mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-07-06 21:12:07 -07:00
251 lines
No EOL
13 KiB
Python
251 lines
No EOL
13 KiB
Python
import numpy as np
|
|
import cv2
|
|
from models import ModelBase
|
|
from samples import *
|
|
from nnlib import tf_dssim
|
|
from nnlib import DSSIMLossClass
|
|
from nnlib import conv
|
|
from nnlib import upscale
|
|
|
|
class Model(ModelBase):
|
|
|
|
encoder64H5 = 'encoder64.h5'
|
|
decoder64_srcH5 = 'decoder64_src.h5'
|
|
decoder64_dstH5 = 'decoder64_dst.h5'
|
|
encoder256H5 = 'encoder256.h5'
|
|
decoder256H5 = 'decoder256.h5'
|
|
|
|
#override
|
|
def onInitialize(self, **in_options):
|
|
tf = self.tf
|
|
keras = self.keras
|
|
K = keras.backend
|
|
|
|
self.set_vram_batch_requirements( {3.5:8,4:8,5:12,6:16,7:24,8:32,9:48} )
|
|
if self.batch_size < 4:
|
|
self.batch_size = 4
|
|
|
|
img_shape64, img_shape256, self.encoder64, self.decoder64_src, self.decoder64_dst, self.encoder256, self.decoder256 = self.Build()
|
|
|
|
if not self.is_first_run():
|
|
self.encoder64.load_weights (self.get_strpath_storage_for_file(self.encoder64H5))
|
|
self.decoder64_src.load_weights (self.get_strpath_storage_for_file(self.decoder64_srcH5))
|
|
self.decoder64_dst.load_weights (self.get_strpath_storage_for_file(self.decoder64_dstH5))
|
|
self.encoder256.load_weights (self.get_strpath_storage_for_file(self.encoder256H5))
|
|
self.decoder256.load_weights (self.get_strpath_storage_for_file(self.decoder256H5))
|
|
|
|
if self.is_training_mode:
|
|
self.encoder64, self.decoder64_src, self.decoder64_dst, self.encoder256, self.decoder256 = self.to_multi_gpu_model_if_possible ( [self.encoder64, self.decoder64_src, self.decoder64_dst, self.encoder256, self.decoder256] )
|
|
|
|
input_A_warped64 = keras.layers.Input(img_shape64)
|
|
input_B_warped64 = keras.layers.Input(img_shape64)
|
|
A_rec64 = self.decoder64_src(self.encoder64(input_A_warped64))
|
|
B_rec64 = self.decoder64_dst(self.encoder64(input_B_warped64))
|
|
self.ae64 = self.keras.models.Model([input_A_warped64, input_B_warped64], [A_rec64, B_rec64] )
|
|
|
|
if self.is_training_mode:
|
|
self.ae64, = self.to_multi_gpu_model_if_possible ( [self.ae64,] )
|
|
|
|
self.ae64.compile(optimizer=self.keras.optimizers.Adam(lr=5e-5, beta_1=0.5, beta_2=0.999),
|
|
loss=[DSSIMLossClass(self.tf)(), DSSIMLossClass(self.tf)()] )
|
|
|
|
self.A64_view = K.function ([input_A_warped64], [A_rec64])
|
|
self.B64_view = K.function ([input_B_warped64], [B_rec64])
|
|
|
|
input_A_warped64 = keras.layers.Input(img_shape64)
|
|
input_A_target256 = keras.layers.Input(img_shape256)
|
|
A_rec256 = self.decoder256( self.encoder256(input_A_warped64) )
|
|
|
|
input_B_warped64 = keras.layers.Input(img_shape64)
|
|
BA_rec64 = self.decoder64_src( self.encoder64(input_B_warped64) )
|
|
BA_rec256 = self.decoder256( self.encoder256(BA_rec64) )
|
|
|
|
self.ae256 = self.keras.models.Model([input_A_warped64], [A_rec256] )
|
|
|
|
if self.is_training_mode:
|
|
self.ae256, = self.to_multi_gpu_model_if_possible ( [self.ae256,] )
|
|
|
|
self.ae256.compile(optimizer=self.keras.optimizers.Adam(lr=5e-5, beta_1=0.5, beta_2=0.999),
|
|
loss=[DSSIMLossClass(self.tf)()])
|
|
|
|
self.A256_view = K.function ([input_A_warped64], [A_rec256])
|
|
self.BA256_view = K.function ([input_B_warped64], [BA_rec256])
|
|
|
|
if self.is_training_mode:
|
|
f = SampleProcessor.TypeFlags
|
|
self.set_training_data_generators ([
|
|
SampleGeneratorFace(self.training_data_src_path, debug=self.is_debug(), batch_size=self.batch_size, output_sample_types=[
|
|
[f.WARPED_TRANSFORMED | f.FACE_ALIGN_HALF | f.MODE_BGR, 64],
|
|
[f.TRANSFORMED | f.FACE_ALIGN_HALF | f.MODE_BGR, 64],
|
|
[f.TRANSFORMED | f.FACE_ALIGN_FULL | f.MODE_BGR, 256],
|
|
[f.SOURCE | f.FACE_ALIGN_HALF | f.MODE_BGR, 64],
|
|
[f.SOURCE | f.FACE_ALIGN_HALF | f.MODE_BGR, 256] ] ),
|
|
|
|
SampleGeneratorFace(self.training_data_dst_path, debug=self.is_debug(), batch_size=self.batch_size, output_sample_types=[
|
|
[f.WARPED_TRANSFORMED | f.FACE_ALIGN_HALF | f.MODE_BGR, 64],
|
|
[f.TRANSFORMED | f.FACE_ALIGN_HALF | f.MODE_BGR, 64],
|
|
[f.SOURCE | f.FACE_ALIGN_HALF | f.MODE_BGR, 64],
|
|
[f.SOURCE | f.FACE_ALIGN_HALF | f.MODE_BGR, 256] ] )
|
|
])
|
|
#override
|
|
def onSave(self):
|
|
self.save_weights_safe( [[self.encoder64, self.get_strpath_storage_for_file(self.encoder64H5)],
|
|
[self.decoder64_src, self.get_strpath_storage_for_file(self.decoder64_srcH5)],
|
|
[self.decoder64_dst, self.get_strpath_storage_for_file(self.decoder64_dstH5)],
|
|
[self.encoder256, self.get_strpath_storage_for_file(self.encoder256H5)],
|
|
[self.decoder256, self.get_strpath_storage_for_file(self.decoder256H5)],
|
|
] )
|
|
|
|
#override
|
|
def onTrainOneEpoch(self, sample):
|
|
warped_src64, target_src64, target_src256, target_src_source64, target_src_source256 = sample[0]
|
|
warped_dst64, target_dst64, target_dst_source64, target_dst_source256 = sample[1]
|
|
|
|
loss64, loss_src64, loss_dst64 = self.ae64.train_on_batch ([warped_src64, warped_dst64], [target_src64, target_dst64])
|
|
|
|
loss256 = self.ae256.train_on_batch ([warped_src64], [target_src256])
|
|
|
|
return ( ('loss64', loss64 ), ('loss256', loss256), )
|
|
|
|
#override
|
|
def onGetPreview(self, sample):
|
|
sample_src64_source = sample[0][3][0:4]
|
|
sample_src256_source = sample[0][4][0:4]
|
|
|
|
sample_dst64_source = sample[1][2][0:4]
|
|
sample_dst256_source = sample[1][3][0:4]
|
|
|
|
SRC64, = self.A64_view ([sample_src64_source])
|
|
DST64, = self.B64_view ([sample_dst64_source])
|
|
SRCDST64, = self.A64_view ([sample_dst64_source])
|
|
DSTSRC64, = self.B64_view ([sample_src64_source])
|
|
|
|
SRC_x1_256, = self.A256_view ([sample_src64_source])
|
|
DST_x2_256, = self.BA256_view ([sample_dst64_source])
|
|
|
|
b1 = np.concatenate ( (
|
|
np.concatenate ( (sample_src64_source[0], SRC64[0], sample_src64_source[1], SRC64[1], ), axis=1),
|
|
np.concatenate ( (sample_src64_source[1], SRC64[1], sample_src64_source[3], SRC64[3], ), axis=1),
|
|
np.concatenate ( (sample_dst64_source[0], DST64[0], sample_dst64_source[1], DST64[1], ), axis=1),
|
|
np.concatenate ( (sample_dst64_source[2], DST64[2], sample_dst64_source[3], DST64[3], ), axis=1),
|
|
), axis=0 )
|
|
|
|
b2 = np.concatenate ( (
|
|
np.concatenate ( (sample_src64_source[0], DSTSRC64[0], sample_src64_source[1], DSTSRC64[1], ), axis=1),
|
|
np.concatenate ( (sample_src64_source[2], DSTSRC64[2], sample_src64_source[3], DSTSRC64[3], ), axis=1),
|
|
np.concatenate ( (sample_dst64_source[0], SRCDST64[0], sample_dst64_source[1], SRCDST64[1], ), axis=1),
|
|
np.concatenate ( (sample_dst64_source[2], SRCDST64[2], sample_dst64_source[3], SRCDST64[3], ), axis=1),
|
|
|
|
), axis=0 )
|
|
|
|
result = np.concatenate ( ( np.concatenate ( (b1, sample_src256_source[0], SRC_x1_256[0] ), axis=1 ),
|
|
np.concatenate ( (b2, sample_dst256_source[0], DST_x2_256[0] ), axis=1 ),
|
|
), axis = 0 )
|
|
|
|
return [ ('AVATAR', result ) ]
|
|
|
|
def predictor_func (self, img):
|
|
x, = self.BA256_view ([ np.expand_dims(img, 0) ])[0]
|
|
return x
|
|
|
|
#override
|
|
def get_converter(self, **in_options):
|
|
return ConverterAvatar(self.predictor_func, predictor_input_size=64, output_size=256, **in_options)
|
|
|
|
def Build(self):
|
|
keras, K = self.keras, self.keras.backend
|
|
|
|
img_shape64 = (64,64,3)
|
|
img_shape256 = (256,256,3)
|
|
|
|
def Encoder(_input):
|
|
x = _input
|
|
x = self.keras.layers.convolutional.Conv2D(90, kernel_size=5, strides=1, padding='same')(x)
|
|
x = self.keras.layers.convolutional.Conv2D(90, kernel_size=5, strides=1, padding='same')(x)
|
|
x = self.keras.layers.MaxPooling2D(pool_size=(3, 3), strides=2, padding='same')(x)
|
|
|
|
x = self.keras.layers.convolutional.Conv2D(180, kernel_size=3, strides=1, padding='same')(x)
|
|
x = self.keras.layers.convolutional.Conv2D(180, kernel_size=3, strides=1, padding='same')(x)
|
|
x = self.keras.layers.MaxPooling2D(pool_size=(3, 3), strides=2, padding='same')(x)
|
|
|
|
x = self.keras.layers.convolutional.Conv2D(360, kernel_size=3, strides=1, padding='same')(x)
|
|
x = self.keras.layers.convolutional.Conv2D(360, kernel_size=3, strides=1, padding='same')(x)
|
|
x = self.keras.layers.MaxPooling2D(pool_size=(3, 3), strides=2, padding='same')(x)
|
|
|
|
x = self.keras.layers.Dense (1024)(x)
|
|
x = self.keras.layers.advanced_activations.LeakyReLU(0.1)(x)
|
|
x = self.keras.layers.Dropout(0.5)(x)
|
|
|
|
x = self.keras.layers.Dense (1024)(x)
|
|
x = self.keras.layers.advanced_activations.LeakyReLU(0.1)(x)
|
|
x = self.keras.layers.Dropout(0.5)(x)
|
|
x = self.keras.layers.Flatten()(x)
|
|
x = self.keras.layers.Dense (64)(x)
|
|
|
|
return keras.models.Model (_input, x)
|
|
|
|
encoder256 = Encoder( keras.layers.Input (img_shape64) )
|
|
encoder64 = Encoder( keras.layers.Input (img_shape64) )
|
|
|
|
def decoder256(encoder):
|
|
decoder_input = keras.layers.Input ( K.int_shape(encoder.outputs[0])[1:] )
|
|
x = decoder_input
|
|
x = self.keras.layers.Dense(16 * 16 * 720)(x)
|
|
x = keras.layers.Reshape ( (16, 16, 720) )(x)
|
|
x = upscale(keras, x, 720)
|
|
x = upscale(keras, x, 360)
|
|
x = upscale(keras, x, 180)
|
|
x = upscale(keras, x, 90)
|
|
x = keras.layers.convolutional.Conv2D(3, kernel_size=5, padding='same', activation='sigmoid')(x)
|
|
return keras.models.Model(decoder_input, x)
|
|
|
|
def decoder64(encoder):
|
|
decoder_input = keras.layers.Input ( K.int_shape(encoder.outputs[0])[1:] )
|
|
x = decoder_input
|
|
x = self.keras.layers.Dense(8 * 8 * 720)(x)
|
|
x = keras.layers.Reshape ( (8, 8, 720) )(x)
|
|
x = upscale(keras, x, 360)
|
|
x = upscale(keras, x, 180)
|
|
x = upscale(keras, x, 90)
|
|
x = keras.layers.convolutional.Conv2D(3, kernel_size=5, padding='same', activation='sigmoid')(x)
|
|
return keras.models.Model(decoder_input, x)
|
|
|
|
return img_shape64, img_shape256, encoder64, decoder64(encoder64), decoder64(encoder64), encoder256, decoder256(encoder256)
|
|
|
|
from models import ConverterBase
|
|
from facelib import FaceType
|
|
from facelib import LandmarksProcessor
|
|
class ConverterAvatar(ConverterBase):
|
|
|
|
#override
|
|
def __init__(self, predictor,
|
|
predictor_input_size=0,
|
|
output_size=0,
|
|
**in_options):
|
|
|
|
super().__init__(predictor)
|
|
|
|
self.predictor_input_size = predictor_input_size
|
|
self.output_size = output_size
|
|
|
|
#override
|
|
def get_mode(self):
|
|
return ConverterBase.MODE_IMAGE
|
|
|
|
#override
|
|
def dummy_predict(self):
|
|
self.predictor ( np.zeros ( (self.predictor_input_size, self.predictor_input_size,3), dtype=np.float32) )
|
|
|
|
#override
|
|
def convert_image (self, img_bgr, img_face_landmarks, debug):
|
|
img_size = img_bgr.shape[1], img_bgr.shape[0]
|
|
|
|
face_mat = LandmarksProcessor.get_transform_mat (img_face_landmarks, self.predictor_input_size, face_type=FaceType.HALF )
|
|
predictor_input_bgr = cv2.warpAffine( img_bgr, face_mat, (self.predictor_input_size, self.predictor_input_size), flags=cv2.INTER_LANCZOS4 )
|
|
|
|
predicted_bgr = self.predictor ( predictor_input_bgr )
|
|
|
|
output = cv2.resize ( predicted_bgr, (self.output_size, self.output_size), cv2.INTER_LANCZOS4 )
|
|
if debug:
|
|
return (img_bgr,output,)
|
|
return output |