mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-08-14 02:37:00 -07:00
Converter:
Session is now saved to the model folder. blur and erode ranges are increased to -400+400 hist-match-bw is now replaced with seamless2 mode. Added 'ebs' color transfer mode (works only on Windows). FANSEG model (used in FAN-x mask modes) is retrained with new model configuration and now produces better precision and less jitter
This commit is contained in:
parent
70dada42ea
commit
7ed38a8097
29 changed files with 768 additions and 314 deletions
|
@ -14,8 +14,8 @@ def process_frame_info(frame_info, inp_sh):
|
|||
img = cv2.warpAffine( img, img_mat, inp_sh[0:2], borderMode=cv2.BORDER_REPLICATE, flags=cv2.INTER_CUBIC )
|
||||
return img
|
||||
|
||||
def ConvertFaceAvatar (cfg, prev_temporal_frame_infos, frame_info, next_temporal_frame_infos):
|
||||
inp_sh = cfg.predictor_input_shape
|
||||
def ConvertFaceAvatar (predictor_func, predictor_input_shape, cfg, prev_temporal_frame_infos, frame_info, next_temporal_frame_infos):
|
||||
inp_sh = predictor_input_shape
|
||||
|
||||
prev_imgs=[]
|
||||
next_imgs=[]
|
||||
|
@ -24,7 +24,7 @@ def ConvertFaceAvatar (cfg, prev_temporal_frame_infos, frame_info, next_temporal
|
|||
next_imgs.append( process_frame_info(next_temporal_frame_infos[i], inp_sh) )
|
||||
img = process_frame_info(frame_info, inp_sh)
|
||||
|
||||
prd_f = cfg.predictor_func ( prev_imgs, img, next_imgs )
|
||||
prd_f = predictor_func ( prev_imgs, img, next_imgs )
|
||||
|
||||
if cfg.super_resolution_mode != 0:
|
||||
prd_f = cfg.superres_func(cfg.super_resolution_mode, prd_f)
|
||||
|
|
|
@ -9,7 +9,7 @@ from interact import interact as io
|
|||
from utils.cv2_utils import *
|
||||
|
||||
|
||||
def ConvertMaskedFace (cfg, frame_info, img_bgr_uint8, img_bgr, img_face_landmarks):
|
||||
def ConvertMaskedFace (predictor_func, predictor_input_shape, cfg, frame_info, img_bgr_uint8, img_bgr, img_face_landmarks):
|
||||
|
||||
#if debug:
|
||||
# debugs = [img_bgr.copy()]
|
||||
|
@ -26,7 +26,7 @@ def ConvertMaskedFace (cfg, frame_info, img_bgr_uint8, img_bgr, img_face_landmar
|
|||
out_img = img_bgr.copy()
|
||||
out_merging_mask = None
|
||||
|
||||
output_size = cfg.predictor_input_shape[0]
|
||||
output_size = predictor_input_shape[0]
|
||||
if cfg.super_resolution_mode != 0:
|
||||
output_size *= 2
|
||||
|
||||
|
@ -36,17 +36,19 @@ def ConvertMaskedFace (cfg, frame_info, img_bgr_uint8, img_bgr, img_face_landmar
|
|||
dst_face_bgr = cv2.warpAffine( img_bgr , face_mat, (output_size, output_size), flags=cv2.INTER_CUBIC )
|
||||
dst_face_mask_a_0 = cv2.warpAffine( img_face_mask_a, face_mat, (output_size, output_size), flags=cv2.INTER_CUBIC )
|
||||
|
||||
predictor_input_bgr = cv2.resize (dst_face_bgr, cfg.predictor_input_shape[0:2] )
|
||||
predictor_input_bgr = cv2.resize (dst_face_bgr, predictor_input_shape[0:2] )
|
||||
|
||||
if cfg.predictor_masked:
|
||||
prd_face_bgr, prd_face_mask_a_0 = cfg.predictor_func (predictor_input_bgr)
|
||||
|
||||
prd_face_bgr = np.clip (prd_face_bgr, 0, 1.0 )
|
||||
prd_face_mask_a_0 = np.clip (prd_face_mask_a_0, 0.0, 1.0)
|
||||
predicted = predictor_func (predictor_input_bgr)
|
||||
if isinstance(predicted, tuple):
|
||||
#converter return bgr,mask
|
||||
prd_face_bgr = np.clip (predicted[0], 0, 1.0)
|
||||
prd_face_mask_a_0 = np.clip (predicted[1], 0, 1.0)
|
||||
predictor_masked = True
|
||||
else:
|
||||
predicted = cfg.predictor_func (predictor_input_bgr)
|
||||
#converter return bgr only, using dst mask
|
||||
prd_face_bgr = np.clip (predicted, 0, 1.0 )
|
||||
prd_face_mask_a_0 = cv2.resize (dst_face_mask_a_0, cfg.predictor_input_shape[0:2] )
|
||||
prd_face_mask_a_0 = cv2.resize (dst_face_mask_a_0, predictor_input_shape[0:2] )
|
||||
predictor_masked = False
|
||||
|
||||
if cfg.super_resolution_mode:
|
||||
#if debug:
|
||||
|
@ -57,7 +59,7 @@ def ConvertMaskedFace (cfg, frame_info, img_bgr_uint8, img_bgr, img_face_landmar
|
|||
#if debug:
|
||||
# debugs += [ np.clip( cv2.warpAffine( prd_face_bgr, face_output_mat, img_size, img_bgr.copy(), cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC, cv2.BORDER_TRANSPARENT ), 0, 1.0) ]
|
||||
|
||||
if cfg.predictor_masked:
|
||||
if predictor_masked:
|
||||
prd_face_mask_a_0 = cv2.resize (prd_face_mask_a_0, (output_size, output_size), cv2.INTER_CUBIC)
|
||||
else:
|
||||
prd_face_mask_a_0 = cv2.resize (dst_face_mask_a_0, (output_size, output_size), cv2.INTER_CUBIC)
|
||||
|
@ -198,7 +200,7 @@ def ConvertMaskedFace (cfg, frame_info, img_bgr_uint8, img_bgr, img_face_landmar
|
|||
# debugs += [img_face_mask_aaa.copy()]
|
||||
|
||||
if 'seamless' not in cfg.mode and cfg.color_transfer_mode != 0:
|
||||
if cfg.color_transfer_mode == 1:
|
||||
if cfg.color_transfer_mode == 1: #rct
|
||||
#if debug:
|
||||
# debugs += [ np.clip( cv2.warpAffine( prd_face_bgr, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC, cv2.BORDER_TRANSPARENT ), 0, 1.0) ]
|
||||
|
||||
|
@ -211,8 +213,8 @@ def ConvertMaskedFace (cfg, frame_info, img_bgr_uint8, img_bgr, img_face_landmar
|
|||
# debugs += [ np.clip( cv2.warpAffine( prd_face_bgr, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC, cv2.BORDER_TRANSPARENT ), 0, 1.0) ]
|
||||
|
||||
|
||||
elif cfg.color_transfer_mode == 2:
|
||||
#if debug:
|
||||
elif cfg.color_transfer_mode == 2: #lct
|
||||
#if debug:
|
||||
# debugs += [ np.clip( cv2.warpAffine( prd_face_bgr, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC, cv2.BORDER_TRANSPARENT ), 0, 1.0) ]
|
||||
|
||||
prd_face_bgr = imagelib.linear_color_transfer (prd_face_bgr, dst_face_bgr)
|
||||
|
@ -220,7 +222,14 @@ def ConvertMaskedFace (cfg, frame_info, img_bgr_uint8, img_bgr, img_face_landmar
|
|||
|
||||
#if debug:
|
||||
# debugs += [ np.clip( cv2.warpAffine( prd_face_bgr, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC, cv2.BORDER_TRANSPARENT ), 0, 1.0) ]
|
||||
elif cfg.color_transfer_mode == 3: #ebs
|
||||
#if debug:
|
||||
# debugs += [ np.clip( cv2.warpAffine( prd_face_bgr, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC, cv2.BORDER_TRANSPARENT ), 0, 1.0) ]
|
||||
|
||||
prd_face_bgr = cfg.ebs_ct_func ( np.clip( (dst_face_bgr*255), 0, 255).astype(np.uint8),
|
||||
np.clip( (prd_face_bgr*255), 0, 255).astype(np.uint8), )#prd_face_mask_a
|
||||
prd_face_bgr = np.clip( prd_face_bgr.astype(np.float32) / 255.0, 0.0, 1.0)
|
||||
|
||||
if cfg.mode == 'hist-match-bw':
|
||||
prd_face_bgr = cv2.cvtColor(prd_face_bgr, cv2.COLOR_BGR2GRAY)
|
||||
prd_face_bgr = np.repeat( np.expand_dims (prd_face_bgr, -1), (3,), -1 )
|
||||
|
@ -249,34 +258,39 @@ def ConvertMaskedFace (cfg, frame_info, img_bgr_uint8, img_bgr, img_face_landmar
|
|||
|
||||
if cfg.mode == 'hist-match-bw':
|
||||
prd_face_bgr = prd_face_bgr.astype(dtype=np.float32)
|
||||
|
||||
out_img = cv2.warpAffine( prd_face_bgr, face_output_mat, img_size, out_img, cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC, cv2.BORDER_TRANSPARENT )
|
||||
out_img = np.clip(out_img, 0.0, 1.0)
|
||||
|
||||
#if debug:
|
||||
# debugs += [out_img.copy()]
|
||||
|
||||
if cfg.mode == 'overlay':
|
||||
pass
|
||||
|
||||
|
||||
if 'seamless' in cfg.mode:
|
||||
#mask used for cv2.seamlessClone
|
||||
img_face_seamless_mask_a = None
|
||||
#mask used for cv2.seamlessClone
|
||||
img_face_mask_a = img_face_mask_aaa[...,0:1]
|
||||
|
||||
if cfg.mode == 'seamless2':
|
||||
img_face_mask_a = cv2.warpAffine( img_face_mask_a, face_output_mat, (output_size, output_size), flags=cv2.INTER_CUBIC )
|
||||
|
||||
img_face_seamless_mask_a = None
|
||||
for i in range(1,10):
|
||||
a = img_face_mask_a > i / 10.0
|
||||
if len(np.argwhere(a)) == 0:
|
||||
continue
|
||||
img_face_seamless_mask_a = img_face_mask_aaa[...,0:1].copy()
|
||||
img_face_seamless_mask_a = img_face_mask_a.copy()
|
||||
img_face_seamless_mask_a[a] = 1.0
|
||||
img_face_seamless_mask_a[img_face_seamless_mask_a <= i / 10.0] = 0.0
|
||||
break
|
||||
|
||||
if cfg.mode == 'seamless2':
|
||||
|
||||
face_seamless = imagelib.seamless_clone ( prd_face_bgr, dst_face_bgr, img_face_seamless_mask_a )
|
||||
|
||||
out_img = cv2.warpAffine( face_seamless, face_output_mat, img_size, out_img, cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC, cv2.BORDER_TRANSPARENT )
|
||||
else:
|
||||
out_img = cv2.warpAffine( prd_face_bgr, face_output_mat, img_size, out_img, cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC, cv2.BORDER_TRANSPARENT )
|
||||
|
||||
out_img = np.clip(out_img, 0.0, 1.0)
|
||||
|
||||
if 'seamless' in cfg.mode and cfg.mode != 'seamless2':
|
||||
try:
|
||||
#calc same bounding rect and center point as in cv2.seamlessClone to prevent jittering (not flickering)
|
||||
l,t,w,h = cv2.boundingRect( (img_face_seamless_mask_a*255).astype(np.uint8) )
|
||||
s_maskx, s_masky = int(l+w/2), int(t+h/2)
|
||||
|
||||
out_img = cv2.seamlessClone( (out_img*255).astype(np.uint8), img_bgr_uint8, (img_face_seamless_mask_a*255).astype(np.uint8), (s_maskx,s_masky) , cv2.NORMAL_CLONE )
|
||||
out_img = out_img.astype(dtype=np.float32) / 255.0
|
||||
except Exception as e:
|
||||
|
@ -301,8 +315,8 @@ def ConvertMaskedFace (cfg, frame_info, img_bgr_uint8, img_bgr, img_face_landmar
|
|||
# debugs += [ np.clip( cv2.warpAffine( out_face_bgr, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC, cv2.BORDER_TRANSPARENT ), 0, 1.0) ]
|
||||
face_mask_aaa = cv2.warpAffine( img_face_mask_aaa, face_mat, (output_size, output_size) )
|
||||
|
||||
out_face_bgr = imagelib.reinhard_color_transfer ( np.clip( (out_face_bgr*255).astype(np.uint8), 0, 255),
|
||||
np.clip( (dst_face_bgr*255).astype(np.uint8), 0, 255),
|
||||
out_face_bgr = imagelib.reinhard_color_transfer ( np.clip( (out_face_bgr*255), 0, 255).astype(np.uint8),
|
||||
np.clip( (dst_face_bgr*255), 0, 255).astype(np.uint8),
|
||||
source_mask=face_mask_aaa, target_mask=face_mask_aaa)
|
||||
out_face_bgr = np.clip( out_face_bgr.astype(np.float32) / 255.0, 0.0, 1.0)
|
||||
|
||||
|
@ -318,7 +332,15 @@ def ConvertMaskedFace (cfg, frame_info, img_bgr_uint8, img_bgr, img_face_landmar
|
|||
|
||||
#if debug:
|
||||
# debugs += [ np.clip( cv2.warpAffine( out_face_bgr, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC, cv2.BORDER_TRANSPARENT ), 0, 1.0) ]
|
||||
|
||||
|
||||
elif cfg.color_transfer_mode == 3: #ebs
|
||||
#if debug:
|
||||
# debugs += [ np.clip( cv2.warpAffine( prd_face_bgr, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC, cv2.BORDER_TRANSPARENT ), 0, 1.0) ]
|
||||
|
||||
out_face_bgr = cfg.ebs_ct_func ( np.clip( (dst_face_bgr*255), 0, 255).astype(np.uint8),
|
||||
np.clip( (out_face_bgr*255), 0, 255).astype(np.uint8), )
|
||||
out_face_bgr = np.clip( out_face_bgr.astype(np.float32) / 255.0, 0.0, 1.0)
|
||||
|
||||
if cfg.mode == 'seamless-hist-match':
|
||||
out_face_bgr = imagelib.color_hist_match(out_face_bgr, dst_face_bgr, cfg.hist_match_threshold)
|
||||
|
||||
|
@ -359,14 +381,14 @@ def ConvertMaskedFace (cfg, frame_info, img_bgr_uint8, img_bgr, img_face_landmar
|
|||
return out_img, out_merging_mask
|
||||
|
||||
|
||||
def ConvertMasked (cfg, frame_info):
|
||||
def ConvertMasked (predictor_func, predictor_input_shape, cfg, frame_info):
|
||||
img_bgr_uint8 = cv2_imread(frame_info.filename)
|
||||
img_bgr_uint8 = imagelib.normalize_channels (img_bgr_uint8, 3)
|
||||
img_bgr = img_bgr_uint8.astype(np.float32) / 255.0
|
||||
|
||||
outs = []
|
||||
for face_num, img_landmarks in enumerate( frame_info.landmarks_list ):
|
||||
out_img, out_img_merging_mask = ConvertMaskedFace (cfg, frame_info, img_bgr_uint8, img_bgr, img_landmarks)
|
||||
out_img, out_img_merging_mask = ConvertMaskedFace (predictor_func, predictor_input_shape, cfg, frame_info, img_bgr_uint8, img_bgr, img_landmarks)
|
||||
outs += [ (out_img, out_img_merging_mask) ]
|
||||
|
||||
#Combining multiple face outputs
|
||||
|
|
|
@ -14,16 +14,14 @@ class ConverterConfig(object):
|
|||
TYPE_IMAGE = 3
|
||||
TYPE_IMAGE_WITH_LANDMARKS = 4
|
||||
|
||||
def __init__(self, type=0, predictor_func=None,
|
||||
predictor_input_shape=None):
|
||||
def __init__(self, type=0):
|
||||
self.type = type
|
||||
self.predictor_func = predictor_func
|
||||
self.predictor_input_shape = predictor_input_shape
|
||||
|
||||
self.superres_func = None
|
||||
self.sharpen_func = None
|
||||
self.fanseg_input_size = None
|
||||
self.fanseg_extract_func = None
|
||||
self.ebs_ct_func = None
|
||||
|
||||
self.super_res_dict = {0:"None", 1:'RankSRGAN'}
|
||||
self.sharpen_dict = {0:"None", 1:'box', 2:'gaussian'}
|
||||
|
@ -84,40 +82,46 @@ class ConverterConfig(object):
|
|||
r += f"super_resolution_mode : {self.super_res_dict[self.super_resolution_mode]}\n"
|
||||
return r
|
||||
|
||||
mode_dict = {0:'original',
|
||||
1:'overlay',
|
||||
2:'hist-match',
|
||||
3:'seamless2',
|
||||
4:'seamless',
|
||||
5:'seamless-hist-match',
|
||||
6:'raw-rgb',
|
||||
7:'raw-rgb-mask',
|
||||
8:'raw-mask-only',
|
||||
9:'raw-predicted-only'}
|
||||
|
||||
full_face_mask_mode_dict = {1:'learned',
|
||||
2:'dst',
|
||||
3:'FAN-prd',
|
||||
4:'FAN-dst',
|
||||
5:'FAN-prd*FAN-dst',
|
||||
6:'learned*FAN-prd*FAN-dst'}
|
||||
|
||||
half_face_mask_mode_dict = {1:'learned',
|
||||
2:'dst',
|
||||
4:'FAN-dst',
|
||||
7:'learned*FAN-dst'}
|
||||
|
||||
ctm_dict = { 0: "None", 1:"rct", 2:"lct", 3:"ebs" }
|
||||
ctm_str_dict = {None:0, "rct":1, "lct": 2, "ebs":3 }
|
||||
|
||||
class ConverterConfigMasked(ConverterConfig):
|
||||
|
||||
def __init__(self, predictor_func=None,
|
||||
predictor_input_shape=None,
|
||||
predictor_masked=True,
|
||||
face_type=FaceType.FULL,
|
||||
def __init__(self, face_type=FaceType.FULL,
|
||||
default_mode = 4,
|
||||
base_erode_mask_modifier = 0,
|
||||
base_blur_mask_modifier = 0,
|
||||
default_erode_mask_modifier = 0,
|
||||
default_blur_mask_modifier = 0,
|
||||
clip_hborder_mask_per = 0,
|
||||
):
|
||||
|
||||
super().__init__(type=ConverterConfig.TYPE_MASKED,
|
||||
predictor_func=predictor_func,
|
||||
predictor_input_shape=predictor_input_shape,
|
||||
)
|
||||
if len(predictor_input_shape) != 3:
|
||||
raise ValueError("ConverterConfigMasked: predictor_input_shape must be rank 3.")
|
||||
|
||||
if predictor_input_shape[0] != predictor_input_shape[1]:
|
||||
raise ValueError("ConverterConfigMasked: predictor_input_shape must be a square.")
|
||||
|
||||
self.predictor_masked = predictor_masked
|
||||
super().__init__(type=ConverterConfig.TYPE_MASKED)
|
||||
|
||||
self.face_type = face_type
|
||||
if self.face_type not in [FaceType.FULL, FaceType.HALF]:
|
||||
raise ValueError("ConverterConfigMasked supports only full or half face masks.")
|
||||
|
||||
self.default_mode = default_mode
|
||||
self.base_erode_mask_modifier = base_erode_mask_modifier
|
||||
self.base_blur_mask_modifier = base_blur_mask_modifier
|
||||
self.default_erode_mask_modifier = default_erode_mask_modifier
|
||||
self.default_blur_mask_modifier = default_blur_mask_modifier
|
||||
self.clip_hborder_mask_per = clip_hborder_mask_per
|
||||
|
||||
#default changeable params
|
||||
|
@ -133,37 +137,11 @@ class ConverterConfigMasked(ConverterConfig):
|
|||
self.color_degrade_power = 0
|
||||
self.export_mask_alpha = False
|
||||
|
||||
self.mode_dict = {0:'original',
|
||||
1:'overlay',
|
||||
2:'hist-match',
|
||||
3:'hist-match-bw',
|
||||
4:'seamless',
|
||||
5:'seamless-hist-match',
|
||||
6:'raw-rgb',
|
||||
7:'raw-rgb-mask',
|
||||
8:'raw-mask-only',
|
||||
9:'raw-predicted-only'}
|
||||
|
||||
self.full_face_mask_mode_dict = {1:'learned',
|
||||
2:'dst',
|
||||
3:'FAN-prd',
|
||||
4:'FAN-dst',
|
||||
5:'FAN-prd*FAN-dst',
|
||||
6:'learned*FAN-prd*FAN-dst'}
|
||||
|
||||
self.half_face_mask_mode_dict = {1:'learned',
|
||||
2:'dst',
|
||||
4:'FAN-dst',
|
||||
7:'learned*FAN-dst'}
|
||||
|
||||
self.ctm_dict = { 0: "None", 1:"rct", 2:"lct" }
|
||||
self.ctm_str_dict = {None:0, "rct":1, "lct": 2 }
|
||||
|
||||
def copy(self):
|
||||
return copy.copy(self)
|
||||
|
||||
def set_mode (self, mode):
|
||||
self.mode = self.mode_dict.get (mode, self.mode_dict[self.default_mode] )
|
||||
self.mode = mode_dict.get (mode, mode_dict[self.default_mode] )
|
||||
|
||||
def toggle_masked_hist_match(self):
|
||||
if self.mode == 'hist-match' or self.mode == 'hist-match-bw':
|
||||
|
@ -175,16 +153,16 @@ class ConverterConfigMasked(ConverterConfig):
|
|||
|
||||
def toggle_mask_mode(self):
|
||||
if self.face_type == FaceType.FULL:
|
||||
a = list( self.full_face_mask_mode_dict.keys() )
|
||||
a = list( full_face_mask_mode_dict.keys() )
|
||||
else:
|
||||
a = list( self.half_face_mask_mode_dict.keys() )
|
||||
a = list( half_face_mask_mode_dict.keys() )
|
||||
self.mask_mode = a[ (a.index(self.mask_mode)+1) % len(a) ]
|
||||
|
||||
def add_erode_mask_modifier(self, diff):
|
||||
self.erode_mask_modifier = np.clip ( self.erode_mask_modifier+diff , -200, 200)
|
||||
self.erode_mask_modifier = np.clip ( self.erode_mask_modifier+diff , -400, 400)
|
||||
|
||||
def add_blur_mask_modifier(self, diff):
|
||||
self.blur_mask_modifier = np.clip ( self.blur_mask_modifier+diff , -200, 200)
|
||||
self.blur_mask_modifier = np.clip ( self.blur_mask_modifier+diff , -400, 400)
|
||||
|
||||
def add_motion_blur_power(self, diff):
|
||||
self.motion_blur_power = np.clip ( self.motion_blur_power+diff, 0, 100)
|
||||
|
@ -193,7 +171,7 @@ class ConverterConfigMasked(ConverterConfig):
|
|||
self.output_face_scale = np.clip ( self.output_face_scale+diff , -50, 50)
|
||||
|
||||
def toggle_color_transfer_mode(self):
|
||||
self.color_transfer_mode = (self.color_transfer_mode+1) % 3
|
||||
self.color_transfer_mode = (self.color_transfer_mode+1) % ( max(ctm_dict.keys())+1 )
|
||||
|
||||
def add_color_degrade_power(self, diff):
|
||||
self.color_degrade_power = np.clip ( self.color_degrade_power+diff , 0, 100)
|
||||
|
@ -204,13 +182,13 @@ class ConverterConfigMasked(ConverterConfig):
|
|||
def ask_settings(self):
|
||||
|
||||
s = """Choose mode: \n"""
|
||||
for key in self.mode_dict.keys():
|
||||
s += f"""({key}) {self.mode_dict[key]}\n"""
|
||||
for key in mode_dict.keys():
|
||||
s += f"""({key}) {mode_dict[key]}\n"""
|
||||
s += f"""Default: {self.default_mode} : """
|
||||
|
||||
mode = io.input_int (s, self.default_mode)
|
||||
|
||||
self.mode = self.mode_dict.get (mode, self.mode_dict[self.default_mode] )
|
||||
self.mode = mode_dict.get (mode, mode_dict[self.default_mode] )
|
||||
|
||||
if 'raw' not in self.mode:
|
||||
if self.mode == 'hist-match' or self.mode == 'hist-match-bw':
|
||||
|
@ -221,28 +199,28 @@ class ConverterConfigMasked(ConverterConfig):
|
|||
|
||||
if self.face_type == FaceType.FULL:
|
||||
s = """Choose mask mode: \n"""
|
||||
for key in self.full_face_mask_mode_dict.keys():
|
||||
s += f"""({key}) {self.full_face_mask_mode_dict[key]}\n"""
|
||||
for key in full_face_mask_mode_dict.keys():
|
||||
s += f"""({key}) {full_face_mask_mode_dict[key]}\n"""
|
||||
s += f"""?:help Default: 1 : """
|
||||
|
||||
self.mask_mode = io.input_int (s, 1, valid_list=self.full_face_mask_mode_dict.keys(), help_message="If you learned the mask, then option 1 should be choosed. 'dst' mask is raw shaky mask from dst aligned images. 'FAN-prd' - using super smooth mask by pretrained FAN-model from predicted face. 'FAN-dst' - using super smooth mask by pretrained FAN-model from dst face. 'FAN-prd*FAN-dst' or 'learned*FAN-prd*FAN-dst' - using multiplied masks.")
|
||||
self.mask_mode = io.input_int (s, 1, valid_list=full_face_mask_mode_dict.keys(), help_message="If you learned the mask, then option 1 should be choosed. 'dst' mask is raw shaky mask from dst aligned images. 'FAN-prd' - using super smooth mask by pretrained FAN-model from predicted face. 'FAN-dst' - using super smooth mask by pretrained FAN-model from dst face. 'FAN-prd*FAN-dst' or 'learned*FAN-prd*FAN-dst' - using multiplied masks.")
|
||||
else:
|
||||
s = """Choose mask mode: \n"""
|
||||
for key in self.half_face_mask_mode_dict.keys():
|
||||
s += f"""({key}) {self.half_face_mask_mode_dict[key]}\n"""
|
||||
for key in half_face_mask_mode_dict.keys():
|
||||
s += f"""({key}) {half_face_mask_mode_dict[key]}\n"""
|
||||
s += f"""?:help , Default: 1 : """
|
||||
self.mask_mode = io.input_int (s, 1, valid_list=self.half_face_mask_mode_dict.keys(), help_message="If you learned the mask, then option 1 should be choosed. 'dst' mask is raw shaky mask from dst aligned images.")
|
||||
self.mask_mode = io.input_int (s, 1, valid_list=half_face_mask_mode_dict.keys(), help_message="If you learned the mask, then option 1 should be choosed. 'dst' mask is raw shaky mask from dst aligned images.")
|
||||
|
||||
if 'raw' not in self.mode:
|
||||
self.erode_mask_modifier = self.base_erode_mask_modifier + np.clip ( io.input_int ("Choose erode mask modifier [-200..200] (skip:%d) : " % (self.default_erode_mask_modifier), self.default_erode_mask_modifier), -200, 200)
|
||||
self.blur_mask_modifier = self.base_blur_mask_modifier + np.clip ( io.input_int ("Choose blur mask modifier [-200..200] (skip:%d) : " % (self.default_blur_mask_modifier), self.default_blur_mask_modifier), -200, 200)
|
||||
self.erode_mask_modifier = np.clip ( io.input_int ("Choose erode mask modifier [-400..400] (skip:%d) : " % 0, 0), -400, 400)
|
||||
self.blur_mask_modifier = np.clip ( io.input_int ("Choose blur mask modifier [-400..400] (skip:%d) : " % 0, 0), -400, 400)
|
||||
self.motion_blur_power = np.clip ( io.input_int ("Choose motion blur power [0..100] (skip:%d) : " % (0), 0), 0, 100)
|
||||
|
||||
self.output_face_scale = np.clip (io.input_int ("Choose output face scale modifier [-50..50] (skip:0) : ", 0), -50, 50)
|
||||
|
||||
if 'raw' not in self.mode:
|
||||
self.color_transfer_mode = io.input_str ("Apply color transfer to predicted face? Choose mode ( rct/lct skip:None ) : ", None, ['rct','lct'])
|
||||
self.color_transfer_mode = self.ctm_str_dict[self.color_transfer_mode]
|
||||
self.color_transfer_mode = io.input_str ("Apply color transfer to predicted face? Choose mode ( rct/lct/ebs skip:None ) : ", None, ctm_str_dict.keys() )
|
||||
self.color_transfer_mode = ctm_str_dict[self.color_transfer_mode]
|
||||
|
||||
super().ask_settings()
|
||||
|
||||
|
@ -284,9 +262,9 @@ class ConverterConfigMasked(ConverterConfig):
|
|||
r += f"""hist_match_threshold: {self.hist_match_threshold}\n"""
|
||||
|
||||
if self.face_type == FaceType.FULL:
|
||||
r += f"""mask_mode: { self.full_face_mask_mode_dict[self.mask_mode] }\n"""
|
||||
r += f"""mask_mode: { full_face_mask_mode_dict[self.mask_mode] }\n"""
|
||||
else:
|
||||
r += f"""mask_mode: { self.half_face_mask_mode_dict[self.mask_mode] }\n"""
|
||||
r += f"""mask_mode: { half_face_mask_mode_dict[self.mask_mode] }\n"""
|
||||
|
||||
if 'raw' not in self.mode:
|
||||
r += (f"""erode_mask_modifier: {self.erode_mask_modifier}\n"""
|
||||
|
@ -296,7 +274,7 @@ class ConverterConfigMasked(ConverterConfig):
|
|||
r += f"""output_face_scale: {self.output_face_scale}\n"""
|
||||
|
||||
if 'raw' not in self.mode:
|
||||
r += f"""color_transfer_mode: { self.ctm_dict[self.color_transfer_mode]}\n"""
|
||||
r += f"""color_transfer_mode: { ctm_dict[self.color_transfer_mode]}\n"""
|
||||
|
||||
r += super().__str__()
|
||||
|
||||
|
@ -311,14 +289,8 @@ class ConverterConfigMasked(ConverterConfig):
|
|||
|
||||
class ConverterConfigFaceAvatar(ConverterConfig):
|
||||
|
||||
def __init__(self, predictor_func=None,
|
||||
predictor_input_shape=None,
|
||||
temporal_face_count=0
|
||||
):
|
||||
super().__init__(type=ConverterConfig.TYPE_FACE_AVATAR,
|
||||
predictor_func=predictor_func,
|
||||
predictor_input_shape=predictor_input_shape
|
||||
)
|
||||
def __init__(self, temporal_face_count=0):
|
||||
super().__init__(type=ConverterConfig.TYPE_FACE_AVATAR)
|
||||
self.temporal_face_count = temporal_face_count
|
||||
|
||||
#changeable params
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue