
||||||
elif output.shape[2] == 4:
|
|
||||||
result += (output[...,0:3]*output[...,3:4],)
|
|
||||||
|
|
||||||
return result
|
|
||||||
else:
|
|
||||||
return outputs
|
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -1,240 +0,0 @@
|
||||||
import traceback
|
|
||||||
import random
|
|
||||||
from pathlib import Path
|
|
||||||
from tqdm import tqdm
|
|
||||||
import numpy as np
|
|
||||||
import cv2
|
|
||||||
from utils.DFLPNG import DFLPNG
|
|
||||||
from utils import iter_utils
|
|
||||||
from utils import Path_utils
|
|
||||||
from .BaseTypes import TrainingDataType
|
|
||||||
from .BaseTypes import TrainingDataSample
|
|
||||||
from facelib import FaceType
|
|
||||||
from facelib import LandmarksProcessor
|
|
||||||
|
|
||||||
'''
|
|
||||||
You can implement your own TrainingDataGenerator
|
|
||||||
'''
|
|
||||||
class TrainingDataGeneratorBase(object):
|
|
||||||
cache = dict()
|
|
||||||
|
|
||||||
#DONT OVERRIDE
|
|
||||||
#use YourOwnTrainingDataGenerator (..., your_opt=1)
|
|
||||||
#and then this opt will be passed in YourOwnTrainingDataGenerator.onInitialize ( your_opt )
|
|
||||||
def __init__ (self, trainingdatatype, training_data_path, target_training_data_path=None, debug=False, batch_size=1, **kwargs):
|
|
||||||
if not isinstance(trainingdatatype, TrainingDataType):
|
|
||||||
raise Exception('TrainingDataGeneratorBase() trainingdatatype is not TrainingDataType')
|
|
||||||
|
|
||||||
if training_data_path is None:
|
|
||||||
raise Exception('training_data_path is None')
|
|
||||||
|
|
||||||
self.training_data_path = Path(training_data_path)
|
|
||||||
self.target_training_data_path = Path(target_training_data_path) if target_training_data_path is not None else None
|
|
||||||
|
|
||||||
self.debug = debug
|
|
||||||
self.batch_size = 1 if self.debug else batch_size
|
|
||||||
self.trainingdatatype = trainingdatatype
|
|
||||||
self.data = TrainingDataGeneratorBase.load (trainingdatatype, self.training_data_path, self.target_training_data_path)
|
|
||||||
|
|
||||||
if self.debug:
|
|
||||||
self.generators = [iter_utils.ThisThreadGenerator ( self.batch_func, self.data)]
|
|
||||||
else:
|
|
||||||
if len(self.data) > 1:
|
|
||||||
self.generators = [iter_utils.SubprocessGenerator ( self.batch_func, self.data[0::2] ),
|
|
||||||
iter_utils.SubprocessGenerator ( self.batch_func, self.data[1::2] )]
|
|
||||||
else:
|
|
||||||
self.generators = [iter_utils.SubprocessGenerator ( self.batch_func, self.data )]
|
|
||||||
|
|
||||||
self.generator_counter = -1
|
|
||||||
self.onInitialize(**kwargs)
|
|
||||||
|
|
||||||
#overridable
|
|
||||||
def onInitialize(self, **kwargs):
|
|
||||||
#your TrainingDataGenerator initialization here
|
|
||||||
pass
|
|
||||||
|
|
||||||
#overridable
|
|
||||||
def onProcessSample(self, sample, debug):
|
|
||||||
#process sample and return tuple of images for your model in onTrainOneEpoch
|
|
||||||
return ( np.zeros( (64,64,4), dtype=np.float32 ), )
|
|
||||||
|
|
||||||
def __iter__(self):
|
|
||||||
return self
|
|
||||||
|
|
||||||
def __next__(self):
|
|
||||||
self.generator_counter += 1
|
|
||||||
generator = self.generators[self.generator_counter % len(self.generators) ]
|
|
||||||
x = next(generator)
|
|
||||||
return x
|
|
||||||
|
|
||||||
def batch_func(self, data):
|
|
||||||
data_len = len(data)
|
|
||||||
if data_len == 0:
|
|
||||||
raise ValueError('No training data provided.')
|
|
||||||
|
|
||||||
if self.trainingdatatype == TrainingDataType.FACE_YAW_SORTED or self.trainingdatatype == TrainingDataType.FACE_YAW_SORTED_AS_TARGET:
|
|
||||||
if all ( [ x == None for x in data] ):
|
|
||||||
raise ValueError('Not enough training data. Gather more faces!')
|
|
||||||
|
|
||||||
if self.trainingdatatype == TrainingDataType.IMAGE or self.trainingdatatype == TrainingDataType.FACE:
|
|
||||||
shuffle_idxs = []
|
|
||||||
elif self.trainingdatatype == TrainingDataType.FACE_YAW_SORTED or self.trainingdatatype == TrainingDataType.FACE_YAW_SORTED_AS_TARGET:
|
|
||||||
shuffle_idxs = []
|
|
||||||
shuffle_idxs_2D = [[]]*data_len
|
|
||||||
|
|
||||||
while True:
|
|
||||||
|
|
||||||
batches = None
|
|
||||||
for n_batch in range(0, self.batch_size):
|
|
||||||
while True:
|
|
||||||
sample = None
|
|
||||||
|
|
||||||
if self.trainingdatatype == TrainingDataType.IMAGE or self.trainingdatatype == TrainingDataType.FACE:
|
|
||||||
if len(shuffle_idxs) == 0:
|
|
||||||
shuffle_idxs = [ i for i in range(0, data_len) ]
|
|
||||||
random.shuffle(shuffle_idxs)
|
|
||||||
idx = shuffle_idxs.pop()
|
|
||||||
sample = data[ idx ]
|
|
||||||
elif self.trainingdatatype == TrainingDataType.FACE_YAW_SORTED or self.trainingdatatype == TrainingDataType.FACE_YAW_SORTED_AS_TARGET:
|
|
||||||
if len(shuffle_idxs) == 0:
|
|
||||||
shuffle_idxs = [ i for i in range(0, data_len) ]
|
|
||||||
random.shuffle(shuffle_idxs)
|
|
||||||
|
|
||||||
idx = shuffle_idxs.pop()
|
|
||||||
if data[idx] != None:
|
|
||||||
if len(shuffle_idxs_2D[idx]) == 0:
|
|
||||||
shuffle_idxs_2D[idx] = [ i for i in range(0, len(data[idx])) ]
|
|
||||||
random.shuffle(shuffle_idxs_2D[idx])
|
|
||||||
|
|
||||||
idx2 = shuffle_idxs_2D[idx].pop()
|
|
||||||
sample = data[idx][idx2]
|
|
||||||
|
|
||||||
if sample is not None:
|
|
||||||
try:
|
|
||||||
x = self.onProcessSample (sample, self.debug)
|
|
||||||
except:
|
|
||||||
raise Exception ("Exception occured in sample %s. Error: %s" % (sample.filename, traceback.format_exc() ) )
|
|
||||||
|
|
||||||
if type(x) != tuple and type(x) != list:
|
|
||||||
raise Exception('TrainingDataGenerator.onProcessSample() returns NOT tuple/list')
|
|
||||||
|
|
||||||
x_len = len(x)
|
|
||||||
if batches is None:
|
|
||||||
batches = [ [] for _ in range(0,x_len) ]
|
|
||||||
|
|
||||||
for i in range(0,x_len):
|
|
||||||
batches[i].append ( x[i] )
|
|
||||||
|
|
||||||
break
|
|
||||||
|
|
||||||
yield [ np.array(batch) for batch in batches]
|
|
||||||
|
|
||||||
def get_dict_state(self):
|
|
||||||
return {}
|
|
||||||
|
|
||||||
def set_dict_state(self, state):
|
|
||||||
pass
|
|
||||||
|
|
||||||
@staticmethod
|
|
||||||
def load(trainingdatatype, training_data_path, target_training_data_path=None):
|
|
||||||
cache = TrainingDataGeneratorBase.cache
|
|
||||||
|
|
||||||
if str(training_data_path) not in cache.keys():
|
|
||||||
cache[str(training_data_path)] = [None]*TrainingDataType.QTY
|
|
||||||
|
|
||||||
if target_training_data_path is not None and str(target_training_data_path) not in cache.keys():
|
|
||||||
cache[str(target_training_data_path)] = [None]*TrainingDataType.QTY
|
|
||||||
|
|
||||||
datas = cache[str(training_data_path)]
|
|
||||||
|
|
||||||
if trainingdatatype == TrainingDataType.IMAGE:
|
|
||||||
if datas[trainingdatatype] is None:
|
|
||||||
datas[trainingdatatype] = [ TrainingDataSample(filename=filename) for filename in tqdm( Path_utils.get_image_paths(training_data_path), desc="Loading" ) ]
|
|
||||||
|
|
||||||
elif trainingdatatype == TrainingDataType.FACE:
|
|
||||||
if datas[trainingdatatype] is None:
|
|
||||||
datas[trainingdatatype] = X_LOAD( [ TrainingDataSample(filename=filename) for filename in Path_utils.get_image_paths(training_data_path) ] )
|
|
||||||
|
|
||||||
elif trainingdatatype == TrainingDataType.FACE_YAW_SORTED:
|
|
||||||
if datas[trainingdatatype] is None:
|
|
||||||
datas[trainingdatatype] = X_YAW_SORTED( TrainingDataGeneratorBase.load(TrainingDataType.FACE, training_data_path) )
|
|
||||||
|
|
||||||
elif trainingdatatype == TrainingDataType.FACE_YAW_SORTED_AS_TARGET:
|
|
||||||
if datas[trainingdatatype] is None:
|
|
||||||
if target_training_data_path is None:
|
|
||||||
raise Exception('target_training_data_path is None for FACE_YAW_SORTED_AS_TARGET')
|
|
||||||
datas[trainingdatatype] = X_YAW_AS_Y_SORTED( TrainingDataGeneratorBase.load(TrainingDataType.FACE_YAW_SORTED, training_data_path), TrainingDataGeneratorBase.load(TrainingDataType.FACE_YAW_SORTED, target_training_data_path) )
|
|
||||||
|
|
||||||
return datas[trainingdatatype]
|
|
||||||
|
|
||||||
def X_LOAD ( RAWS ):
|
|
||||||
sample_list = []
|
|
||||||
|
|
||||||
for s in tqdm( RAWS, desc="Loading" ):
|
|
||||||
|
|
||||||
s_filename_path = Path(s.filename)
|
|
||||||
if s_filename_path.suffix != '.png':
|
|
||||||
print ("%s is not a png file required for training" % (s_filename_path.name) )
|
|
||||||
continue
|
|
||||||
|
|
||||||
dflpng = DFLPNG.load ( str(s_filename_path), print_on_no_embedded_data=True )
|
|
||||||
if dflpng is None:
|
|
||||||
continue
|
|
||||||
|
|
||||||
sample_list.append( s.copy_and_set(face_type=FaceType.fromString (dflpng.get_face_type()),
|
|
||||||
shape=dflpng.get_shape(),
|
|
||||||
landmarks=dflpng.get_landmarks(),
|
|
||||||
yaw=dflpng.get_yaw_value()) )
|
|
||||||
|
|
||||||
return sample_list
|
|
||||||
|
|
||||||
def X_YAW_SORTED( YAW_RAWS ):
|
|
||||||
|
|
||||||
lowest_yaw, highest_yaw = -32, +32
|
|
||||||
gradations = 64
|
|
||||||
diff_rot_per_grad = abs(highest_yaw-lowest_yaw) / gradations
|
|
||||||
|
|
||||||
yaws_sample_list = [None]*gradations
|
|
||||||
|
|
||||||
for i in tqdm( range(0, gradations), desc="Sorting" ):
|
|
||||||
yaw = lowest_yaw + i*diff_rot_per_grad
|
|
||||||
next_yaw = lowest_yaw + (i+1)*diff_rot_per_grad
|
|
||||||
|
|
||||||
yaw_samples = []
|
|
||||||
for s in YAW_RAWS:
|
|
||||||
s_yaw = s.yaw
|
|
||||||
if (i == 0 and s_yaw < next_yaw) or \
|
|
||||||
(i < gradations-1 and s_yaw >= yaw and s_yaw < next_yaw) or \
|
|
||||||
(i == gradations-1 and s_yaw >= yaw):
|
|
||||||
yaw_samples.append ( s )
|
|
||||||
|
|
||||||
if len(yaw_samples) > 0:
|
|
||||||
yaws_sample_list[i] = yaw_samples
|
|
||||||
|
|
||||||
return yaws_sample_list
|
|
||||||
|
|
||||||
def X_YAW_AS_Y_SORTED (s, t):
|
|
||||||
l = len(s)
|
|
||||||
if l != len(t):
|
|
||||||
raise Exception('X_YAW_AS_Y_SORTED() s_len != t_len')
|
|
||||||
b = l // 2
|
|
||||||
|
|
||||||
s_idxs = np.argwhere ( np.array ( [ 1 if x != None else 0 for x in s] ) == 1 )[:,0]
|
|
||||||
t_idxs = np.argwhere ( np.array ( [ 1 if x != None else 0 for x in t] ) == 1 )[:,0]
|
|
||||||
|
|
||||||
new_s = [None]*l
|
|
||||||
|
|
||||||
for t_idx in t_idxs:
|
|
||||||
search_idxs = []
|
|
||||||
for i in range(0,l):
|
|
||||||
search_idxs += [t_idx - i, (l-t_idx-1) - i, t_idx + i, (l-t_idx-1) + i]
|
|
||||||
|
|
||||||
for search_idx in search_idxs:
|
|
||||||
if search_idx in s_idxs:
|
|
||||||
mirrored = ( t_idx != search_idx and ((t_idx < b and search_idx >= b) or (search_idx < b and t_idx >= b)) )
|
|
||||||
new_s[t_idx] = [ sample.copy_and_set(mirror=True, yaw=-sample.yaw, landmarks=LandmarksProcessor.mirror_landmarks (sample.landmarks, sample.shape[1] ))
|
|
||||||
for sample in s[search_idx]
|
|
||||||
] if mirrored else s[search_idx]
|
|
||||||
break
|
|
||||||
|
|
||||||
return new_s
|
|
|
@ -1,12 +1,7 @@
|
||||||
from .BaseTypes import TrainingDataType
|
|
||||||
from .BaseTypes import TrainingDataSample
|
|
||||||
|
|
||||||
from .ModelBase import ModelBase
|
from .ModelBase import ModelBase
|
||||||
from .ConverterBase import ConverterBase
|
from .ConverterBase import ConverterBase
|
||||||
from .ConverterMasked import ConverterMasked
|
from .ConverterMasked import ConverterMasked
|
||||||
from .ConverterImage import ConverterImage
|
from .ConverterImage import ConverterImage
|
||||||
from .TrainingDataGeneratorBase import TrainingDataGeneratorBase
|
|
||||||
from .TrainingDataGenerator import TrainingDataGenerator
|
|
||||||
|
|
||||||
def import_model(name):
|
def import_model(name):
|
||||||
module = __import__('Model_'+name, globals(), locals(), [], 1)
|
module = __import__('Model_'+name, globals(), locals(), [], 1)
|
||||||
|
|
|
@ -43,7 +43,36 @@ def DSSIMMaskLossClass(tf):
|
||||||
return total_loss
|
return total_loss
|
||||||
|
|
||||||
return DSSIMMaskLoss
|
return DSSIMMaskLoss
|
||||||
|
|
||||||
|
def DSSIMPatchMaskLossClass(tf):
|
||||||
|
class DSSIMPatchMaskLoss(object):
|
||||||
|
def __init__(self, mask_list, is_tanh=False):
|
||||||
|
self.mask_list = mask_list
|
||||||
|
self.is_tanh = is_tanh
|
||||||
|
|
||||||
|
def __call__(self,y_true, y_pred):
|
||||||
|
total_loss = None
|
||||||
|
for mask in self.mask_list:
|
||||||
|
#import code
|
||||||
|
#code.interact(local=dict(globals(), **locals()))
|
||||||
|
|
||||||
|
y_true = tf.extract_image_patches ( y_true, (1,9,9,1), (1,1,1,1), (1,8,8,1), 'VALID' )
|
||||||
|
y_pred = tf.extract_image_patches ( y_pred, (1,9,9,1), (1,1,1,1), (1,8,8,1), 'VALID' )
|
||||||
|
mask = tf.extract_image_patches ( tf.tile(mask,[1,1,1,3]) , (1,9,9,1), (1,1,1,1), (1,8,8,1), 'VALID' )
|
||||||
|
if not self.is_tanh:
|
||||||
|
loss = (1.0 - tf.image.ssim (y_true*mask, y_pred*mask, 1.0)) / 2.0
|
||||||
|
else:
|
||||||
|
loss = (1.0 - tf.image.ssim ( (y_true/2+0.5)*(mask/2+0.5), (y_pred/2+0.5)*(mask/2+0.5), 1.0)) / 2.0
|
||||||
|
|
||||||
|
if total_loss is None:
|
||||||
|
total_loss = loss
|
||||||
|
else:
|
||||||
|
total_loss += loss
|
||||||
|
|
||||||
|
return total_loss
|
||||||
|
|
||||||
|
return DSSIMPatchMaskLoss
|
||||||
|
|
||||||
def DSSIMLossClass(tf):
|
def DSSIMLossClass(tf):
|
||||||
class DSSIMLoss(object):
|
class DSSIMLoss(object):
|
||||||
def __init__(self, is_tanh=False):
|
def __init__(self, is_tanh=False):
|
||||||
|
@ -57,6 +86,125 @@ def DSSIMLossClass(tf):
|
||||||
|
|
||||||
return DSSIMLoss
|
return DSSIMLoss
|
||||||
|
|
||||||
|
def rgb_to_lab(tf, rgb_input):
|
||||||
|
with tf.name_scope("rgb_to_lab"):
|
||||||
|
srgb_pixels = tf.reshape(rgb_input, [-1, 3])
|
||||||
|
|
||||||
|
with tf.name_scope("srgb_to_xyz"):
|
||||||
|
linear_mask = tf.cast(srgb_pixels <= 0.04045, dtype=tf.float32)
|
||||||
|
exponential_mask = tf.cast(srgb_pixels > 0.04045, dtype=tf.float32)
|
||||||
|
rgb_pixels = (srgb_pixels / 12.92 * linear_mask) + (((srgb_pixels + 0.055) / 1.055) ** 2.4) * exponential_mask
|
||||||
|
rgb_to_xyz = tf.constant([
|
||||||
|
# X Y Z
|
||||||
|
[0.412453, 0.212671, 0.019334], # R
|
||||||
|
[0.357580, 0.715160, 0.119193], # G
|
||||||
|
[0.180423, 0.072169, 0.950227], # B
|
||||||
|
])
|
||||||
|
xyz_pixels = tf.matmul(rgb_pixels, rgb_to_xyz)
|
||||||
|
|
||||||
|
# https://en.wikipedia.org/wiki/Lab_color_space#CIELAB-CIEXYZ_conversions
|
||||||
|
with tf.name_scope("xyz_to_cielab"):
|
||||||
|
# convert to fx = f(X/Xn), fy = f(Y/Yn), fz = f(Z/Zn)
|
||||||
|
|
||||||
|
# normalize for D65 white point
|
||||||
|
xyz_normalized_pixels = tf.multiply(xyz_pixels, [1/0.950456, 1.0, 1/1.088754])
|
||||||
|
|
||||||
|
epsilon = 6/29
|
||||||
|
linear_mask = tf.cast(xyz_normalized_pixels <= (epsilon**3), dtype=tf.float32)
|
||||||
|
exponential_mask = tf.cast(xyz_normalized_pixels > (epsilon**3), dtype=tf.float32)
|
||||||
|
fxfyfz_pixels = (xyz_normalized_pixels / (3 * epsilon**2) + 4/29) * linear_mask + (xyz_normalized_pixels ** (1/3)) * exponential_mask
|
||||||
|
|
||||||
|
# convert to lab
|
||||||
|
fxfyfz_to_lab = tf.constant([
|
||||||
|
# l a b
|
||||||
|
[ 0.0, 500.0, 0.0], # fx
|
||||||
|
[116.0, -500.0, 200.0], # fy
|
||||||
|
[ 0.0, 0.0, -200.0], # fz
|
||||||
|
])
|
||||||
|
lab_pixels = tf.matmul(fxfyfz_pixels, fxfyfz_to_lab) + tf.constant([-16.0, 0.0, 0.0])
|
||||||
|
#output [0, 100] , ~[-110, 110], ~[-110, 110]
|
||||||
|
lab_pixels = lab_pixels / tf.constant([100.0, 220.0, 220.0 ]) + tf.constant([0.0, 0.5, 0.5])
|
||||||
|
#output [0-1, 0-1, 0-1]
|
||||||
|
return tf.reshape(lab_pixels, tf.shape(rgb_input))
|
||||||
|
|
||||||
|
def lab_to_rgb(tf, lab):
|
||||||
|
with tf.name_scope("lab_to_rgb"):
|
||||||
|
lab_pixels = tf.reshape(lab, [-1, 3])
|
||||||
|
|
||||||
|
# https://en.wikipedia.org/wiki/Lab_color_space#CIELAB-CIEXYZ_conversions
|
||||||
|
with tf.name_scope("cielab_to_xyz"):
|
||||||
|
# convert to fxfyfz
|
||||||
|
lab_to_fxfyfz = tf.constant([
|
||||||
|
# fx fy fz
|
||||||
|
[1/116.0, 1/116.0, 1/116.0], # l
|
||||||
|
[1/500.0, 0.0, 0.0], # a
|
||||||
|
[ 0.0, 0.0, -1/200.0], # b
|
||||||
|
])
|
||||||
|
fxfyfz_pixels = tf.matmul(lab_pixels + tf.constant([16.0, 0.0, 0.0]), lab_to_fxfyfz)
|
||||||
|
|
||||||
|
# convert to xyz
|
||||||
|
epsilon = 6/29
|
||||||
|
linear_mask = tf.cast(fxfyfz_pixels <= epsilon, dtype=tf.float32)
|
||||||
|
exponential_mask = tf.cast(fxfyfz_pixels > epsilon, dtype=tf.float32)
|
||||||
|
xyz_pixels = (3 * epsilon**2 * (fxfyfz_pixels - 4/29)) * linear_mask + (fxfyfz_pixels ** 3) * exponential_mask
|
||||||
|
|
||||||
|
# denormalize for D65 white point
|
||||||
|
xyz_pixels = tf.multiply(xyz_pixels, [0.950456, 1.0, 1.088754])
|
||||||
|
|
||||||
|
with tf.name_scope("xyz_to_srgb"):
|
||||||
|
xyz_to_rgb = tf.constant([
|
||||||
|
# r g b
|
||||||
|
[ 3.2404542, -0.9692660, 0.0556434], # x
|
||||||
|
[-1.5371385, 1.8760108, -0.2040259], # y
|
||||||
|
[-0.4985314, 0.0415560, 1.0572252], # z
|
||||||
|
])
|
||||||
|
rgb_pixels = tf.matmul(xyz_pixels, xyz_to_rgb)
|
||||||
|
# avoid a slightly negative number messing up the conversion
|
||||||
|
rgb_pixels = tf.clip_by_value(rgb_pixels, 0.0, 1.0)
|
||||||
|
linear_mask = tf.cast(rgb_pixels <= 0.0031308, dtype=tf.float32)
|
||||||
|
exponential_mask = tf.cast(rgb_pixels > 0.0031308, dtype=tf.float32)
|
||||||
|
srgb_pixels = (rgb_pixels * 12.92 * linear_mask) + ((rgb_pixels ** (1/2.4) * 1.055) - 0.055) * exponential_mask
|
||||||
|
|
||||||
|
return tf.reshape(srgb_pixels, tf.shape(lab))
|
||||||
|
|
||||||
|
def DSSIMPatchLossClass(tf, keras):
|
||||||
|
class DSSIMPatchLoss(object):
|
||||||
|
def __init__(self, is_tanh=False):
|
||||||
|
self.is_tanh = is_tanh
|
||||||
|
|
||||||
|
def __call__(self,y_true, y_pred):
|
||||||
|
|
||||||
|
y_pred_lab = rgb_to_lab(tf, y_pred)
|
||||||
|
y_true_lab = rgb_to_lab(tf, y_true)
|
||||||
|
|
||||||
|
|
||||||
|
#import code
|
||||||
|
#code.interact(local=dict(globals(), **locals()))
|
||||||
|
|
||||||
|
return keras.backend.mean ( keras.backend.square(y_true_lab - y_pred_lab) ) # + (1.0 - tf.image.ssim (y_true, y_pred, 1.0)) / 2.0
|
||||||
|
|
||||||
|
if not self.is_tanh:
|
||||||
|
return (1.0 - tf.image.ssim (y_true, y_pred, 1.0)) / 2.0
|
||||||
|
else:
|
||||||
|
return (1.0 - tf.image.ssim ((y_true/2+0.5), (y_pred/2+0.5), 1.0)) / 2.0
|
||||||
|
|
||||||
|
#y_true_72 = tf.extract_image_patches ( y_true, (1,8,8,1), (1,1,1,1), (1,8,8,1), 'VALID' )
|
||||||
|
#y_pred_72 = tf.extract_image_patches ( y_pred, (1,8,8,1), (1,1,1,1), (1,8,8,1), 'VALID' )
|
||||||
|
|
||||||
|
#y_true_36 = tf.extract_image_patches ( y_true, (1,8,8,1), (1,2,2,1), (1,8,8,1), 'VALID' )
|
||||||
|
#y_pred_36 = tf.extract_image_patches ( y_pred, (1,8,8,1), (1,2,2,1), (1,8,8,1), 'VALID' )
|
||||||
|
|
||||||
|
#if not self.is_tanh:
|
||||||
|
# return (1.0 - tf.image.ssim (y_true_72, y_pred_72, 1.0)) / 2.0 + \
|
||||||
|
# (1.0 - tf.image.ssim (y_true_36, y_pred_36, 1.0)) / 2.0
|
||||||
|
#
|
||||||
|
#else:
|
||||||
|
# return (1.0 - tf.image.ssim ((y_true_72/2+0.5), (y_pred_72/2+0.5), 1.0)) / 2.0 + \
|
||||||
|
# (1.0 - tf.image.ssim ((y_true_36/2+0.5), (y_pred_36/2+0.5), 1.0)) / 2.0
|
||||||
|
|
||||||
|
|
||||||
|
return DSSIMPatchLoss
|
||||||
|
|
||||||
def MSEMaskLossClass(keras):
|
def MSEMaskLossClass(keras):
|
||||||
class MSEMaskLoss(object):
|
class MSEMaskLoss(object):
|
||||||
def __init__(self, mask_list, is_tanh=False):
|
def __init__(self, mask_list, is_tanh=False):
|
||||||
|
@ -208,4 +356,291 @@ def total_variation_loss(keras, x):
|
||||||
a = K.square(x[:, :H - 1, :W - 1, :] - x[:, 1:, :W - 1, :])
|
a = K.square(x[:, :H - 1, :W - 1, :] - x[:, 1:, :W - 1, :])
|
||||||
b = K.square(x[:, :H - 1, :W - 1, :] - x[:, :H - 1, 1:, :])
|
b = K.square(x[:, :H - 1, :W - 1, :] - x[:, :H - 1, 1:, :])
|
||||||
|
|
||||||
return K.mean (a+b)
|
return K.mean (a+b)
|
||||||
|
|
||||||
|
|
||||||
|
# Defines the Unet generator.
|
||||||
|
# |num_downs|: number of downsamplings in UNet. For example,
|
||||||
|
# if |num_downs| == 7, image of size 128x128 will become of size 1x1
|
||||||
|
# at the bottleneck
|
||||||
|
def UNet(keras, output_nc, num_downs, ngf=64, use_dropout=False):
|
||||||
|
Conv2D = keras.layers.convolutional.Conv2D
|
||||||
|
Conv2DTranspose = keras.layers.convolutional.Conv2DTranspose
|
||||||
|
LeakyReLU = keras.layers.advanced_activations.LeakyReLU
|
||||||
|
BatchNormalization = keras.layers.BatchNormalization
|
||||||
|
ReLU = keras.layers.ReLU
|
||||||
|
tanh = keras.layers.Activation('tanh')
|
||||||
|
Dropout = keras.layers.Dropout
|
||||||
|
Concatenate = keras.layers.Concatenate
|
||||||
|
ZeroPadding2D = keras.layers.ZeroPadding2D
|
||||||
|
|
||||||
|
conv_kernel_initializer = keras.initializers.RandomNormal(0, 0.02)
|
||||||
|
norm_gamma_initializer = keras.initializers.RandomNormal(1, 0.02)
|
||||||
|
|
||||||
|
def UNetSkipConnection(outer_nc, inner_nc, sub_model=None, outermost=False, innermost=False, use_dropout=False):
|
||||||
|
def func(inp):
|
||||||
|
downconv_pad = ZeroPadding2D( (1,1) )
|
||||||
|
downconv = Conv2D(inner_nc, kernel_size=4, kernel_initializer=conv_kernel_initializer, strides=2, padding='valid', use_bias=False)
|
||||||
|
downrelu = LeakyReLU(0.2)
|
||||||
|
downnorm = BatchNormalization( gamma_initializer=norm_gamma_initializer )
|
||||||
|
|
||||||
|
#upconv_pad = ZeroPadding2D( (0,0) )
|
||||||
|
upconv = Conv2DTranspose(outer_nc, kernel_size=4, kernel_initializer=conv_kernel_initializer, strides=2, padding='same', use_bias=False)
|
||||||
|
uprelu = ReLU()
|
||||||
|
upnorm = BatchNormalization( gamma_initializer=norm_gamma_initializer )
|
||||||
|
|
||||||
|
if outermost:
|
||||||
|
x = inp
|
||||||
|
x = downconv(downconv_pad(x))
|
||||||
|
x = sub_model(x)
|
||||||
|
x = uprelu(x)
|
||||||
|
#x = upconv(upconv_pad(x))
|
||||||
|
x = upconv(x)
|
||||||
|
x = tanh(x)
|
||||||
|
elif innermost:
|
||||||
|
x = inp
|
||||||
|
x = downrelu(x)
|
||||||
|
x = downconv(downconv_pad(x))
|
||||||
|
x = uprelu(x)
|
||||||
|
#
|
||||||
|
#
|
||||||
|
#x = upconv(upconv_pad(x))
|
||||||
|
x = upconv(x)
|
||||||
|
x = upnorm(x)
|
||||||
|
|
||||||
|
#import code
|
||||||
|
#code.interact(local=dict(globals(), **locals()))
|
||||||
|
x = Concatenate(axis=3)([inp, x])
|
||||||
|
|
||||||
|
else:
|
||||||
|
x = inp
|
||||||
|
x = downrelu(x)
|
||||||
|
x = downconv(downconv_pad(x))
|
||||||
|
x = downnorm(x)
|
||||||
|
x = sub_model(x)
|
||||||
|
x = uprelu(x)
|
||||||
|
#x = upconv(upconv_pad(x))
|
||||||
|
x = upconv(x)
|
||||||
|
x = upnorm(x)
|
||||||
|
if use_dropout:
|
||||||
|
x = Dropout(0.5)(x)
|
||||||
|
x = Concatenate(axis=3)([inp, x])
|
||||||
|
|
||||||
|
return x
|
||||||
|
|
||||||
|
return func
|
||||||
|
|
||||||
|
def func(inp):
|
||||||
|
unet_block = UNetSkipConnection(ngf * 8, ngf * 8, sub_model=None, innermost=True)
|
||||||
|
|
||||||
|
for i in range(num_downs - 5):
|
||||||
|
unet_block = UNetSkipConnection(ngf * 8, ngf * 8, sub_model=unet_block, use_dropout=use_dropout)
|
||||||
|
|
||||||
|
unet_block = UNetSkipConnection(ngf * 4 , ngf * 8, sub_model=unet_block)
|
||||||
|
unet_block = UNetSkipConnection(ngf * 2 , ngf * 4, sub_model=unet_block)
|
||||||
|
unet_block = UNetSkipConnection(ngf , ngf * 2, sub_model=unet_block)
|
||||||
|
unet_block = UNetSkipConnection(output_nc, ngf , sub_model=unet_block, outermost=True)
|
||||||
|
|
||||||
|
return unet_block(inp)
|
||||||
|
|
||||||
|
return func
|
||||||
|
|
||||||
|
#predicts future_image_tensor based on past_image_tensor
|
||||||
|
def UNetStreamPredictor(keras, tf, output_nc, num_downs, ngf=32, use_dropout=False):
|
||||||
|
Conv2D = keras.layers.convolutional.Conv2D
|
||||||
|
Conv2DTranspose = keras.layers.convolutional.Conv2DTranspose
|
||||||
|
LeakyReLU = keras.layers.advanced_activations.LeakyReLU
|
||||||
|
BatchNormalization = keras.layers.BatchNormalization
|
||||||
|
ReLU = keras.layers.ReLU
|
||||||
|
tanh = keras.layers.Activation('tanh')
|
||||||
|
ReflectionPadding2D = ReflectionPadding2DClass(keras, tf)
|
||||||
|
ZeroPadding2D = keras.layers.ZeroPadding2D
|
||||||
|
Dropout = keras.layers.Dropout
|
||||||
|
Concatenate = keras.layers.Concatenate
|
||||||
|
|
||||||
|
conv_kernel_initializer = keras.initializers.RandomNormal(0, 0.02)
|
||||||
|
norm_gamma_initializer = keras.initializers.RandomNormal(1, 0.02)
|
||||||
|
|
||||||
|
def func(past_image_tensor, future_image_tensor):
|
||||||
|
def model1(inp):
|
||||||
|
x = inp
|
||||||
|
x = ReflectionPadding2D((3,3))(x)
|
||||||
|
x = Conv2D(ngf, kernel_size=7, kernel_initializer=conv_kernel_initializer, strides=1, padding='valid', use_bias=False)(x)
|
||||||
|
x = BatchNormalization( gamma_initializer=norm_gamma_initializer )(x)
|
||||||
|
x = ReLU()(x)
|
||||||
|
|
||||||
|
x = ZeroPadding2D((1,1))(x)
|
||||||
|
x = Conv2D(ngf*2, kernel_size=3, kernel_initializer=conv_kernel_initializer, strides=1, padding='valid', use_bias=False)(x)
|
||||||
|
x = BatchNormalization( gamma_initializer=norm_gamma_initializer )(x)
|
||||||
|
x = ReLU()(x)
|
||||||
|
|
||||||
|
x = ZeroPadding2D((1,1))(x)
|
||||||
|
x = Conv2D(ngf*4, kernel_size=3, kernel_initializer=conv_kernel_initializer, strides=1, padding='valid', use_bias=False)(x)
|
||||||
|
x = BatchNormalization( gamma_initializer=norm_gamma_initializer )(x)
|
||||||
|
x = ReLU()(x)
|
||||||
|
|
||||||
|
return x
|
||||||
|
|
||||||
|
def model3(inp):
|
||||||
|
x = inp
|
||||||
|
|
||||||
|
x = ZeroPadding2D((1,1))(x)
|
||||||
|
x = Conv2D(ngf*2, kernel_size=3, kernel_initializer=conv_kernel_initializer, strides=1, padding='valid', use_bias=False)(x)
|
||||||
|
x = BatchNormalization( gamma_initializer=norm_gamma_initializer )(x)
|
||||||
|
x = ReLU()(x)
|
||||||
|
|
||||||
|
x = ZeroPadding2D((1,1))(x)
|
||||||
|
x = Conv2D(ngf, kernel_size=3, kernel_initializer=conv_kernel_initializer, strides=1, padding='valid', use_bias=False)(x)
|
||||||
|
x = BatchNormalization( gamma_initializer=norm_gamma_initializer )(x)
|
||||||
|
x = ReLU()(x)
|
||||||
|
|
||||||
|
x = ReflectionPadding2D((3,3))(x)
|
||||||
|
x = Conv2D(output_nc, kernel_size=7, kernel_initializer=conv_kernel_initializer, strides=1, padding='valid', use_bias=False)(x)
|
||||||
|
x = tanh(x)
|
||||||
|
return x
|
||||||
|
|
||||||
|
model = UNet(keras, ngf*4, num_downs=num_downs, ngf=ngf*4*4, #ngf=ngf*4*4,
|
||||||
|
use_dropout=use_dropout)
|
||||||
|
return model3 ( model( Concatenate(axis=3)([ model1(past_image_tensor), model1(future_image_tensor) ]) ) )
|
||||||
|
|
||||||
|
return func
|
||||||
|
|
||||||
|
|
||||||
|
def Resnet(keras, tf, output_nc, ngf=64, use_dropout=False, n_blocks=6):
|
||||||
|
Conv2D = keras.layers.convolutional.Conv2D
|
||||||
|
Conv2DTranspose = keras.layers.convolutional.Conv2DTranspose
|
||||||
|
LeakyReLU = keras.layers.advanced_activations.LeakyReLU
|
||||||
|
BatchNormalization = keras.layers.BatchNormalization
|
||||||
|
ReLU = keras.layers.ReLU
|
||||||
|
Add = keras.layers.Add
|
||||||
|
tanh = keras.layers.Activation('tanh')
|
||||||
|
ReflectionPadding2D = ReflectionPadding2DClass(keras, tf)
|
||||||
|
ZeroPadding2D = keras.layers.ZeroPadding2D
|
||||||
|
Dropout = keras.layers.Dropout
|
||||||
|
Concatenate = keras.layers.Concatenate
|
||||||
|
|
||||||
|
conv_kernel_initializer = keras.initializers.RandomNormal(0, 0.02)
|
||||||
|
norm_gamma_initializer = keras.initializers.RandomNormal(1, 0.02)
|
||||||
|
use_bias = False
|
||||||
|
|
||||||
|
def ResnetBlock(dim, use_dropout, use_bias):
|
||||||
|
|
||||||
|
def func(inp):
|
||||||
|
x = inp
|
||||||
|
|
||||||
|
x = ReflectionPadding2D((1,1))(x)
|
||||||
|
x = Conv2D(dim, kernel_size=3, kernel_initializer=conv_kernel_initializer, padding='valid', use_bias=use_bias)(x)
|
||||||
|
x = BatchNormalization( gamma_initializer=norm_gamma_initializer )(x)
|
||||||
|
x = ReLU()(x)
|
||||||
|
|
||||||
|
if use_dropout:
|
||||||
|
x = Dropout(0.5)(x)
|
||||||
|
|
||||||
|
x = ReflectionPadding2D((1,1))(x)
|
||||||
|
x = Conv2D(dim, kernel_size=3, kernel_initializer=conv_kernel_initializer, padding='valid', use_bias=use_bias)(x)
|
||||||
|
x = BatchNormalization( gamma_initializer=norm_gamma_initializer )(x)
|
||||||
|
|
||||||
|
return Add()([x,inp])
|
||||||
|
|
||||||
|
return func
|
||||||
|
|
||||||
|
def func(inp):
|
||||||
|
x = inp
|
||||||
|
|
||||||
|
x = ReflectionPadding2D((3,3))(x)
|
||||||
|
x = Conv2D(ngf, kernel_size=7, kernel_initializer=conv_kernel_initializer, padding='valid', use_bias=use_bias)(x)
|
||||||
|
x = BatchNormalization( gamma_initializer=norm_gamma_initializer )(x)
|
||||||
|
x = ReLU()(x)
|
||||||
|
|
||||||
|
n_downsampling = 2
|
||||||
|
for i in range(n_downsampling):
|
||||||
|
x = ZeroPadding2D( (1,1) ) (x)
|
||||||
|
x = Conv2D(ngf * (2**i) * 2, kernel_size=3, kernel_initializer=conv_kernel_initializer, strides=2, padding='valid', use_bias=use_bias)(x)
|
||||||
|
x = BatchNormalization( gamma_initializer=norm_gamma_initializer )(x)
|
||||||
|
x = ReLU()(x)
|
||||||
|
|
||||||
|
for i in range(n_blocks):
|
||||||
|
x = ResnetBlock(ngf*(2**n_downsampling), use_dropout=use_dropout, use_bias=use_bias)(x)
|
||||||
|
|
||||||
|
for i in range(n_downsampling):
|
||||||
|
x = ZeroPadding2D( (1,1) ) (x)
|
||||||
|
x = Conv2DTranspose( int(ngf* (2**(n_downsampling - i)) /2), kernel_size=3, kernel_initializer=conv_kernel_initializer, strides=2, padding='valid', output_padding=1, use_bias=use_bias)(x)
|
||||||
|
x = BatchNormalization( gamma_initializer=norm_gamma_initializer )(x)
|
||||||
|
x = ReLU()(x)
|
||||||
|
|
||||||
|
x = ReflectionPadding2D((3,3))(x)
|
||||||
|
x = Conv2D(output_nc, kernel_size=7, kernel_initializer=conv_kernel_initializer, padding='valid')(x)
|
||||||
|
x = tanh(x)
|
||||||
|
|
||||||
|
return x
|
||||||
|
|
||||||
|
return func
|
||||||
|
|
||||||
|
def NLayerDiscriminator(keras, tf, ndf=64, n_layers=3, use_sigmoid=False):
|
||||||
|
Conv2D = keras.layers.convolutional.Conv2D
|
||||||
|
Conv2DTranspose = keras.layers.convolutional.Conv2DTranspose
|
||||||
|
LeakyReLU = keras.layers.advanced_activations.LeakyReLU
|
||||||
|
BatchNormalization = keras.layers.BatchNormalization
|
||||||
|
ReLU = keras.layers.ReLU
|
||||||
|
Add = keras.layers.Add
|
||||||
|
tanh = keras.layers.Activation('tanh')
|
||||||
|
sigmoid = keras.layers.Activation('sigmoid')
|
||||||
|
ZeroPadding2D = keras.layers.ZeroPadding2D
|
||||||
|
Dropout = keras.layers.Dropout
|
||||||
|
Concatenate = keras.layers.Concatenate
|
||||||
|
|
||||||
|
conv_kernel_initializer = keras.initializers.RandomNormal(0, 0.02)
|
||||||
|
norm_gamma_initializer = keras.initializers.RandomNormal(1, 0.02)
|
||||||
|
use_bias = False
|
||||||
|
|
||||||
|
def func(inp):
|
||||||
|
x = inp
|
||||||
|
|
||||||
|
x = ZeroPadding2D( (1,1) ) (x)
|
||||||
|
x = Conv2D(ndf, kernel_size=4, kernel_initializer=conv_kernel_initializer, strides=2, padding='valid', use_bias=use_bias)(x)
|
||||||
|
x = LeakyReLU(0.2)(x)
|
||||||
|
|
||||||
|
nf_mult = 1
|
||||||
|
nf_mult_prev = 1
|
||||||
|
for n in range(1, n_layers):
|
||||||
|
nf_mult = min(2**n, 8)
|
||||||
|
|
||||||
|
x = ZeroPadding2D( (1,1) ) (x)
|
||||||
|
x = Conv2D(ndf * nf_mult, kernel_size=4, kernel_initializer=conv_kernel_initializer, strides=2, padding='valid', use_bias=use_bias)(x)
|
||||||
|
x = BatchNormalization( gamma_initializer=norm_gamma_initializer )(x)
|
||||||
|
x = LeakyReLU(0.2)(x)
|
||||||
|
|
||||||
|
nf_mult = min(2**n_layers, 8)
|
||||||
|
|
||||||
|
#x = ZeroPadding2D( (1,1) ) (x)
|
||||||
|
x = Conv2D(ndf * nf_mult, kernel_size=4, kernel_initializer=conv_kernel_initializer, strides=1, padding='same', use_bias=use_bias)(x)
|
||||||
|
x = BatchNormalization( gamma_initializer=norm_gamma_initializer )(x)
|
||||||
|
x = LeakyReLU(0.2)(x)
|
||||||
|
|
||||||
|
#x = ZeroPadding2D( (1,1) ) (x)
|
||||||
|
x = Conv2D(1, kernel_size=4, kernel_initializer=conv_kernel_initializer, strides=1, padding='same', use_bias=use_bias)(x)
|
||||||
|
|
||||||
|
if use_sigmoid:
|
||||||
|
x = sigmoid(x)
|
||||||
|
|
||||||
|
return x
|
||||||
|
|
||||||
|
return func
|
||||||
|
|
||||||
|
def ReflectionPadding2DClass(keras, tf):
|
||||||
|
|
||||||
|
class ReflectionPadding2D(keras.layers.Layer):
|
||||||
|
def __init__(self, padding=(1, 1), **kwargs):
|
||||||
|
self.padding = tuple(padding)
|
||||||
|
self.input_spec = [keras.layers.InputSpec(ndim=4)]
|
||||||
|
super(ReflectionPadding2D, self).__init__(**kwargs)
|
||||||
|
|
||||||
|
def compute_output_shape(self, s):
|
||||||
|
""" If you are using "channels_last" configuration"""
|
||||||
|
return (s[0], s[1] + 2 * self.padding[0], s[2] + 2 * self.padding[1], s[3])
|
||||||
|
|
||||||
|
def call(self, x, mask=None):
|
||||||
|
w_pad,h_pad = self.padding
|
||||||
|
return tf.pad(x, [[0,0], [h_pad,h_pad], [w_pad,w_pad], [0,0] ], 'REFLECT')
|
||||||
|
|
||||||
|
return ReflectionPadding2D
|
|
@ -1,11 +1,8 @@
|
||||||
from enum import IntEnum
|
from enum import IntEnum
|
||||||
import cv2
|
import cv2
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from random import randint
|
|
||||||
from facelib import FaceType
|
class SampleType(IntEnum):
|
||||||
|
|
||||||
|
|
||||||
class TrainingDataType(IntEnum):
|
|
||||||
IMAGE = 0 #raw image
|
IMAGE = 0 #raw image
|
||||||
|
|
||||||
FACE_BEGIN = 1
|
FACE_BEGIN = 1
|
||||||
|
@ -16,10 +13,9 @@ class TrainingDataType(IntEnum):
|
||||||
|
|
||||||
QTY = 4
|
QTY = 4
|
||||||
|
|
||||||
|
class Sample(object):
|
||||||
class TrainingDataSample(object):
|
def __init__(self, sample_type=None, filename=None, face_type=None, shape=None, landmarks=None, yaw=None, mirror=None, nearest_target_list=None):
|
||||||
|
self.sample_type = sample_type if sample_type is not None else SampleType.IMAGE
|
||||||
def __init__(self, filename=None, face_type=None, shape=None, landmarks=None, yaw=None, mirror=None, nearest_target_list=None):
|
|
||||||
self.filename = filename
|
self.filename = filename
|
||||||
self.face_type = face_type
|
self.face_type = face_type
|
||||||
self.shape = shape
|
self.shape = shape
|
||||||
|
@ -28,8 +24,9 @@ class TrainingDataSample(object):
|
||||||
self.mirror = mirror
|
self.mirror = mirror
|
||||||
self.nearest_target_list = nearest_target_list
|
self.nearest_target_list = nearest_target_list
|
||||||
|
|
||||||
def copy_and_set(self, filename=None, face_type=None, shape=None, landmarks=None, yaw=None, mirror=None, nearest_target_list=None):
|
def copy_and_set(self, sample_type=None, filename=None, face_type=None, shape=None, landmarks=None, yaw=None, mirror=None, nearest_target_list=None):
|
||||||
return TrainingDataSample(
|
return Sample(
|
||||||
|
sample_type=sample_type if sample_type is not None else self.sample_type,
|
||||||
filename=filename if filename is not None else self.filename,
|
filename=filename if filename is not None else self.filename,
|
||||||
face_type=face_type if face_type is not None else self.face_type,
|
face_type=face_type if face_type is not None else self.face_type,
|
||||||
shape=shape if shape is not None else self.shape,
|
shape=shape if shape is not None else self.shape,
|
25
samples/SampleGeneratorBase.py
Normal file
25
samples/SampleGeneratorBase.py
Normal file
|
@ -0,0 +1,25 @@
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
'''
|
||||||
|
You can implement your own SampleGenerator
|
||||||
|
'''
|
||||||
|
class SampleGeneratorBase(object):
|
||||||
|
|
||||||
|
|
||||||
|
def __init__ (self, samples_path, debug, batch_size):
|
||||||
|
if samples_path is None:
|
||||||
|
raise Exception('samples_path is None')
|
||||||
|
|
||||||
|
self.samples_path = Path(samples_path)
|
||||||
|
self.debug = debug
|
||||||
|
self.batch_size = 1 if self.debug else batch_size
|
||||||
|
|
||||||
|
#overridable
|
||||||
|
def __iter__(self):
|
||||||
|
#implement your own iterator
|
||||||
|
return self
|
||||||
|
|
||||||
|
def __next__(self):
|
||||||
|
#implement your own iterator
|
||||||
|
return None
|
||||||
|
|
114
samples/SampleGeneratorFace.py
Normal file
114
samples/SampleGeneratorFace.py
Normal file
|
@ -0,0 +1,114 @@
|
||||||
|
import traceback
|
||||||
|
import numpy as np
|
||||||
|
import random
|
||||||
|
import cv2
|
||||||
|
|
||||||
|
from utils import iter_utils
|
||||||
|
|
||||||
|
from samples import SampleType
|
||||||
|
from samples import SampleProcessor
|
||||||
|
from samples import SampleLoader
|
||||||
|
from samples import SampleGeneratorBase
|
||||||
|
|
||||||
|
'''
|
||||||
|
output_sample_types = [
|
||||||
|
[SampleProcessor.TypeFlags, size, (optional)random_sub_size] ,
|
||||||
|
...
|
||||||
|
]
|
||||||
|
'''
|
||||||
|
class SampleGeneratorFace(SampleGeneratorBase):
|
||||||
|
def __init__ (self, samples_path, debug, batch_size, sort_by_yaw=False, sort_by_yaw_target_samples_path=None, sample_process_options=SampleProcessor.Options(), output_sample_types=[], **kwargs):
|
||||||
|
super().__init__(samples_path, debug, batch_size)
|
||||||
|
self.sample_process_options = sample_process_options
|
||||||
|
self.output_sample_types = output_sample_types
|
||||||
|
|
||||||
|
if sort_by_yaw_target_samples_path is not None:
|
||||||
|
self.sample_type = SampleType.FACE_YAW_SORTED_AS_TARGET
|
||||||
|
elif sort_by_yaw:
|
||||||
|
self.sample_type = SampleType.FACE_YAW_SORTED
|
||||||
|
else:
|
||||||
|
self.sample_type = SampleType.FACE
|
||||||
|
|
||||||
|
self.samples = SampleLoader.load (self.sample_type, self.samples_path, sort_by_yaw_target_samples_path)
|
||||||
|
|
||||||
|
if self.debug:
|
||||||
|
self.generator_samples = [ self.samples ]
|
||||||
|
self.generators = [iter_utils.ThisThreadGenerator ( self.batch_func, 0 )]
|
||||||
|
else:
|
||||||
|
if len(self.samples) > 1:
|
||||||
|
self.generator_samples = [ self.samples[0::2],
|
||||||
|
self.samples[1::2] ]
|
||||||
|
self.generators = [iter_utils.SubprocessGenerator ( self.batch_func, 0 ),
|
||||||
|
iter_utils.SubprocessGenerator ( self.batch_func, 1 )]
|
||||||
|
else:
|
||||||
|
self.generator_samples = [ self.samples ]
|
||||||
|
self.generators = [iter_utils.SubprocessGenerator ( self.batch_func, 0 )]
|
||||||
|
|
||||||
|
self.generator_counter = -1
|
||||||
|
|
||||||
|
def __iter__(self):
|
||||||
|
return self
|
||||||
|
|
||||||
|
def __next__(self):
|
||||||
|
self.generator_counter += 1
|
||||||
|
generator = self.generators[self.generator_counter % len(self.generators) ]
|
||||||
|
return next(generator)
|
||||||
|
|
||||||
|
def batch_func(self, generator_id):
|
||||||
|
samples = self.generator_samples[generator_id]
|
||||||
|
data_len = len(samples)
|
||||||
|
if data_len == 0:
|
||||||
|
raise ValueError('No training data provided.')
|
||||||
|
|
||||||
|
if self.sample_type == SampleType.FACE_YAW_SORTED or self.sample_type == SampleType.FACE_YAW_SORTED_AS_TARGET:
|
||||||
|
if all ( [ x == None for x in samples] ):
|
||||||
|
raise ValueError('Not enough training data. Gather more faces!')
|
||||||
|
|
||||||
|
if self.sample_type == SampleType.FACE:
|
||||||
|
shuffle_idxs = []
|
||||||
|
elif self.sample_type == SampleType.FACE_YAW_SORTED or self.sample_type == SampleType.FACE_YAW_SORTED_AS_TARGET:
|
||||||
|
shuffle_idxs = []
|
||||||
|
shuffle_idxs_2D = [[]]*data_len
|
||||||
|
|
||||||
|
while True:
|
||||||
|
|
||||||
|
batches = None
|
||||||
|
for n_batch in range(self.batch_size):
|
||||||
|
while True:
|
||||||
|
sample = None
|
||||||
|
|
||||||
|
if self.sample_type == SampleType.FACE:
|
||||||
|
if len(shuffle_idxs) == 0:
|
||||||
|
shuffle_idxs = random.sample( range(data_len), data_len )
|
||||||
|
idx = shuffle_idxs.pop()
|
||||||
|
sample = samples[ idx ]
|
||||||
|
elif self.sample_type == SampleType.FACE_YAW_SORTED or self.sample_type == SampleType.FACE_YAW_SORTED_AS_TARGET:
|
||||||
|
if len(shuffle_idxs) == 0:
|
||||||
|
shuffle_idxs = random.sample( range(data_len), data_len )
|
||||||
|
|
||||||
|
idx = shuffle_idxs.pop()
|
||||||
|
if samples[idx] != None:
|
||||||
|
if len(shuffle_idxs_2D[idx]) == 0:
|
||||||
|
shuffle_idxs_2D[idx] = random.sample( range(len(samples[idx])), len(samples[idx]) )
|
||||||
|
|
||||||
|
idx2 = shuffle_idxs_2D[idx].pop()
|
||||||
|
sample = samples[idx][idx2]
|
||||||
|
|
||||||
|
if sample is not None:
|
||||||
|
try:
|
||||||
|
x = SampleProcessor.process (sample, self.sample_process_options, self.output_sample_types, self.debug)
|
||||||
|
except:
|
||||||
|
raise Exception ("Exception occured in sample %s. Error: %s" % (sample.filename, traceback.format_exc() ) )
|
||||||
|
|
||||||
|
if type(x) != tuple and type(x) != list:
|
||||||
|
raise Exception('SampleProcessor.process returns NOT tuple/list')
|
||||||
|
|
||||||
|
if batches is None:
|
||||||
|
batches = [ [] for _ in range(len(x)) ]
|
||||||
|
|
||||||
|
for i in range(len(x)):
|
||||||
|
batches[i].append ( x[i] )
|
||||||
|
|
||||||
|
break
|
||||||
|
|
||||||
|
yield [ np.array(batch) for batch in batches]
|
128
samples/SampleLoader.py
Normal file
128
samples/SampleLoader.py
Normal file
|
@ -0,0 +1,128 @@
|
||||||
|
from enum import IntEnum
|
||||||
|
import cv2
|
||||||
|
import numpy as np
|
||||||
|
from tqdm import tqdm
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
from utils import Path_utils
|
||||||
|
from utils.DFLPNG import DFLPNG
|
||||||
|
|
||||||
|
from .Sample import Sample
|
||||||
|
from .Sample import SampleType
|
||||||
|
|
||||||
|
from facelib import FaceType
|
||||||
|
from facelib import LandmarksProcessor
|
||||||
|
|
||||||
|
class SampleLoader:
|
||||||
|
cache = dict()
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def load(sample_type, samples_path, target_samples_path=None):
|
||||||
|
cache = SampleLoader.cache
|
||||||
|
|
||||||
|
if str(samples_path) not in cache.keys():
|
||||||
|
cache[str(samples_path)] = [None]*SampleType.QTY
|
||||||
|
|
||||||
|
if target_samples_path is not None and str(target_samples_path) not in cache.keys():
|
||||||
|
cache[str(target_samples_path)] = [None]*SampleType.QTY
|
||||||
|
|
||||||
|
datas = cache[str(samples_path)]
|
||||||
|
|
||||||
|
if sample_type == SampleType.IMAGE:
|
||||||
|
if datas[sample_type] is None:
|
||||||
|
datas[sample_type] = [ Sample(filename=filename) for filename in tqdm( Path_utils.get_image_paths(samples_path), desc="Loading" ) ]
|
||||||
|
|
||||||
|
elif sample_type == SampleType.FACE:
|
||||||
|
if datas[sample_type] is None:
|
||||||
|
datas[sample_type] = SampleLoader.upgradeToFaceSamples( [ Sample(filename=filename) for filename in Path_utils.get_image_paths(samples_path) ] )
|
||||||
|
|
||||||
|
elif sample_type == SampleType.FACE_YAW_SORTED:
|
||||||
|
if datas[sample_type] is None:
|
||||||
|
datas[sample_type] = SampleLoader.upgradeToFaceYawSortedSamples( SampleLoader.load(SampleType.FACE, samples_path) )
|
||||||
|
|
||||||
|
elif sample_type == SampleType.FACE_YAW_SORTED_AS_TARGET:
|
||||||
|
if datas[sample_type] is None:
|
||||||
|
if target_samples_path is None:
|
||||||
|
raise Exception('target_samples_path is None for FACE_YAW_SORTED_AS_TARGET')
|
||||||
|
datas[sample_type] = SampleLoader.upgradeToFaceYawSortedAsTargetSamples( SampleLoader.load(SampleType.FACE_YAW_SORTED, samples_path), SampleLoader.load(SampleType.FACE_YAW_SORTED, target_samples_path) )
|
||||||
|
|
||||||
|
return datas[sample_type]
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def upgradeToFaceSamples ( samples ):
|
||||||
|
sample_list = []
|
||||||
|
|
||||||
|
for s in tqdm( samples, desc="Loading" ):
|
||||||
|
|
||||||
|
s_filename_path = Path(s.filename)
|
||||||
|
if s_filename_path.suffix != '.png':
|
||||||
|
print ("%s is not a png file required for training" % (s_filename_path.name) )
|
||||||
|
continue
|
||||||
|
|
||||||
|
dflpng = DFLPNG.load ( str(s_filename_path), print_on_no_embedded_data=True )
|
||||||
|
if dflpng is None:
|
||||||
|
continue
|
||||||
|
|
||||||
|
sample_list.append( s.copy_and_set(sample_type=SampleType.FACE,
|
||||||
|
face_type=FaceType.fromString (dflpng.get_face_type()),
|
||||||
|
shape=dflpng.get_shape(),
|
||||||
|
landmarks=dflpng.get_landmarks(),
|
||||||
|
yaw=dflpng.get_yaw_value()) )
|
||||||
|
|
||||||
|
return sample_list
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def upgradeToFaceYawSortedSamples( YAW_RAWS ):
|
||||||
|
|
||||||
|
lowest_yaw, highest_yaw = -32, +32
|
||||||
|
gradations = 64
|
||||||
|
diff_rot_per_grad = abs(highest_yaw-lowest_yaw) / gradations
|
||||||
|
|
||||||
|
yaws_sample_list = [None]*gradations
|
||||||
|
|
||||||
|
for i in tqdm( range(0, gradations), desc="Sorting" ):
|
||||||
|
yaw = lowest_yaw + i*diff_rot_per_grad
|
||||||
|
next_yaw = lowest_yaw + (i+1)*diff_rot_per_grad
|
||||||
|
|
||||||
|
yaw_samples = []
|
||||||
|
for s in YAW_RAWS:
|
||||||
|
s_yaw = s.yaw
|
||||||
|
if (i == 0 and s_yaw < next_yaw) or \
|
||||||
|
(i < gradations-1 and s_yaw >= yaw and s_yaw < next_yaw) or \
|
||||||
|
(i == gradations-1 and s_yaw >= yaw):
|
||||||
|
yaw_samples.append ( s.copy_and_set(sample_type=SampleType.FACE_YAW_SORTED) )
|
||||||
|
|
||||||
|
if len(yaw_samples) > 0:
|
||||||
|
yaws_sample_list[i] = yaw_samples
|
||||||
|
|
||||||
|
return yaws_sample_list
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def upgradeToFaceYawSortedAsTargetSamples (s, t):
|
||||||
|
l = len(s)
|
||||||
|
if l != len(t):
|
||||||
|
raise Exception('upgradeToFaceYawSortedAsTargetSamples() s_len != t_len')
|
||||||
|
b = l // 2
|
||||||
|
|
||||||
|
s_idxs = np.argwhere ( np.array ( [ 1 if x != None else 0 for x in s] ) == 1 )[:,0]
|
||||||
|
t_idxs = np.argwhere ( np.array ( [ 1 if x != None else 0 for x in t] ) == 1 )[:,0]
|
||||||
|
|
||||||
|
new_s = [None]*l
|
||||||
|
|
||||||
|
for t_idx in t_idxs:
|
||||||
|
search_idxs = []
|
||||||
|
for i in range(0,l):
|
||||||
|
search_idxs += [t_idx - i, (l-t_idx-1) - i, t_idx + i, (l-t_idx-1) + i]
|
||||||
|
|
||||||
|
for search_idx in search_idxs:
|
||||||
|
if search_idx in s_idxs:
|
||||||
|
mirrored = ( t_idx != search_idx and ((t_idx < b and search_idx >= b) or (search_idx < b and t_idx >= b)) )
|
||||||
|
new_s[t_idx] = [ sample.copy_and_set(sample_type=SampleType.FACE_YAW_SORTED_AS_TARGET,
|
||||||
|
mirror=True,
|
||||||
|
yaw=-sample.yaw,
|
||||||
|
landmarks=LandmarksProcessor.mirror_landmarks (sample.landmarks, sample.shape[1] ))
|
||||||
|
for sample in s[search_idx]
|
||||||
|
] if mirrored else s[search_idx]
|
||||||
|
break
|
||||||
|
|
||||||
|
return new_s
|
152
samples/SampleProcessor.py
Normal file
152
samples/SampleProcessor.py
Normal file
|
@ -0,0 +1,152 @@
|
||||||
|
from enum import IntEnum
|
||||||
|
import numpy as np
|
||||||
|
import cv2
|
||||||
|
from utils import image_utils
|
||||||
|
from facelib import LandmarksProcessor
|
||||||
|
from facelib import FaceType
|
||||||
|
|
||||||
|
|
||||||
|
class SampleProcessor(object):
|
||||||
|
class TypeFlags(IntEnum):
|
||||||
|
SOURCE = 0x00000001,
|
||||||
|
WARPED = 0x00000002,
|
||||||
|
WARPED_TRANSFORMED = 0x00000004,
|
||||||
|
TRANSFORMED = 0x00000008,
|
||||||
|
|
||||||
|
FACE_ALIGN_HALF = 0x00000010,
|
||||||
|
FACE_ALIGN_FULL = 0x00000020,
|
||||||
|
FACE_ALIGN_HEAD = 0x00000040,
|
||||||
|
FACE_ALIGN_AVATAR = 0x00000080,
|
||||||
|
FACE_MASK_FULL = 0x00000100,
|
||||||
|
FACE_MASK_EYES = 0x00000200,
|
||||||
|
|
||||||
|
MODE_BGR = 0x01000000, #BGR
|
||||||
|
MODE_G = 0x02000000, #Grayscale
|
||||||
|
MODE_GGG = 0x04000000, #3xGrayscale
|
||||||
|
MODE_M = 0x08000000, #mask only
|
||||||
|
MODE_BGR_SHUFFLE = 0x10000000, #BGR shuffle
|
||||||
|
|
||||||
|
class Options(object):
|
||||||
|
def __init__(self, random_flip = True, normalize_tanh = False, rotation_range=[-10,10], scale_range=[-0.05, 0.05], tx_range=[-0.05, 0.05], ty_range=[-0.05, 0.05]):
|
||||||
|
self.random_flip = random_flip
|
||||||
|
self.normalize_tanh = normalize_tanh
|
||||||
|
self.rotation_range = rotation_range
|
||||||
|
self.scale_range = scale_range
|
||||||
|
self.tx_range = tx_range
|
||||||
|
self.ty_range = ty_range
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def process (sample, sample_process_options, output_sample_types, debug):
|
||||||
|
source = sample.load_bgr()
|
||||||
|
h,w,c = source.shape
|
||||||
|
|
||||||
|
is_face_sample = sample.landmarks is not None
|
||||||
|
|
||||||
|
if debug and is_face_sample:
|
||||||
|
LandmarksProcessor.draw_landmarks (source, sample.landmarks, (0, 1, 0))
|
||||||
|
|
||||||
|
params = image_utils.gen_warp_params(source, sample_process_options.random_flip, rotation_range=sample_process_options.rotation_range, scale_range=sample_process_options.scale_range, tx_range=sample_process_options.tx_range, ty_range=sample_process_options.ty_range )
|
||||||
|
|
||||||
|
images = [[None]*3 for _ in range(4)]
|
||||||
|
|
||||||
|
sample_rnd_seed = np.random.randint(0x80000000)
|
||||||
|
|
||||||
|
outputs = []
|
||||||
|
for sample_type in output_sample_types:
|
||||||
|
f = sample_type[0]
|
||||||
|
size = sample_type[1]
|
||||||
|
random_sub_size = 0 if len (sample_type) < 3 else min( sample_type[2] , size)
|
||||||
|
|
||||||
|
if f & SampleProcessor.TypeFlags.SOURCE != 0:
|
||||||
|
img_type = 0
|
||||||
|
elif f & SampleProcessor.TypeFlags.WARPED != 0:
|
||||||
|
img_type = 1
|
||||||
|
elif f & SampleProcessor.TypeFlags.WARPED_TRANSFORMED != 0:
|
||||||
|
img_type = 2
|
||||||
|
elif f & SampleProcessor.TypeFlags.TRANSFORMED != 0:
|
||||||
|
img_type = 3
|
||||||
|
else:
|
||||||
|
raise ValueError ('expected SampleTypeFlags type')
|
||||||
|
|
||||||
|
face_mask_type = 0
|
||||||
|
if f & SampleProcessor.TypeFlags.FACE_MASK_FULL != 0:
|
||||||
|
face_mask_type = 1
|
||||||
|
elif f & SampleProcessor.TypeFlags.FACE_MASK_EYES != 0:
|
||||||
|
face_mask_type = 2
|
||||||
|
|
||||||
|
target_face_type = -1
|
||||||
|
if f & SampleProcessor.TypeFlags.FACE_ALIGN_HALF != 0:
|
||||||
|
target_face_type = FaceType.HALF
|
||||||
|
elif f & SampleProcessor.TypeFlags.FACE_ALIGN_FULL != 0:
|
||||||
|
target_face_type = FaceType.FULL
|
||||||
|
elif f & SampleProcessor.TypeFlags.FACE_ALIGN_HEAD != 0:
|
||||||
|
target_face_type = FaceType.HEAD
|
||||||
|
elif f & SampleProcessor.TypeFlags.FACE_ALIGN_AVATAR != 0:
|
||||||
|
target_face_type = FaceType.AVATAR
|
||||||
|
|
||||||
|
if images[img_type][face_mask_type] is None:
|
||||||
|
img = source
|
||||||
|
if is_face_sample:
|
||||||
|
if face_mask_type == 1:
|
||||||
|
img = np.concatenate( (img, LandmarksProcessor.get_image_hull_mask (source, sample.landmarks) ), -1 )
|
||||||
|
elif face_mask_type == 2:
|
||||||
|
mask = LandmarksProcessor.get_image_eye_mask (source, sample.landmarks)
|
||||||
|
mask = np.expand_dims (cv2.blur (mask, ( w // 32, w // 32 ) ), -1)
|
||||||
|
mask[mask > 0.0] = 1.0
|
||||||
|
img = np.concatenate( (img, mask ), -1 )
|
||||||
|
|
||||||
|
images[img_type][face_mask_type] = image_utils.warp_by_params (params, img, (img_type==1 or img_type==2), (img_type==2 or img_type==3), img_type != 0)
|
||||||
|
|
||||||
|
img = images[img_type][face_mask_type]
|
||||||
|
|
||||||
|
if is_face_sample and target_face_type != -1:
|
||||||
|
if target_face_type > sample.face_type:
|
||||||
|
raise Exception ('sample %s type %s does not match model requirement %s. Consider extract necessary type of faces.' % (sample.filename, sample.face_type, target_face_type) )
|
||||||
|
|
||||||
|
img = cv2.warpAffine( img, LandmarksProcessor.get_transform_mat (sample.landmarks, size, target_face_type), (size,size), flags=cv2.INTER_LANCZOS4 )
|
||||||
|
else:
|
||||||
|
img = cv2.resize( img, (size,size), cv2.INTER_LANCZOS4 )
|
||||||
|
|
||||||
|
if random_sub_size != 0:
|
||||||
|
sub_size = size - random_sub_size
|
||||||
|
rnd_state = np.random.RandomState (sample_rnd_seed+random_sub_size)
|
||||||
|
start_x = rnd_state.randint(sub_size+1)
|
||||||
|
start_y = rnd_state.randint(sub_size+1)
|
||||||
|
img = img[start_y:start_y+sub_size,start_x:start_x+sub_size,:]
|
||||||
|
|
||||||
|
img_bgr = img[...,0:3]
|
||||||
|
img_mask = img[...,3:4]
|
||||||
|
|
||||||
|
if f & SampleProcessor.TypeFlags.MODE_BGR != 0:
|
||||||
|
img = img
|
||||||
|
elif f & SampleProcessor.TypeFlags.MODE_BGR_SHUFFLE != 0:
|
||||||
|
img_bgr = np.take (img_bgr, np.random.permutation(img_bgr.shape[-1]), axis=-1)
|
||||||
|
img = np.concatenate ( (img_bgr,img_mask) , -1 )
|
||||||
|
elif f & SampleProcessor.TypeFlags.MODE_G != 0:
|
||||||
|
img = np.concatenate ( (np.expand_dims(cv2.cvtColor(img_bgr, cv2.COLOR_BGR2GRAY),-1),img_mask) , -1 )
|
||||||
|
elif f & SampleProcessor.TypeFlags.MODE_GGG != 0:
|
||||||
|
img = np.concatenate ( ( np.repeat ( np.expand_dims(cv2.cvtColor(img_bgr, cv2.COLOR_BGR2GRAY),-1), (3,), -1), img_mask), -1)
|
||||||
|
elif is_face_sample and f & SampleProcessor.TypeFlags.MODE_M != 0:
|
||||||
|
if face_mask_type== 0:
|
||||||
|
raise ValueError ('no face_mask_type defined')
|
||||||
|
img = img_mask
|
||||||
|
else:
|
||||||
|
raise ValueError ('expected SampleTypeFlags mode')
|
||||||
|
|
||||||
|
if not debug and sample_process_options.normalize_tanh:
|
||||||
|
img = img * 2.0 - 1.0
|
||||||
|
|
||||||
|
outputs.append ( img )
|
||||||
|
|
||||||
|
if debug:
|
||||||
|
result = ()
|
||||||
|
|
||||||
|
for output in outputs:
|
||||||
|
if output.shape[2] < 4:
|
||||||
|
result += (output,)
|
||||||
|
elif output.shape[2] == 4:
|
||||||
|
result += (output[...,0:3]*output[...,3:4],)
|
||||||
|
|
||||||
|
return result
|
||||||
|
else:
|
||||||
|
return outputs
|
6
samples/__init__.py
Normal file
6
samples/__init__.py
Normal file
|
@ -0,0 +1,6 @@
|
||||||
|
from .Sample import Sample
|
||||||
|
from .Sample import SampleType
|
||||||
|
from .SampleLoader import SampleLoader
|
||||||
|
from .SampleProcessor import SampleProcessor
|
||||||
|
from .SampleGeneratorBase import SampleGeneratorBase
|
||||||
|
from .SampleGeneratorFace import SampleGeneratorFace
|
|
@ -5,6 +5,7 @@ import struct
|
||||||
import zlib
|
import zlib
|
||||||
import pickle
|
import pickle
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
from facelib import FaceType
|
||||||
|
|
||||||
class Chunk(object):
|
class Chunk(object):
|
||||||
def __init__(self, name=None, data=None):
|
def __init__(self, name=None, data=None):
|
||||||
|
@ -251,6 +252,9 @@ class DFLPNG(object):
|
||||||
inst = DFLPNG.load_raw (filename)
|
inst = DFLPNG.load_raw (filename)
|
||||||
inst.fcwp_dict = inst.getDFLDictData()
|
inst.fcwp_dict = inst.getDFLDictData()
|
||||||
|
|
||||||
|
if 'face_type' not in inst.fcwp_dict.keys():
|
||||||
|
inst.fcwp_dict['face_type'] = FaceType.toString (FaceType.FULL)
|
||||||
|
|
||||||
if inst.fcwp_dict == None:
|
if inst.fcwp_dict == None:
|
||||||
if print_on_no_embedded_data:
|
if print_on_no_embedded_data:
|
||||||
print ( "No DFL data found in %s" % (filename) )
|
print ( "No DFL data found in %s" % (filename) )
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue