mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-07-06 13:02:15 -07:00
Session is now saved to the model folder. blur and erode ranges are increased to -400+400 hist-match-bw is now replaced with seamless2 mode. Added 'ebs' color transfer mode (works only on Windows). FANSEG model (used in FAN-x mask modes) is retrained with new model configuration and now produces better precision and less jitter
325 lines
13 KiB
Python
325 lines
13 KiB
Python
import numpy as np
|
|
import copy
|
|
|
|
from facelib import FaceType
|
|
from interact import interact as io
|
|
|
|
|
|
class ConverterConfig(object):
|
|
TYPE_NONE = 0
|
|
TYPE_MASKED = 1
|
|
TYPE_FACE_AVATAR = 2
|
|
####
|
|
|
|
TYPE_IMAGE = 3
|
|
TYPE_IMAGE_WITH_LANDMARKS = 4
|
|
|
|
def __init__(self, type=0):
|
|
self.type = type
|
|
|
|
self.superres_func = None
|
|
self.sharpen_func = None
|
|
self.fanseg_input_size = None
|
|
self.fanseg_extract_func = None
|
|
self.ebs_ct_func = None
|
|
|
|
self.super_res_dict = {0:"None", 1:'RankSRGAN'}
|
|
self.sharpen_dict = {0:"None", 1:'box', 2:'gaussian'}
|
|
|
|
#default changeable params
|
|
self.super_resolution_mode = 0
|
|
self.sharpen_mode = 0
|
|
self.sharpen_amount = 0
|
|
|
|
def copy(self):
|
|
return copy.copy(self)
|
|
|
|
#overridable
|
|
def ask_settings(self):
|
|
s = """Choose sharpen mode: \n"""
|
|
for key in self.sharpen_dict.keys():
|
|
s += f"""({key}) {self.sharpen_dict[key]}\n"""
|
|
s += f"""?:help Default: {list(self.sharpen_dict.keys())[0]} : """
|
|
self.sharpen_mode = io.input_int (s, 0, valid_list=self.sharpen_dict.keys(), help_message="Enhance details by applying sharpen filter.")
|
|
|
|
if self.sharpen_mode != 0:
|
|
self.sharpen_amount = np.clip ( io.input_int ("Choose sharpen amount [0..100] (skip:%d) : " % 10, 10), 0, 100 )
|
|
|
|
s = """Choose super resolution mode: \n"""
|
|
for key in self.super_res_dict.keys():
|
|
s += f"""({key}) {self.super_res_dict[key]}\n"""
|
|
s += f"""?:help Default: {list(self.super_res_dict.keys())[0]} : """
|
|
self.super_resolution_mode = io.input_int (s, 0, valid_list=self.super_res_dict.keys(), help_message="Enhance details by applying superresolution network.")
|
|
|
|
def toggle_sharpen_mode(self):
|
|
a = list( self.sharpen_dict.keys() )
|
|
self.sharpen_mode = a[ (a.index(self.sharpen_mode)+1) % len(a) ]
|
|
|
|
def add_sharpen_amount(self, diff):
|
|
self.sharpen_amount = np.clip ( self.sharpen_amount+diff, 0, 100)
|
|
|
|
def toggle_super_resolution_mode(self):
|
|
a = list( self.super_res_dict.keys() )
|
|
self.super_resolution_mode = a[ (a.index(self.super_resolution_mode)+1) % len(a) ]
|
|
|
|
#overridable
|
|
def __eq__(self, other):
|
|
#check equality of changeable params
|
|
|
|
if isinstance(other, ConverterConfig):
|
|
return self.sharpen_mode == other.sharpen_mode and \
|
|
(self.sharpen_mode == 0 or ((self.sharpen_mode == other.sharpen_mode) and (self.sharpen_amount == other.sharpen_amount) )) and \
|
|
self.super_resolution_mode == other.super_resolution_mode
|
|
|
|
return False
|
|
|
|
#overridable
|
|
def __str__(self):
|
|
r = ""
|
|
r += f"sharpen_mode : {self.sharpen_dict[self.sharpen_mode]}\n"
|
|
if self.sharpen_mode != 0:
|
|
r += f"sharpen_amount : {self.sharpen_amount}\n"
|
|
r += f"super_resolution_mode : {self.super_res_dict[self.super_resolution_mode]}\n"
|
|
return r
|
|
|
|
mode_dict = {0:'original',
|
|
1:'overlay',
|
|
2:'hist-match',
|
|
3:'seamless2',
|
|
4:'seamless',
|
|
5:'seamless-hist-match',
|
|
6:'raw-rgb',
|
|
7:'raw-rgb-mask',
|
|
8:'raw-mask-only',
|
|
9:'raw-predicted-only'}
|
|
|
|
full_face_mask_mode_dict = {1:'learned',
|
|
2:'dst',
|
|
3:'FAN-prd',
|
|
4:'FAN-dst',
|
|
5:'FAN-prd*FAN-dst',
|
|
6:'learned*FAN-prd*FAN-dst'}
|
|
|
|
half_face_mask_mode_dict = {1:'learned',
|
|
2:'dst',
|
|
4:'FAN-dst',
|
|
7:'learned*FAN-dst'}
|
|
|
|
ctm_dict = { 0: "None", 1:"rct", 2:"lct", 3:"ebs" }
|
|
ctm_str_dict = {None:0, "rct":1, "lct": 2, "ebs":3 }
|
|
|
|
class ConverterConfigMasked(ConverterConfig):
|
|
|
|
def __init__(self, face_type=FaceType.FULL,
|
|
default_mode = 4,
|
|
clip_hborder_mask_per = 0,
|
|
):
|
|
|
|
super().__init__(type=ConverterConfig.TYPE_MASKED)
|
|
|
|
self.face_type = face_type
|
|
if self.face_type not in [FaceType.FULL, FaceType.HALF]:
|
|
raise ValueError("ConverterConfigMasked supports only full or half face masks.")
|
|
|
|
self.default_mode = default_mode
|
|
self.clip_hborder_mask_per = clip_hborder_mask_per
|
|
|
|
#default changeable params
|
|
self.mode = 'overlay'
|
|
self.masked_hist_match = True
|
|
self.hist_match_threshold = 238
|
|
self.mask_mode = 1
|
|
self.erode_mask_modifier = 0
|
|
self.blur_mask_modifier = 0
|
|
self.motion_blur_power = 0
|
|
self.output_face_scale = 0
|
|
self.color_transfer_mode = 0
|
|
self.color_degrade_power = 0
|
|
self.export_mask_alpha = False
|
|
|
|
def copy(self):
|
|
return copy.copy(self)
|
|
|
|
def set_mode (self, mode):
|
|
self.mode = mode_dict.get (mode, mode_dict[self.default_mode] )
|
|
|
|
def toggle_masked_hist_match(self):
|
|
if self.mode == 'hist-match' or self.mode == 'hist-match-bw':
|
|
self.masked_hist_match = not self.masked_hist_match
|
|
|
|
def add_hist_match_threshold(self, diff):
|
|
if self.mode == 'hist-match' or self.mode == 'hist-match-bw' or self.mode == 'seamless-hist-match':
|
|
self.hist_match_threshold = np.clip ( self.hist_match_threshold+diff , 0, 255)
|
|
|
|
def toggle_mask_mode(self):
|
|
if self.face_type == FaceType.FULL:
|
|
a = list( full_face_mask_mode_dict.keys() )
|
|
else:
|
|
a = list( half_face_mask_mode_dict.keys() )
|
|
self.mask_mode = a[ (a.index(self.mask_mode)+1) % len(a) ]
|
|
|
|
def add_erode_mask_modifier(self, diff):
|
|
self.erode_mask_modifier = np.clip ( self.erode_mask_modifier+diff , -400, 400)
|
|
|
|
def add_blur_mask_modifier(self, diff):
|
|
self.blur_mask_modifier = np.clip ( self.blur_mask_modifier+diff , -400, 400)
|
|
|
|
def add_motion_blur_power(self, diff):
|
|
self.motion_blur_power = np.clip ( self.motion_blur_power+diff, 0, 100)
|
|
|
|
def add_output_face_scale(self, diff):
|
|
self.output_face_scale = np.clip ( self.output_face_scale+diff , -50, 50)
|
|
|
|
def toggle_color_transfer_mode(self):
|
|
self.color_transfer_mode = (self.color_transfer_mode+1) % ( max(ctm_dict.keys())+1 )
|
|
|
|
def add_color_degrade_power(self, diff):
|
|
self.color_degrade_power = np.clip ( self.color_degrade_power+diff , 0, 100)
|
|
|
|
def toggle_export_mask_alpha(self):
|
|
self.export_mask_alpha = not self.export_mask_alpha
|
|
|
|
def ask_settings(self):
|
|
|
|
s = """Choose mode: \n"""
|
|
for key in mode_dict.keys():
|
|
s += f"""({key}) {mode_dict[key]}\n"""
|
|
s += f"""Default: {self.default_mode} : """
|
|
|
|
mode = io.input_int (s, self.default_mode)
|
|
|
|
self.mode = mode_dict.get (mode, mode_dict[self.default_mode] )
|
|
|
|
if 'raw' not in self.mode:
|
|
if self.mode == 'hist-match' or self.mode == 'hist-match-bw':
|
|
self.masked_hist_match = io.input_bool("Masked hist match? (y/n skip:y) : ", True)
|
|
|
|
if self.mode == 'hist-match' or self.mode == 'hist-match-bw' or self.mode == 'seamless-hist-match':
|
|
self.hist_match_threshold = np.clip ( io.input_int("Hist match threshold [0..255] (skip:255) : ", 255), 0, 255)
|
|
|
|
if self.face_type == FaceType.FULL:
|
|
s = """Choose mask mode: \n"""
|
|
for key in full_face_mask_mode_dict.keys():
|
|
s += f"""({key}) {full_face_mask_mode_dict[key]}\n"""
|
|
s += f"""?:help Default: 1 : """
|
|
|
|
self.mask_mode = io.input_int (s, 1, valid_list=full_face_mask_mode_dict.keys(), help_message="If you learned the mask, then option 1 should be choosed. 'dst' mask is raw shaky mask from dst aligned images. 'FAN-prd' - using super smooth mask by pretrained FAN-model from predicted face. 'FAN-dst' - using super smooth mask by pretrained FAN-model from dst face. 'FAN-prd*FAN-dst' or 'learned*FAN-prd*FAN-dst' - using multiplied masks.")
|
|
else:
|
|
s = """Choose mask mode: \n"""
|
|
for key in half_face_mask_mode_dict.keys():
|
|
s += f"""({key}) {half_face_mask_mode_dict[key]}\n"""
|
|
s += f"""?:help , Default: 1 : """
|
|
self.mask_mode = io.input_int (s, 1, valid_list=half_face_mask_mode_dict.keys(), help_message="If you learned the mask, then option 1 should be choosed. 'dst' mask is raw shaky mask from dst aligned images.")
|
|
|
|
if 'raw' not in self.mode:
|
|
self.erode_mask_modifier = np.clip ( io.input_int ("Choose erode mask modifier [-400..400] (skip:%d) : " % 0, 0), -400, 400)
|
|
self.blur_mask_modifier = np.clip ( io.input_int ("Choose blur mask modifier [-400..400] (skip:%d) : " % 0, 0), -400, 400)
|
|
self.motion_blur_power = np.clip ( io.input_int ("Choose motion blur power [0..100] (skip:%d) : " % (0), 0), 0, 100)
|
|
|
|
self.output_face_scale = np.clip (io.input_int ("Choose output face scale modifier [-50..50] (skip:0) : ", 0), -50, 50)
|
|
|
|
if 'raw' not in self.mode:
|
|
self.color_transfer_mode = io.input_str ("Apply color transfer to predicted face? Choose mode ( rct/lct/ebs skip:None ) : ", None, ctm_str_dict.keys() )
|
|
self.color_transfer_mode = ctm_str_dict[self.color_transfer_mode]
|
|
|
|
super().ask_settings()
|
|
|
|
if 'raw' not in self.mode:
|
|
self.color_degrade_power = np.clip ( io.input_int ("Degrade color power of final image [0..100] (skip:0) : ", 0), 0, 100)
|
|
self.export_mask_alpha = io.input_bool("Export png with alpha channel of the mask? (y/n skip:n) : ", False)
|
|
|
|
io.log_info ("")
|
|
|
|
def __eq__(self, other):
|
|
#check equality of changeable params
|
|
|
|
if isinstance(other, ConverterConfigMasked):
|
|
return super().__eq__(other) and \
|
|
self.mode == other.mode and \
|
|
self.masked_hist_match == other.masked_hist_match and \
|
|
self.hist_match_threshold == other.hist_match_threshold and \
|
|
self.mask_mode == other.mask_mode and \
|
|
self.erode_mask_modifier == other.erode_mask_modifier and \
|
|
self.blur_mask_modifier == other.blur_mask_modifier and \
|
|
self.motion_blur_power == other.motion_blur_power and \
|
|
self.output_face_scale == other.output_face_scale and \
|
|
self.color_transfer_mode == other.color_transfer_mode and \
|
|
self.color_degrade_power == other.color_degrade_power and \
|
|
self.export_mask_alpha == other.export_mask_alpha
|
|
|
|
return False
|
|
|
|
def __str__(self):
|
|
r = (
|
|
"""ConverterConfig:\n"""
|
|
f"""Mode: {self.mode}\n"""
|
|
)
|
|
|
|
if self.mode == 'hist-match' or self.mode == 'hist-match-bw':
|
|
r += f"""masked_hist_match: {self.masked_hist_match}\n"""
|
|
|
|
if self.mode == 'hist-match' or self.mode == 'hist-match-bw' or self.mode == 'seamless-hist-match':
|
|
r += f"""hist_match_threshold: {self.hist_match_threshold}\n"""
|
|
|
|
if self.face_type == FaceType.FULL:
|
|
r += f"""mask_mode: { full_face_mask_mode_dict[self.mask_mode] }\n"""
|
|
else:
|
|
r += f"""mask_mode: { half_face_mask_mode_dict[self.mask_mode] }\n"""
|
|
|
|
if 'raw' not in self.mode:
|
|
r += (f"""erode_mask_modifier: {self.erode_mask_modifier}\n"""
|
|
f"""blur_mask_modifier: {self.blur_mask_modifier}\n"""
|
|
f"""motion_blur_power: {self.motion_blur_power}\n""")
|
|
|
|
r += f"""output_face_scale: {self.output_face_scale}\n"""
|
|
|
|
if 'raw' not in self.mode:
|
|
r += f"""color_transfer_mode: { ctm_dict[self.color_transfer_mode]}\n"""
|
|
|
|
r += super().__str__()
|
|
|
|
if 'raw' not in self.mode:
|
|
r += (f"""color_degrade_power: {self.color_degrade_power}\n"""
|
|
f"""export_mask_alpha: {self.export_mask_alpha}\n""")
|
|
|
|
r += "================"
|
|
|
|
return r
|
|
|
|
|
|
class ConverterConfigFaceAvatar(ConverterConfig):
|
|
|
|
def __init__(self, temporal_face_count=0):
|
|
super().__init__(type=ConverterConfig.TYPE_FACE_AVATAR)
|
|
self.temporal_face_count = temporal_face_count
|
|
|
|
#changeable params
|
|
self.add_source_image = False
|
|
|
|
def copy(self):
|
|
return copy.copy(self)
|
|
|
|
#override
|
|
def ask_settings(self):
|
|
self.add_source_image = io.input_bool("Add source image? (y/n ?:help skip:n) : ", False, help_message="Add source image for comparison.")
|
|
super().ask_settings()
|
|
|
|
def toggle_add_source_image(self):
|
|
self.add_source_image = not self.add_source_image
|
|
|
|
#override
|
|
def __eq__(self, other):
|
|
#check equality of changeable params
|
|
|
|
if isinstance(other, ConverterConfigFaceAvatar):
|
|
return super().__eq__(other) and \
|
|
self.add_source_image == other.add_source_image
|
|
|
|
return False
|
|
|
|
#override
|
|
def __str__(self):
|
|
return ("ConverterConfig: \n"
|
|
f"add_source_image : {self.add_source_image}\n") + \
|
|
super().__str__() + "================"
|
|
|