added new model U-net Face Morpher.

removed AVATAR - useless model was just for demo
removed MIAEF128 - use UFM insted
removed LIAEF128YAW - use model option sort by yaw on start for any model
All models now ask some options on start.
Session options (such as target epoch, batch_size, write_preview_history etc) can be overrided by special command arg.
Converter now always ask options and no more support to define options via command line.
fix bug when ConverterMasked always used not predicted mask.
SampleGenerator now always generate samples with replicated border, exclude mask samples.
refactorings
This commit is contained in:
iperov 2019-01-02 17:26:12 +04:00
commit 7b70e7eec1
29 changed files with 673 additions and 1013 deletions

View file

@ -11,11 +11,12 @@ class ConverterBase(object):
#overridable
def __init__(self, predictor):
self.predictor = predictor
#overridable
def get_mode(self):
#MODE_FACE calls convert_face
#MODE_IMAGE calls convert_image
#MODE_IMAGE calls convert_image without landmarks
#MODE_IMAGE_WITH_LANDMARKS calls convert_image with landmarks
return ConverterBase.MODE_FACE
#overridable

View file

@ -34,7 +34,7 @@ class ConverterImage(ConverterBase):
self.predictor ( np.zeros ( (self.predictor_input_size, self.predictor_input_size,3), dtype=np.float32) )
#override
def convert_image (self, img_bgr, debug):
def convert_image (self, img_bgr, img_landmarks, debug):
img_size = img_bgr.shape[1], img_bgr.shape[0]
predictor_input_bgr = cv2.resize ( img_bgr, (self.predictor_input_size, self.predictor_input_size), cv2.INTER_LANCZOS4 )

View file

@ -4,47 +4,53 @@ from facelib import FaceType
import cv2
import numpy as np
from utils import image_utils
from utils.console_utils import *
class ConverterMasked(ConverterBase):
#override
def __init__(self, predictor,
predictor_input_size=0,
output_size=0,
face_type=FaceType.FULL,
clip_border_mask_per = 0,
masked_hist_match = True,
hist_match_threshold = 255,
mode='seamless',
use_predicted_mask = True,
erode_mask_modifier=0,
blur_mask_modifier=0,
seamless_erode_mask_modifier=0,
output_face_scale_modifier=0.0,
transfercolor=False,
final_image_color_degrade_power=0,
alpha=False,
face_type=FaceType.FULL,
base_erode_mask_modifier = 0,
base_blur_mask_modifier = 0,
**in_options):
super().__init__(predictor)
self.predictor_input_size = predictor_input_size
self.output_size = output_size
self.face_type = face_type
self.use_predicted_mask = use_predicted_mask
self.clip_border_mask_per = clip_border_mask_per
self.masked_hist_match = masked_hist_match
self.hist_match_threshold = hist_match_threshold
self.mode = mode
self.erode_mask_modifier = erode_mask_modifier
self.blur_mask_modifier = blur_mask_modifier
self.seamless_erode_mask_modifier = seamless_erode_mask_modifier
self.output_face_scale = np.clip(1.0 + output_face_scale_modifier*0.01, 0.5, 1.5)
self.transfercolor = transfercolor
self.face_type = face_type
self.TFLabConverter = None
self.final_image_color_degrade_power = np.clip (final_image_color_degrade_power, 0, 100)
self.alpha = alpha
mode = input_int ("Choose mode: (1) overlay, (2) hist match, (3) hist match bw, (4) seamless (default), (5) seamless hist match : ", 4)
self.mode = {1:'overlay',
2:'hist-match',
3:'hist-match-bw',
4:'seamless',
5:'seamless-hist-match'}.get (mode, 'seamless')
if self.mode == 'hist-match' or self.mode == 'hist-match-bw':
self.masked_hist_match = input_bool("Masked hist match? (y/n skip:y) : ", True)
if self.mode == 'hist-match' or self.mode == 'hist-match-bw' or self.mode == 'seamless-hist-match':
self.hist_match_threshold = np.clip ( input_int("Hist match threshold [0..255] (skip:255) : ", 255), 0, 255)
self.use_predicted_mask = input_bool("Use predicted mask? (y/n skip:y) : ", True)
self.erode_mask_modifier = base_erode_mask_modifier + np.clip ( input_int ("Choose erode mask modifier [-200..200] (skip:0) : ", 0), -200, 200)
self.blur_mask_modifier = base_blur_mask_modifier + np.clip ( input_int ("Choose blur mask modifier [-200..200] (skip:0) : ", 0), -200, 200)
self.seamless_erode_mask_modifier = 0
if self.mode == 'seamless' or self.mode == 'seamless-hist-match':
self.seamless_erode_mask_modifier = np.clip ( input_int ("Choose seamless erode mask modifier [-100..100] (skip:0) : ", 0), -100, 100)
self.output_face_scale = np.clip ( 1.0 + input_int ("Choose output face scale modifier [-50..50] (skip:0) : ", 0)*0.01, 0.5, 1.5)
self.transfercolor = input_bool("Transfer color from dst face to converted final face? (y/n skip:n) : ", False)
self.final_image_color_degrade_power = np.clip ( input_int ("Degrade color power of final image [0..100] (skip:0) : ", 0), 0, 100)
self.alpha = input_bool("Export png with alpha channel? (y/n skip:n) : ", False)
print ("")
#override
def get_mode(self):
return ConverterBase.MODE_FACE
@ -79,7 +85,7 @@ class ConverterMasked(ConverterBase):
if not self.use_predicted_mask:
prd_face_mask_a_0 = predictor_input_mask_a_0
prd_face_mask_a_0[ prd_face_mask_a_0 < 0.001 ] = 0.0
prd_face_mask_a = np.expand_dims (prd_face_mask_a_0, axis=-1)
@ -145,16 +151,6 @@ class ConverterMasked(ConverterBase):
print ("blur_size = %d" % (blur) )
img_mask_blurry_aaa = np.clip( img_mask_blurry_aaa, 0, 1.0 )
#if self.clip_border_mask_per > 0:
# prd_border_rect_mask_a = np.ones ( prd_face_mask_a.shape, dtype=prd_face_mask_a.dtype)
# prd_border_size = int ( prd_border_rect_mask_a.shape[1] * self.clip_border_mask_per )
#
# prd_border_rect_mask_a[0:prd_border_size,:,:] = 0
# prd_border_rect_mask_a[-prd_border_size:,:,:] = 0
# prd_border_rect_mask_a[:,0:prd_border_size,:] = 0
# prd_border_rect_mask_a[:,-prd_border_size:,:] = 0
# prd_border_rect_mask_a = np.expand_dims(cv2.blur(prd_border_rect_mask_a, (prd_border_size, prd_border_size) ),-1)
if self.mode == 'hist-match-bw':
prd_face_bgr = cv2.cvtColor(prd_face_bgr, cv2.COLOR_BGR2GRAY)
@ -174,22 +170,21 @@ class ConverterMasked(ConverterBase):
hist_match_2 = dst_face_bgr*hist_mask_a + (1.0-hist_mask_a)* np.ones ( prd_face_bgr.shape[:2] + (1,) , dtype=prd_face_bgr.dtype)
hist_match_2[ hist_match_1 > 1.0 ] = 1.0
new_prd_face_bgr = image_utils.color_hist_match(hist_match_1, hist_match_2, self.hist_match_threshold )
prd_face_bgr = new_prd_face_bgr
prd_face_bgr = image_utils.color_hist_match(hist_match_1, hist_match_2, self.hist_match_threshold )
if self.mode == 'hist-match-bw':
prd_face_bgr = prd_face_bgr.astype(np.float32)
out_img = cv2.warpAffine( prd_face_bgr, face_output_mat, img_size, out_img, cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4, cv2.BORDER_TRANSPARENT )
if debug:
debugs += [out_img.copy()]
debugs += [img_mask_blurry_aaa.copy()]
if self.mode == 'overlay':
pass
if self.mode == 'seamless' or self.mode == 'seamless-hist-match':
out_img = np.clip( img_bgr*(1-img_face_mask_aaa) + (out_img*img_face_mask_aaa) , 0, 1.0 )
if debug:
@ -200,14 +195,7 @@ class ConverterMasked(ConverterBase):
if debug:
debugs += [out_img.copy()]
#if self.clip_border_mask_per > 0:
# img_prd_border_rect_mask_a = cv2.warpAffine( prd_border_rect_mask_a, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4, cv2.BORDER_TRANSPARENT )
# img_prd_border_rect_mask_a = np.expand_dims (img_prd_border_rect_mask_a, -1)
#
# out_img = out_img * img_prd_border_rect_mask_a + img_bgr * (1.0 - img_prd_border_rect_mask_a)
# img_mask_blurry_aaa *= img_prd_border_rect_mask_a
out_img = np.clip( img_bgr*(1-img_mask_blurry_aaa) + (out_img*img_mask_blurry_aaa) , 0, 1.0 )
if self.mode == 'seamless-hist-match':

View file

@ -7,6 +7,7 @@ from pathlib import Path
from utils import Path_utils
from utils import std_utils
from utils import image_utils
from utils.console_utils import *
import numpy as np
import cv2
from samples import SampleGeneratorBase
@ -18,8 +19,11 @@ class ModelBase(object):
#DONT OVERRIDE
def __init__(self, model_path, training_data_src_path=None, training_data_dst_path=None,
batch_size=0,
write_preview_history = False,
ask_for_session_options=False,
session_write_preview_history = None,
session_target_epoch=0,
session_batch_size=0,
debug = False, **in_options
):
print ("Loading model...")
@ -35,56 +39,94 @@ class ModelBase(object):
self.dst_yaw_images_paths = None
self.src_data_generator = None
self.dst_data_generator = None
self.is_training_mode = (training_data_src_path is not None and training_data_dst_path is not None)
self.batch_size = batch_size
self.write_preview_history = write_preview_history
self.debug = debug
self.is_training_mode = (training_data_src_path is not None and training_data_dst_path is not None)
self.supress_std_once = ('TF_SUPPRESS_STD' in os.environ.keys() and os.environ['TF_SUPPRESS_STD'] == '1')
self.epoch = 0
self.options = {}
self.loss_history = []
self.sample_for_preview = None
if self.model_data_path.exists():
model_data = pickle.loads ( self.model_data_path.read_bytes() )
self.epoch = model_data['epoch']
self.options = model_data['options']
self.loss_history = model_data['loss_history'] if 'loss_history' in model_data.keys() else []
self.sample_for_preview = model_data['sample_for_preview'] if 'sample_for_preview' in model_data.keys() else None
else:
self.epoch = 0
self.options = {}
self.loss_history = []
self.sample_for_preview = None
if self.epoch != 0:
self.options = model_data['options']
self.loss_history = model_data['loss_history'] if 'loss_history' in model_data.keys() else []
self.sample_for_preview = model_data['sample_for_preview'] if 'sample_for_preview' in model_data.keys() else None
if self.write_preview_history:
self.preview_history_path = self.model_path / ( '%s_history' % (self.get_model_name()) )
if not self.preview_history_path.exists():
self.preview_history_path.mkdir(exist_ok=True)
else:
if self.epoch == 0:
for filename in Path_utils.get_image_paths(self.preview_history_path):
Path(filename).unlink()
self.device_config = nnlib.DeviceConfig(allow_growth=False, **in_options)
if self.epoch == 0:
#first run
self.options['created_vram_gb'] = self.device_config.gpu_total_vram_gb
self.created_vram_gb = self.device_config.gpu_total_vram_gb
print ("\nModel first run. Enter model options as default for each run.")
self.options['write_preview_history'] = input_bool("Write preview history? (y/n skip:n) : ", False)
self.options['target_epoch'] = max(0, input_int("Target epoch (skip:unlimited) : ", 0))
self.options['batch_size'] = max(0, input_int("Batch_size (skip:model choice) : ", 0))
self.options['sort_by_yaw'] = input_bool("Feed faces to network sorted by yaw? (y/n skip:n) : ", False)
#self.options['use_fp16'] = use_fp16 = input_bool("Use float16? (y/n skip:n) : ", False)
else:
#not first run
if 'created_vram_gb' in self.options.keys():
self.created_vram_gb = self.options['created_vram_gb']
else:
self.options['created_vram_gb'] = self.device_config.gpu_total_vram_gb
self.created_vram_gb = self.device_config.gpu_total_vram_gb
self.options['write_preview_history'] = self.options.get('write_preview_history', False)
self.options['target_epoch'] = self.options.get('target_epoch', 0)
self.options['batch_size'] = self.options.get('batch_size', 0)
self.options['sort_by_yaw'] = self.options.get('sort_by_yaw', False)
#self.options['use_fp16'] = use_fp16 = self.options['use_fp16'] if 'use_fp16' in self.options.keys() else False
use_fp16 = False #currently models fails with fp16
if ask_for_session_options:
print ("Override options for current session:")
session_write_preview_history = input_bool("Write preview history? (y/n skip:default) : ", None )
session_target_epoch = input_int("Target epoch (skip:default) : ", 0)
session_batch_size = input_int("Batch_size (skip:default) : ", 0)
if self.options['write_preview_history']:
if session_write_preview_history is None:
session_write_preview_history = self.options['write_preview_history']
else:
self.options.pop('write_preview_history')
if self.options['target_epoch'] != 0:
if session_target_epoch == 0:
session_target_epoch = self.options['target_epoch']
else:
self.options.pop('target_epoch')
if self.options['batch_size'] != 0:
if session_batch_size == 0:
session_batch_size = self.options['batch_size']
else:
self.options.pop('batch_size')
self.sort_by_yaw = self.options['sort_by_yaw']
if not self.sort_by_yaw:
self.options.pop('sort_by_yaw')
self.write_preview_history = session_write_preview_history
self.target_epoch = session_target_epoch
self.batch_size = session_batch_size
self.device_config = nnlib.DeviceConfig(allow_growth=False, use_fp16=use_fp16, **in_options)
self.created_vram_gb = self.options['created_vram_gb'] if 'created_vram_gb' in self.options.keys() else self.device_config.gpu_total_vram_gb
self.onInitializeOptions(self.epoch == 0, ask_for_session_options)
nnlib.import_all (self.device_config)
self.onInitialize(**in_options)
if self.debug or self.batch_size == 0:
self.batch_size = 1
if self.is_training_mode:
if self.write_preview_history:
self.preview_history_path = self.model_path / ( '%s_history' % (self.get_model_name()) )
if not self.preview_history_path.exists():
self.preview_history_path.mkdir(exist_ok=True)
else:
if self.epoch == 0:
for filename in Path_utils.get_image_paths(self.preview_history_path):
Path(filename).unlink()
if self.generator_list is None:
raise Exception( 'You didnt set_training_data_generators()')
else:
@ -100,11 +142,18 @@ class ModelBase(object):
print ("==")
print ("== Current epoch: " + str(self.epoch) )
print ("==")
print ("== Options:")
print ("== |== batch_size : %s " % (self.batch_size) )
print ("== |== multi_gpu : %s " % (self.device_config.multi_gpu) )
print ("== Model options:")
for key in self.options.keys():
print ("== |== %s : %s" % (key, self.options[key]) )
print ("== Session options:")
if self.write_preview_history:
print ("== |== write_preview_history : True ")
if self.target_epoch != 0:
print ("== |== target_epoch : %s " % (self.target_epoch) )
print ("== |== batch_size : %s " % (self.batch_size) )
if self.device_config.multi_gpu:
print ("== |== multi_gpu : True ")
print ("== Running on:")
if self.device_config.cpu_only:
@ -122,6 +171,10 @@ class ModelBase(object):
print ("=========================")
#overridable
def onInitializeOptions(self, is_first_run, ask_for_session_options):
pass
#overridable
def onInitialize(self, **in_options):
'''
@ -161,6 +214,12 @@ class ModelBase(object):
from .ConverterBase import ConverterBase
return ConverterBase(self, **in_options)
def get_target_epoch(self):
return self.target_epoch
def is_reached_epoch_goal(self):
return self.target_epoch != 0 and self.epoch >= self.target_epoch
def to_multi_gpu_model_if_possible (self, models_list):
if len(self.device_config.gpu_idxs) > 1:
#make batch_size to divide on GPU count without remainder
@ -305,9 +364,6 @@ class ModelBase(object):
if self.batch_size == 0:
self.batch_size = 2
else:
if self.device_config.gpu_total_vram_gb < keys[0]:
raise Exception ('Sorry, this model works only on %dGB+ GPU' % ( keys[0] ) )
if self.batch_size == 0:
for x in keys:
if self.device_config.gpu_total_vram_gb <= x:

View file

@ -1,251 +0,0 @@
import numpy as np
import cv2
from models import ModelBase
from samples import *
from nnlib import nnlib
class Model(ModelBase):
encoder64H5 = 'encoder64.h5'
decoder64_srcH5 = 'decoder64_src.h5'
decoder64_dstH5 = 'decoder64_dst.h5'
encoder256H5 = 'encoder256.h5'
decoder256H5 = 'decoder256.h5'
#override
def onInitialize(self, **in_options):
exec(nnlib.import_all(), locals(), globals())
self.set_vram_batch_requirements( {3.5:8,4:8,5:12,6:16,7:24,8:32,9:48} )
if self.batch_size < 4:
self.batch_size = 4
img_shape64, img_shape256, self.encoder64, self.decoder64_src, self.decoder64_dst, self.encoder256, self.decoder256 = self.Build()
if not self.is_first_run():
self.encoder64.load_weights (self.get_strpath_storage_for_file(self.encoder64H5))
self.decoder64_src.load_weights (self.get_strpath_storage_for_file(self.decoder64_srcH5))
self.decoder64_dst.load_weights (self.get_strpath_storage_for_file(self.decoder64_dstH5))
self.encoder256.load_weights (self.get_strpath_storage_for_file(self.encoder256H5))
self.decoder256.load_weights (self.get_strpath_storage_for_file(self.decoder256H5))
#if self.is_training_mode:
# self.encoder64, self.decoder64_src, self.decoder64_dst, self.encoder256, self.decoder256 = self.to_multi_gpu_model_if_possible ( [self.encoder64, self.decoder64_src, self.decoder64_dst, self.encoder256, self.decoder256] )
input_A_warped64 = Input(img_shape64)
input_B_warped64 = Input(img_shape64)
A_rec64 = self.decoder64_src(self.encoder64(input_A_warped64))
B_rec64 = self.decoder64_dst(self.encoder64(input_B_warped64))
self.ae64 = Model([input_A_warped64, input_B_warped64], [A_rec64, B_rec64] )
if self.is_training_mode:
self.ae64, = self.to_multi_gpu_model_if_possible ( [self.ae64,] )
self.ae64.compile(optimizer=Adam(lr=5e-5, beta_1=0.5, beta_2=0.999),
loss=[DSSIMLoss(), DSSIMLoss()] )
self.A64_view = K.function ([input_A_warped64], [A_rec64])
self.B64_view = K.function ([input_B_warped64], [B_rec64])
input_A_warped64 = Input(img_shape64)
input_A_target256 = Input(img_shape256)
A_rec256 = self.decoder256( self.encoder256(input_A_warped64) )
input_B_warped64 = Input(img_shape64)
BA_rec64 = self.decoder64_src( self.encoder64(input_B_warped64) )
BA_rec256 = self.decoder256( self.encoder256(BA_rec64) )
self.ae256 = Model([input_A_warped64], [A_rec256] )
if self.is_training_mode:
self.ae256, = self.to_multi_gpu_model_if_possible ( [self.ae256,] )
self.ae256.compile(optimizer=Adam(lr=5e-5, beta_1=0.5, beta_2=0.999),
loss=[DSSIMLoss()])
self.A256_view = K.function ([input_A_warped64], [A_rec256])
self.BA256_view = K.function ([input_B_warped64], [BA_rec256])
if self.is_training_mode:
f = SampleProcessor.TypeFlags
self.set_training_data_generators ([
SampleGeneratorFace(self.training_data_src_path, debug=self.is_debug(), batch_size=self.batch_size, output_sample_types=[
[f.WARPED_TRANSFORMED | f.FACE_ALIGN_HALF | f.MODE_BGR, 64],
[f.TRANSFORMED | f.FACE_ALIGN_HALF | f.MODE_BGR, 64],
[f.TRANSFORMED | f.FACE_ALIGN_FULL | f.MODE_BGR, 256],
[f.SOURCE | f.FACE_ALIGN_HALF | f.MODE_BGR, 64],
[f.SOURCE | f.FACE_ALIGN_HALF | f.MODE_BGR, 256] ] ),
SampleGeneratorFace(self.training_data_dst_path, debug=self.is_debug(), batch_size=self.batch_size, output_sample_types=[
[f.WARPED_TRANSFORMED | f.FACE_ALIGN_HALF | f.MODE_BGR, 64],
[f.TRANSFORMED | f.FACE_ALIGN_HALF | f.MODE_BGR, 64],
[f.SOURCE | f.FACE_ALIGN_HALF | f.MODE_BGR, 64],
[f.SOURCE | f.FACE_ALIGN_HALF | f.MODE_BGR, 256] ] )
])
#override
def onSave(self):
self.save_weights_safe( [[self.encoder64, self.get_strpath_storage_for_file(self.encoder64H5)],
[self.decoder64_src, self.get_strpath_storage_for_file(self.decoder64_srcH5)],
[self.decoder64_dst, self.get_strpath_storage_for_file(self.decoder64_dstH5)],
[self.encoder256, self.get_strpath_storage_for_file(self.encoder256H5)],
[self.decoder256, self.get_strpath_storage_for_file(self.decoder256H5)],
] )
#override
def onTrainOneEpoch(self, sample):
warped_src64, target_src64, target_src256, target_src_source64, target_src_source256 = sample[0]
warped_dst64, target_dst64, target_dst_source64, target_dst_source256 = sample[1]
loss64, loss_src64, loss_dst64 = self.ae64.train_on_batch ([warped_src64, warped_dst64], [target_src64, target_dst64])
loss256 = self.ae256.train_on_batch ([warped_src64], [target_src256])
return ( ('loss64', loss64 ), ('loss256', loss256), )
#override
def onGetPreview(self, sample):
sample_src64_source = sample[0][3][0:4]
sample_src256_source = sample[0][4][0:4]
sample_dst64_source = sample[1][2][0:4]
sample_dst256_source = sample[1][3][0:4]
SRC64, = self.A64_view ([sample_src64_source])
DST64, = self.B64_view ([sample_dst64_source])
SRCDST64, = self.A64_view ([sample_dst64_source])
DSTSRC64, = self.B64_view ([sample_src64_source])
SRC_x1_256, = self.A256_view ([sample_src64_source])
DST_x2_256, = self.BA256_view ([sample_dst64_source])
b1 = np.concatenate ( (
np.concatenate ( (sample_src64_source[0], SRC64[0], sample_src64_source[1], SRC64[1], ), axis=1),
np.concatenate ( (sample_src64_source[1], SRC64[1], sample_src64_source[3], SRC64[3], ), axis=1),
np.concatenate ( (sample_dst64_source[0], DST64[0], sample_dst64_source[1], DST64[1], ), axis=1),
np.concatenate ( (sample_dst64_source[2], DST64[2], sample_dst64_source[3], DST64[3], ), axis=1),
), axis=0 )
b2 = np.concatenate ( (
np.concatenate ( (sample_src64_source[0], DSTSRC64[0], sample_src64_source[1], DSTSRC64[1], ), axis=1),
np.concatenate ( (sample_src64_source[2], DSTSRC64[2], sample_src64_source[3], DSTSRC64[3], ), axis=1),
np.concatenate ( (sample_dst64_source[0], SRCDST64[0], sample_dst64_source[1], SRCDST64[1], ), axis=1),
np.concatenate ( (sample_dst64_source[2], SRCDST64[2], sample_dst64_source[3], SRCDST64[3], ), axis=1),
), axis=0 )
result = np.concatenate ( ( np.concatenate ( (b1, sample_src256_source[0], SRC_x1_256[0] ), axis=1 ),
np.concatenate ( (b2, sample_dst256_source[0], DST_x2_256[0] ), axis=1 ),
), axis = 0 )
return [ ('AVATAR', result ) ]
def predictor_func (self, img):
x, = self.BA256_view ([ np.expand_dims(img, 0) ])[0]
return x
#override
def get_converter(self, **in_options):
return ConverterAvatar(self.predictor_func, predictor_input_size=64, output_size=256, **in_options)
def Build(self):
exec(nnlib.code_import_all, locals(), globals())
img_shape64 = (64,64,3)
img_shape256 = (256,256,3)
def upscale (dim):
def func(x):
return PixelShuffler()(LeakyReLU(0.1)(Conv2D(dim * 4, 3, strides=1, padding='same')(x)))
return func
def Encoder(_input):
x = _input
x = Conv2D(90, kernel_size=5, strides=1, padding='same')(x)
x = Conv2D(90, kernel_size=5, strides=1, padding='same')(x)
x = MaxPooling2D(pool_size=(3, 3), strides=2, padding='same')(x)
x = Conv2D(180, kernel_size=3, strides=1, padding='same')(x)
x = Conv2D(180, kernel_size=3, strides=1, padding='same')(x)
x = MaxPooling2D(pool_size=(3, 3), strides=2, padding='same')(x)
x = Conv2D(360, kernel_size=3, strides=1, padding='same')(x)
x = Conv2D(360, kernel_size=3, strides=1, padding='same')(x)
x = MaxPooling2D(pool_size=(3, 3), strides=2, padding='same')(x)
x = Dense (1024)(x)
x = LeakyReLU(0.1)(x)
x = Dropout(0.5)(x)
x = Dense (1024)(x)
x = LeakyReLU(0.1)(x)
x = Dropout(0.5)(x)
x = Flatten()(x)
x = Dense (64)(x)
return keras.models.Model (_input, x)
encoder256 = Encoder( Input (img_shape64) )
encoder64 = Encoder( Input (img_shape64) )
def decoder256(encoder):
decoder_input = Input ( K.int_shape(encoder.outputs[0])[1:] )
x = decoder_input
x = Dense(16 * 16 * 720)(x)
x = Reshape ( (16, 16, 720) )(x)
x = upscale(720)(x)
x = upscale(360)(x)
x = upscale(180)(x)
x = upscale(90)(x)
x = Conv2D(3, kernel_size=5, padding='same', activation='sigmoid')(x)
return keras.models.Model(decoder_input, x)
def decoder64(encoder):
decoder_input = Input ( K.int_shape(encoder.outputs[0])[1:] )
x = decoder_input
x = Dense(8 * 8 * 720)(x)
x = Reshape ( (8, 8, 720) )(x)
x = upscale(360)(x)
x = upscale(180)(x)
x = upscale(90)(x)
x = Conv2D(3, kernel_size=5, padding='same', activation='sigmoid')(x)
return Model(decoder_input, x)
return img_shape64, img_shape256, encoder64, decoder64(encoder64), decoder64(encoder64), encoder256, decoder256(encoder256)
from models import ConverterBase
from facelib import FaceType
from facelib import LandmarksProcessor
class ConverterAvatar(ConverterBase):
#override
def __init__(self, predictor,
predictor_input_size=0,
output_size=0,
**in_options):
super().__init__(predictor)
self.predictor_input_size = predictor_input_size
self.output_size = output_size
#override
def get_mode(self):
return ConverterBase.MODE_IMAGE_WITH_LANDMARKS
#override
def dummy_predict(self):
self.predictor ( np.zeros ( (self.predictor_input_size, self.predictor_input_size,3), dtype=np.float32) )
#override
def convert_image (self, img_bgr, img_face_landmarks, debug):
img_size = img_bgr.shape[1], img_bgr.shape[0]
face_mat = LandmarksProcessor.get_transform_mat (img_face_landmarks, self.predictor_input_size, face_type=FaceType.HALF )
predictor_input_bgr = cv2.warpAffine( img_bgr, face_mat, (self.predictor_input_size, self.predictor_input_size), flags=cv2.INTER_LANCZOS4 )
predicted_bgr = self.predictor ( predictor_input_bgr )
output = cv2.resize ( predicted_bgr, (self.output_size, self.output_size), cv2.INTER_LANCZOS4 )
if debug:
return (img_bgr,output,)
return output

View file

@ -38,7 +38,8 @@ class Model(ModelBase):
if self.is_training_mode:
f = SampleProcessor.TypeFlags
self.set_training_data_generators ([
SampleGeneratorFace(self.training_data_src_path, debug=self.is_debug(), batch_size=self.batch_size,
SampleGeneratorFace(self.training_data_src_path, sort_by_yaw_target_samples_path=self.training_data_dst_path if self.sort_by_yaw else None,
debug=self.is_debug(), batch_size=self.batch_size,
output_sample_types=[ [f.WARPED_TRANSFORMED | f.FACE_ALIGN_FULL | f.MODE_BGR, 128],
[f.TRANSFORMED | f.FACE_ALIGN_FULL | f.MODE_BGR, 128],
[f.TRANSFORMED | f.FACE_ALIGN_FULL | f.MODE_M | f.FACE_MASK_FULL, 128] ] ),
@ -107,16 +108,14 @@ class Model(ModelBase):
#override
def get_converter(self, **in_options):
from models import ConverterMasked
if 'erode_mask_modifier' not in in_options.keys():
in_options['erode_mask_modifier'] = 0
in_options['erode_mask_modifier'] += 30
if 'blur_mask_modifier' not in in_options.keys():
in_options['blur_mask_modifier'] = 0
return ConverterMasked(self.predictor_func, predictor_input_size=128, output_size=128, face_type=FaceType.FULL, clip_border_mask_per=0.046875, **in_options)
from models import ConverterMasked
return ConverterMasked(self.predictor_func,
predictor_input_size=128,
output_size=128,
face_type=FaceType.FULL,
base_erode_mask_modifier=30,
base_blur_mask_modifier=100,
**in_options)
def Build(self, input_layer):
exec(nnlib.code_import_all, locals(), globals())

View file

@ -44,7 +44,8 @@ class Model(ModelBase):
if self.is_training_mode:
f = SampleProcessor.TypeFlags
self.set_training_data_generators ([
SampleGeneratorFace(self.training_data_src_path, debug=self.is_debug(), batch_size=self.batch_size,
SampleGeneratorFace(self.training_data_src_path, sort_by_yaw_target_samples_path=self.training_data_dst_path if self.sort_by_yaw else None,
debug=self.is_debug(), batch_size=self.batch_size,
output_sample_types=[ [f.WARPED_TRANSFORMED | f.FACE_ALIGN_HALF | f.MODE_BGR, 128],
[f.TRANSFORMED | f.FACE_ALIGN_HALF | f.MODE_BGR, 128],
[f.TRANSFORMED | f.FACE_ALIGN_HALF | f.MODE_M | f.FACE_MASK_FULL, 128] ] ),
@ -112,16 +113,13 @@ class Model(ModelBase):
#override
def get_converter(self, **in_options):
from models import ConverterMasked
if 'erode_mask_modifier' not in in_options.keys():
in_options['erode_mask_modifier'] = 0
in_options['erode_mask_modifier'] += 100
if 'blur_mask_modifier' not in in_options.keys():
in_options['blur_mask_modifier'] = 0
in_options['blur_mask_modifier'] += 100
return ConverterMasked(self.predictor_func, predictor_input_size=128, output_size=128, face_type=FaceType.HALF, **in_options)
return ConverterMasked(self.predictor_func,
predictor_input_size=128,
output_size=128,
face_type=FaceType.HALF,
base_erode_mask_modifier=100,
base_blur_mask_modifier=100,
**in_options)
def Build(self, created_vram_gb):
exec(nnlib.code_import_all, locals(), globals())

View file

@ -4,6 +4,7 @@ from nnlib import nnlib
from models import ModelBase
from facelib import FaceType
from samples import *
from utils.console_utils import *
class Model(ModelBase):
@ -44,7 +45,8 @@ class Model(ModelBase):
if self.is_training_mode:
f = SampleProcessor.TypeFlags
self.set_training_data_generators ([
SampleGeneratorFace(self.training_data_src_path, debug=self.is_debug(), batch_size=self.batch_size,
SampleGeneratorFace(self.training_data_src_path, sort_by_yaw_target_samples_path=self.training_data_dst_path if self.sort_by_yaw else None,
debug=self.is_debug(), batch_size=self.batch_size,
output_sample_types=[ [f.WARPED_TRANSFORMED | f.FACE_ALIGN_HALF | f.MODE_BGR, 64],
[f.TRANSFORMED | f.FACE_ALIGN_HALF | f.MODE_BGR, 64],
[f.TRANSFORMED | f.FACE_ALIGN_HALF | f.MODE_M | f.FACE_MASK_FULL, 64] ] ),
@ -66,7 +68,6 @@ class Model(ModelBase):
warped_src, target_src, target_src_full_mask = sample[0]
warped_dst, target_dst, target_dst_full_mask = sample[1]
total, loss_src_bgr, loss_src_mask, loss_dst_bgr, loss_dst_mask = self.ae.train_on_batch( [warped_src, target_src_full_mask, warped_dst, target_dst_full_mask], [target_src, target_src_full_mask, target_dst, target_dst_full_mask] )
return ( ('loss_src', loss_src_bgr), ('loss_dst', loss_dst_bgr) )
@ -114,16 +115,13 @@ class Model(ModelBase):
#override
def get_converter(self, **in_options):
from models import ConverterMasked
if 'erode_mask_modifier' not in in_options.keys():
in_options['erode_mask_modifier'] = 0
in_options['erode_mask_modifier'] += 100
if 'blur_mask_modifier' not in in_options.keys():
in_options['blur_mask_modifier'] = 0
in_options['blur_mask_modifier'] += 100
return ConverterMasked(self.predictor_func, predictor_input_size=64, output_size=64, face_type=FaceType.HALF, **in_options)
return ConverterMasked(self.predictor_func,
predictor_input_size=64,
output_size=64,
face_type=FaceType.HALF,
base_erode_mask_modifier=100,
base_blur_mask_modifier=100,
**in_options)
def Build(self, created_vram_gb):
exec(nnlib.code_import_all, locals(), globals())

View file

@ -42,8 +42,11 @@ class Model(ModelBase):
if self.is_training_mode:
f = SampleProcessor.TypeFlags
self.set_training_data_generators ([
SampleGeneratorFace(self.training_data_src_path, debug=self.is_debug(), batch_size=self.batch_size,
self.set_training_data_generators ([
SampleGeneratorFace(self.training_data_src_path, sort_by_yaw_target_samples_path=self.training_data_dst_path if self.sort_by_yaw else None,
debug=self.is_debug(), batch_size=self.batch_size,
output_sample_types=[ [f.WARPED_TRANSFORMED | f.FACE_ALIGN_FULL | f.MODE_BGR, 128],
[f.TRANSFORMED | f.FACE_ALIGN_FULL | f.MODE_BGR, 128],
[f.TRANSFORMED | f.FACE_ALIGN_FULL | f.MODE_M | f.FACE_MASK_FULL, 128] ] ),
@ -115,15 +118,13 @@ class Model(ModelBase):
#override
def get_converter(self, **in_options):
from models import ConverterMasked
if 'erode_mask_modifier' not in in_options.keys():
in_options['erode_mask_modifier'] = 0
in_options['erode_mask_modifier'] += 30
if 'blur_mask_modifier' not in in_options.keys():
in_options['blur_mask_modifier'] = 0
return ConverterMasked(self.predictor_func, predictor_input_size=128, output_size=128, face_type=FaceType.FULL, clip_border_mask_per=0.046875, **in_options)
return ConverterMasked(self.predictor_func,
predictor_input_size=128,
output_size=128,
face_type=FaceType.FULL,
base_erode_mask_modifier=30,
base_blur_mask_modifier=0,
**in_options)
def Build(self, input_layer):
exec(nnlib.code_import_all, locals(), globals())

View file

@ -1,175 +0,0 @@
import numpy as np
from nnlib import nnlib
from models import ModelBase
from facelib import FaceType
from samples import *
class Model(ModelBase):
encoderH5 = 'encoder.h5'
decoderH5 = 'decoder.h5'
inter_BH5 = 'inter_B.h5'
inter_ABH5 = 'inter_AB.h5'
#override
def onInitialize(self, **in_options):
exec(nnlib.import_all(), locals(), globals())
self.set_vram_batch_requirements( {4.5:4,5:4,6:8,7:12,8:16,9:20,10:24,11:24,12:32,13:48} )
ae_input_layer = Input(shape=(128, 128, 3))
mask_layer = Input(shape=(128, 128, 1)) #same as output
self.encoder, self.decoder, self.inter_B, self.inter_AB = self.Build(ae_input_layer)
if not self.is_first_run():
self.encoder.load_weights (self.get_strpath_storage_for_file(self.encoderH5))
self.decoder.load_weights (self.get_strpath_storage_for_file(self.decoderH5))
self.inter_B.load_weights (self.get_strpath_storage_for_file(self.inter_BH5))
self.inter_AB.load_weights (self.get_strpath_storage_for_file(self.inter_ABH5))
code = self.encoder(ae_input_layer)
AB = self.inter_AB(code)
B = self.inter_B(code)
self.autoencoder_src = Model([ae_input_layer,mask_layer], self.decoder(Concatenate()([AB, AB])) )
self.autoencoder_dst = Model([ae_input_layer,mask_layer], self.decoder(Concatenate()([B, AB])) )
if self.is_training_mode:
self.autoencoder_src, self.autoencoder_dst = self.to_multi_gpu_model_if_possible ( [self.autoencoder_src, self.autoencoder_dst] )
self.autoencoder_src.compile(optimizer=Adam(lr=5e-5, beta_1=0.5, beta_2=0.999), loss=[DSSIMMaskLoss([mask_layer]), 'mse'] )
self.autoencoder_dst.compile(optimizer=Adam(lr=5e-5, beta_1=0.5, beta_2=0.999), loss=[DSSIMMaskLoss([mask_layer]), 'mse'] )
if self.is_training_mode:
f = SampleProcessor.TypeFlags
self.set_training_data_generators ([
SampleGeneratorFace(self.training_data_src_path, sort_by_yaw_target_samples_path=self.training_data_dst_path, debug=self.is_debug(), batch_size=self.batch_size,
output_sample_types=[ [f.WARPED_TRANSFORMED | f.FACE_ALIGN_FULL | f.MODE_BGR, 128],
[f.TRANSFORMED | f.FACE_ALIGN_FULL | f.MODE_BGR, 128],
[f.TRANSFORMED | f.FACE_ALIGN_FULL | f.MODE_M | f.FACE_MASK_FULL, 128] ] ),
SampleGeneratorFace(self.training_data_dst_path, debug=self.is_debug(), batch_size=self.batch_size,
output_sample_types=[ [f.WARPED_TRANSFORMED | f.FACE_ALIGN_FULL | f.MODE_BGR, 128],
[f.TRANSFORMED | f.FACE_ALIGN_FULL | f.MODE_BGR, 128],
[f.TRANSFORMED | f.FACE_ALIGN_FULL | f.MODE_M | f.FACE_MASK_FULL, 128] ] )
])
#override
def onSave(self):
self.save_weights_safe( [[self.encoder, self.get_strpath_storage_for_file(self.encoderH5)],
[self.decoder, self.get_strpath_storage_for_file(self.decoderH5)],
[self.inter_B, self.get_strpath_storage_for_file(self.inter_BH5)],
[self.inter_AB, self.get_strpath_storage_for_file(self.inter_ABH5)]] )
#override
def onTrainOneEpoch(self, sample):
warped_src, target_src, target_src_mask = sample[0]
warped_dst, target_dst, target_dst_mask = sample[1]
loss_src = self.autoencoder_src.train_on_batch( [warped_src, target_src_mask], [target_src, target_src_mask] )
loss_dst = self.autoencoder_dst.train_on_batch( [warped_dst, target_dst_mask], [target_dst, target_dst_mask] )
return ( ('loss_src', loss_src[0]), ('loss_dst', loss_dst[0]) )
#override
def onGetPreview(self, sample):
test_A = sample[0][1][0:4] #first 4 samples
test_A_m = sample[0][2][0:4] #first 4 samples
test_B = sample[1][1][0:4]
test_B_m = sample[1][2][0:4]
AA, mAA = self.autoencoder_src.predict([test_A, test_A_m])
AB, mAB = self.autoencoder_src.predict([test_B, test_B_m])
BB, mBB = self.autoencoder_dst.predict([test_B, test_B_m])
mAA = np.repeat ( mAA, (3,), -1)
mAB = np.repeat ( mAB, (3,), -1)
mBB = np.repeat ( mBB, (3,), -1)
st = []
for i in range(0, len(test_A)):
st.append ( np.concatenate ( (
test_A[i,:,:,0:3],
AA[i],
#mAA[i],
test_B[i,:,:,0:3],
BB[i],
#mBB[i],
AB[i],
#mAB[i]
), axis=1) )
return [ ('LIAEF128YAW', np.concatenate ( st, axis=0 ) ) ]
def predictor_func (self, face):
face_128_bgr = face[...,0:3]
face_128_mask = np.expand_dims(face[...,3],-1)
x, mx = self.autoencoder_src.predict ( [ np.expand_dims(face_128_bgr,0), np.expand_dims(face_128_mask,0) ] )
x, mx = x[0], mx[0]
return np.concatenate ( (x,mx), -1 )
#override
def get_converter(self, **in_options):
from models import ConverterMasked
if 'erode_mask_modifier' not in in_options.keys():
in_options['erode_mask_modifier'] = 0
in_options['erode_mask_modifier'] += 30
if 'blur_mask_modifier' not in in_options.keys():
in_options['blur_mask_modifier'] = 0
return ConverterMasked(self.predictor_func, predictor_input_size=128, output_size=128, face_type=FaceType.FULL, clip_border_mask_per=0.046875, **in_options)
def Build(self, input_layer):
exec(nnlib.code_import_all, locals(), globals())
def downscale (dim):
def func(x):
return LeakyReLU(0.1)(Conv2D(dim, 5, strides=2, padding='same')(x))
return func
def upscale (dim):
def func(x):
return PixelShuffler()(LeakyReLU(0.1)(Conv2D(dim * 4, 3, strides=1, padding='same')(x)))
return func
def Encoder():
x = input_layer
x = downscale(128)(x)
x = downscale(256)(x)
x = downscale(512)(x)
x = downscale(1024)(x)
x = Flatten()(x)
return Model(input_layer, x)
def Intermediate():
input_layer = Input(shape=(None, 8 * 8 * 1024))
x = input_layer
x = Dense(256)(x)
x = Dense(8 * 8 * 512)(x)
x = Reshape((8, 8, 512))(x)
x = upscale(512)(x)
return Model(input_layer, x)
def Decoder():
input_ = Input(shape=(16, 16, 1024))
x = input_
x = upscale(512)(x)
x = upscale(256)(x)
x = upscale(128)(x)
x = Conv2D(3, kernel_size=5, padding='same', activation='sigmoid')(x)
y = input_ #mask decoder
y = upscale(512)(y)
y = upscale(256)(y)
y = upscale(128)(y)
y = Conv2D(1, kernel_size=5, padding='same', activation='sigmoid' )(y)
return Model(input_, [x,y])
return Encoder(), Decoder(), Intermediate(), Intermediate()

View file

@ -1 +0,0 @@
from .Model import Model

View file

@ -1,225 +0,0 @@
import numpy as np
from nnlib import nnlib
from models import ModelBase
from facelib import FaceType
from samples import *
class Model(ModelBase):
encoderH5 = 'encoder.h5'
decoderMaskH5 = 'decoderMask.h5'
decoderCommonAH5 = 'decoderCommonA.h5'
decoderCommonBH5 = 'decoderCommonB.h5'
decoderRGBH5 = 'decoderRGB.h5'
decoderBWH5 = 'decoderBW.h5'
inter_BH5 = 'inter_B.h5'
inter_AH5 = 'inter_A.h5'
#override
def onInitialize(self, **in_options):
exec(nnlib.import_all(), locals(), globals())
self.set_vram_batch_requirements( {4.5:4,5:4,6:8,7:12,8:16,9:20,10:24,11:24,12:32,13:48} )
ae_input_layer = Input(shape=(128, 128, 3))
mask_layer = Input(shape=(128, 128, 1)) #same as output
self.encoder, self.decoderMask, self.decoderCommonA, self.decoderCommonB, self.decoderRGB, \
self.decoderBW, self.inter_A, self.inter_B = self.Build(ae_input_layer)
if not self.is_first_run():
self.encoder.load_weights (self.get_strpath_storage_for_file(self.encoderH5))
self.decoderMask.load_weights (self.get_strpath_storage_for_file(self.decoderMaskH5))
self.decoderCommonA.load_weights (self.get_strpath_storage_for_file(self.decoderCommonAH5))
self.decoderCommonB.load_weights (self.get_strpath_storage_for_file(self.decoderCommonBH5))
self.decoderRGB.load_weights (self.get_strpath_storage_for_file(self.decoderRGBH5))
self.decoderBW.load_weights (self.get_strpath_storage_for_file(self.decoderBWH5))
self.inter_A.load_weights (self.get_strpath_storage_for_file(self.inter_AH5))
self.inter_B.load_weights (self.get_strpath_storage_for_file(self.inter_BH5))
code = self.encoder(ae_input_layer)
A = self.inter_A(code)
B = self.inter_B(code)
inter_A_A = Concatenate()([A, A])
inter_B_A = Concatenate()([B, A])
x1,m1 = self.decoderCommonA (inter_A_A)
x2,m2 = self.decoderCommonA (inter_A_A)
self.autoencoder_src = Model([ae_input_layer,mask_layer],
[ self.decoderBW (Concatenate()([x1,x2]) ),
self.decoderMask(Concatenate()([m1,m2]) )
])
x1,m1 = self.decoderCommonA (inter_A_A)
x2,m2 = self.decoderCommonB (inter_A_A)
self.autoencoder_src_RGB = Model([ae_input_layer,mask_layer],
[ self.decoderRGB (Concatenate()([x1,x2]) ),
self.decoderMask (Concatenate()([m1,m2]) )
])
x1,m1 = self.decoderCommonA (inter_B_A)
x2,m2 = self.decoderCommonB (inter_B_A)
self.autoencoder_dst = Model([ae_input_layer,mask_layer],
[ self.decoderRGB (Concatenate()([x1,x2]) ),
self.decoderMask (Concatenate()([m1,m2]) )
])
if self.is_training_mode:
self.autoencoder_src, self.autoencoder_dst = self.to_multi_gpu_model_if_possible ( [self.autoencoder_src, self.autoencoder_dst] )
self.autoencoder_src.compile(optimizer=Adam(lr=5e-5, beta_1=0.5, beta_2=0.999), loss=[DSSIMMaskLoss([mask_layer]), 'mse'] )
self.autoencoder_dst.compile(optimizer=Adam(lr=5e-5, beta_1=0.5, beta_2=0.999), loss=[DSSIMMaskLoss([mask_layer]), 'mse'] )
if self.is_training_mode:
f = SampleProcessor.TypeFlags
self.set_training_data_generators ([
SampleGeneratorFace(self.training_data_src_path, debug=self.is_debug(), batch_size=self.batch_size,
output_sample_types=[ [f.WARPED_TRANSFORMED | f.FACE_ALIGN_FULL | f.MODE_GGG, 128],
[f.TRANSFORMED | f.FACE_ALIGN_FULL | f.MODE_G , 128],
[f.TRANSFORMED | f.FACE_ALIGN_FULL | f.MODE_M | f.FACE_MASK_FULL, 128],
[f.TRANSFORMED | f.FACE_ALIGN_FULL | f.MODE_GGG, 128] ] ),
SampleGeneratorFace(self.training_data_dst_path, debug=self.is_debug(), batch_size=self.batch_size,
output_sample_types=[ [f.WARPED_TRANSFORMED | f.FACE_ALIGN_FULL | f.MODE_BGR, 128],
[f.TRANSFORMED | f.FACE_ALIGN_FULL | f.MODE_BGR, 128],
[f.TRANSFORMED | f.FACE_ALIGN_FULL | f.MODE_M | f.FACE_MASK_FULL, 128]] )
])
#override
def onSave(self):
self.save_weights_safe( [[self.encoder, self.get_strpath_storage_for_file(self.encoderH5)],
[self.decoderMask, self.get_strpath_storage_for_file(self.decoderMaskH5)],
[self.decoderCommonA, self.get_strpath_storage_for_file(self.decoderCommonAH5)],
[self.decoderCommonB, self.get_strpath_storage_for_file(self.decoderCommonBH5)],
[self.decoderRGB, self.get_strpath_storage_for_file(self.decoderRGBH5)],
[self.decoderBW, self.get_strpath_storage_for_file(self.decoderBWH5)],
[self.inter_A, self.get_strpath_storage_for_file(self.inter_AH5)],
[self.inter_B, self.get_strpath_storage_for_file(self.inter_BH5)]] )
#override
def onTrainOneEpoch(self, sample):
warped_src, target_src, target_src_mask, target_src_GGG = sample[0]
warped_dst, target_dst, target_dst_mask = sample[1]
loss_src = self.autoencoder_src.train_on_batch( [ warped_src, target_src_mask], [ target_src, target_src_mask] )
loss_dst = self.autoencoder_dst.train_on_batch( [ warped_dst, target_dst_mask], [ target_dst, target_dst_mask] )
return ( ('loss_src', loss_src[0]), ('loss_dst', loss_dst[0]) )
#override
def onGetPreview(self, sample):
test_A = sample[0][3][0:4] #first 4 samples
test_A_m = sample[0][2][0:4] #first 4 samples
test_B = sample[1][1][0:4]
test_B_m = sample[1][2][0:4]
AA, mAA = self.autoencoder_src.predict([test_A, test_A_m])
AB, mAB = self.autoencoder_src_RGB.predict([test_B, test_B_m])
BB, mBB = self.autoencoder_dst.predict([test_B, test_B_m])
mAA = np.repeat ( mAA, (3,), -1)
mAB = np.repeat ( mAB, (3,), -1)
mBB = np.repeat ( mBB, (3,), -1)
st = []
for i in range(0, len(test_A)):
st.append ( np.concatenate ( (
np.repeat (np.expand_dims (test_A[i,:,:,0],-1), (3,), -1) ,
np.repeat (AA[i], (3,), -1),
#mAA[i],
test_B[i,:,:,0:3],
BB[i],
#mBB[i],
AB[i],
#mAB[i]
), axis=1) )
return [ ('MIAEF128', np.concatenate ( st, axis=0 ) ) ]
def predictor_func (self, face):
face_128_bgr = face[...,0:3]
face_128_mask = np.expand_dims(face[...,-1],-1)
x, mx = self.autoencoder_src_RGB.predict ( [ np.expand_dims(face_128_bgr,0), np.expand_dims(face_128_mask,0) ] )
x, mx = x[0], mx[0]
return np.concatenate ( (x,mx), -1 )
#override
def get_converter(self, **in_options):
from models import ConverterMasked
if 'erode_mask_modifier' not in in_options.keys():
in_options['erode_mask_modifier'] = 0
in_options['erode_mask_modifier'] += 30
if 'blur_mask_modifier' not in in_options.keys():
in_options['blur_mask_modifier'] = 0
return ConverterMasked(self.predictor_func, predictor_input_size=128, output_size=128, face_type=FaceType.FULL, clip_border_mask_per=0.046875, **in_options)
def Build(self, input_layer):
exec(nnlib.code_import_all, locals(), globals())
def downscale (dim):
def func(x):
return LeakyReLU(0.1)(Conv2D(dim, 5, strides=2, padding='same')(x))
return func
def upscale (dim):
def func(x):
return PixelShuffler()(LeakyReLU(0.1)(Conv2D(dim * 4, 3, strides=1, padding='same')(x)))
return func
def Encoder():
x = input_layer
x = downscale(128)(x)
x = downscale(256)(x)
x = downscale(512)(x)
x = downscale(1024)(x)
x = Flatten()(x)
return Model(input_layer, x)
def Intermediate():
input_layer = Input(shape=(None, 8 * 8 * 1024))
x = input_layer
x = Dense(256)(x)
x = Dense(8 * 8 * 512)(x)
x = Reshape((8, 8, 512))(x)
x = upscale(512)(x)
return Model(input_layer, x)
def DecoderCommon():
input_ = Input(shape=(16, 16, 1024))
x = input_
x = upscale(512)(x)
x = upscale(256)(x)
x = upscale(128)(x)
y = input_
y = upscale(256)(y)
y = upscale(128)(y)
y = upscale(64)(y)
return Model(input_, [x,y])
def DecoderRGB():
input_ = Input(shape=(128, 128, 256))
x = input_
x = Conv2D(3, kernel_size=5, padding='same', activation='sigmoid')(x)
return Model(input_, [x])
def DecoderBW():
input_ = Input(shape=(128, 128, 256))
x = input_
x = Conv2D(1, kernel_size=5, padding='same', activation='sigmoid')(x)
return Model(input_, [x])
def DecoderMask():
input_ = Input(shape=(128, 128, 128))
y = input_
y = Conv2D(1, kernel_size=5, padding='same', activation='sigmoid')(y)
return Model(input_, [y])
return Encoder(), DecoderMask(), DecoderCommon(), DecoderCommon(), DecoderRGB(), DecoderBW(), Intermediate(), Intermediate()

View file

@ -1 +0,0 @@
from .Model import Model

View file

@ -25,7 +25,7 @@ class Model(ModelBase):
if self.epoch == 0:
#first run
print ("\nModel first run. Enter options.")
try:
created_resolution = int ( input ("Resolution (default:64, valid: 64,128,256) : ") )
@ -68,9 +68,9 @@ class Model(ModelBase):
self.set_batch_size(created_batch_size)
use_batch_norm = created_batch_size > 1
self.GA = modelify(ResNet (bgr_shape[2], use_batch_norm, n_blocks=6, ngf=ngf, use_dropout=False))(Input(bgr_shape))
self.GB = modelify(ResNet (bgr_shape[2], use_batch_norm, n_blocks=6, ngf=ngf, use_dropout=False))(Input(bgr_shape))
use_batch_norm = False #created_batch_size > 1
self.GA = modelify(ResNet (bgr_shape[2], use_batch_norm, n_blocks=6, ngf=ngf, use_dropout=True))(Input(bgr_shape))
self.GB = modelify(ResNet (bgr_shape[2], use_batch_norm, n_blocks=6, ngf=ngf, use_dropout=True))(Input(bgr_shape))
#self.GA = modelify(UNet (bgr_shape[2], use_batch_norm, num_downs=get_power_of_two(resolution)-1, ngf=ngf, use_dropout=True))(Input(bgr_shape))
#self.GB = modelify(UNet (bgr_shape[2], use_batch_norm, num_downs=get_power_of_two(resolution)-1, ngf=ngf, use_dropout=True))(Input(bgr_shape))
@ -211,7 +211,7 @@ class Model(ModelBase):
loss_G, = self.G_train ( feed )
loss_DA, = self.DA_train( feed )
loss_DB, = self.DB_train( feed )
#return ( ('G', loss_G), )
return ( ('G', loss_G), ('DA', loss_DA), ('DB', loss_DB) )
#override
@ -242,7 +242,9 @@ class Model(ModelBase):
#override
def get_converter(self, **in_options):
from models import ConverterImage
return ConverterImage(self.predictor_func, predictor_input_size=self.options['created_resolution'], output_size=self.options['created_resolution'], **in_options)
from models import ConverterImage
return ConverterImage(self.predictor_func,
predictor_input_size=self.options['created_resolution'],
output_size=self.options['created_resolution'],
**in_options)

298
models/Model_UFM/Model.py Normal file
View file

@ -0,0 +1,298 @@
import numpy as np
from nnlib import nnlib
from models import ModelBase
from facelib import FaceType
from samples import *
from utils.console_utils import *
#U-net Face Morpher
class UFMModel(ModelBase):
encoderH5 = 'encoder.h5'
decoder_srcH5 = 'decoder_src.h5'
decoder_dstH5 = 'decoder_dst.h5'
decoder_srcmH5 = 'decoder_srcm.h5'
decoder_dstmH5 = 'decoder_dstm.h5'
#override
def onInitializeOptions(self, is_first_run, ask_for_session_options):
default_resolution = 128
default_filters = 64
default_match_style = True
default_face_type = 'f'
if is_first_run:
#first run
self.options['resolution'] = input_int("Resolution (valid: 64,128,256, skip:128) : ", default_resolution, [64,128,256])
self.options['filters'] = np.clip ( input_int("Number of U-net filters (valid: 32-128, skip:64) : ", default_filters), 32, 128 )
self.options['match_style'] = input_bool ("Match style? (y/n skip:y) : ", default_match_style)
self.options['face_type'] = input_str ("Half or Full face? (h/f, skip:f) : ", default_face_type, ['h','f'])
else:
#not first run
self.options['resolution'] = self.options.get('resolution', default_resolution)
self.options['filters'] = self.options.get('filters', default_filters)
self.options['match_style'] = self.options.get('match_style', default_match_style)
self.options['face_type'] = self.options.get('face_type', default_face_type)
#override
def onInitialize(self, **in_options):
exec(nnlib.import_all(), locals(), globals())
self.set_vram_batch_requirements({2:1,3:2,4:6,5:8,6:16,7:24,8:32})
resolution = self.options['resolution']
bgr_shape = (resolution, resolution, 3)
mask_shape = (resolution, resolution, 1)
filters = self.options['filters']
if resolution == 64:
lowest_dense = 512
elif resolution == 128:
lowest_dense = 512
elif resolution == 256:
lowest_dense = 256
self.encoder = modelify(UFMModel.EncFlow (ngf=filters, lowest_dense=lowest_dense)) (Input(bgr_shape))
dec_Inputs = [ Input(K.int_shape(x)[1:]) for x in self.encoder.outputs ]
self.decoder_src = modelify(UFMModel.DecFlow (bgr_shape[2], ngf=filters)) (dec_Inputs)
self.decoder_dst = modelify(UFMModel.DecFlow (bgr_shape[2], ngf=filters)) (dec_Inputs)
self.decoder_srcm = modelify(UFMModel.DecFlow (mask_shape[2], ngf=filters//2)) (dec_Inputs)
self.decoder_dstm = modelify(UFMModel.DecFlow (mask_shape[2], ngf=filters//2)) (dec_Inputs)
if not self.is_first_run():
self.encoder.load_weights (self.get_strpath_storage_for_file(self.encoderH5))
self.decoder_src.load_weights (self.get_strpath_storage_for_file(self.decoder_srcH5))
self.decoder_dst.load_weights (self.get_strpath_storage_for_file(self.decoder_dstH5))
self.decoder_srcm.load_weights (self.get_strpath_storage_for_file(self.decoder_srcmH5))
self.decoder_dstm.load_weights (self.get_strpath_storage_for_file(self.decoder_dstmH5))
warped_src = Input(bgr_shape)
target_src = Input(bgr_shape)
target_srcm = Input(mask_shape)
warped_src_code = self.encoder (warped_src)
pred_src_src = self.decoder_src(warped_src_code)
pred_src_srcm = self.decoder_srcm(warped_src_code)
warped_dst = Input(bgr_shape)
target_dst = Input(bgr_shape)
target_dstm = Input(mask_shape)
warped_dst_code = self.encoder (warped_dst)
pred_dst_dst = self.decoder_dst(warped_dst_code)
pred_dst_dstm = self.decoder_dstm(warped_dst_code)
pred_src_dst = self.decoder_src(warped_dst_code)
pred_src_dstm = self.decoder_srcm(warped_dst_code)
target_srcm_blurred = tf_gaussian_blur(4.0)(target_srcm)
target_srcm_sigm = target_srcm_blurred / 2.0 + 0.5
target_srcm_anti_sigm = 1.0 - target_srcm_sigm
target_dstm_blurred = tf_gaussian_blur(4.0)(target_dstm)
target_dstm_sigm = target_dstm_blurred / 2.0 + 0.5
target_dstm_anti_sigm = 1.0 - target_dstm_sigm
target_src_sigm = target_src+1
target_dst_sigm = target_dst+1
pred_src_src_sigm = pred_src_src+1
pred_dst_dst_sigm = pred_dst_dst+1
pred_src_dst_sigm = pred_src_dst+1
target_src_masked = target_src_sigm*target_srcm_sigm
target_dst_masked = target_dst_sigm * target_dstm_sigm
target_dst_anti_masked = target_dst_sigm * target_dstm_anti_sigm
pred_src_src_masked = pred_src_src_sigm * target_srcm_sigm
pred_dst_dst_masked = pred_dst_dst_sigm * target_dstm_sigm
pred_src_dst_target_dst_masked = pred_src_dst_sigm * target_dstm_sigm
pred_src_dst_target_dst_anti_masked = pred_src_dst_sigm * target_dstm_anti_sigm
src_loss = K.mean( 100*K.square(tf_dssim(2.0)( target_src_masked, pred_src_src_masked )) )
if self.options['match_style']:
src_loss += tf_style_loss(gaussian_blur_radius=resolution // 8, loss_weight=0.015)(pred_src_dst_target_dst_masked, target_dst_masked)
src_loss += 0.05 * K.mean( tf_dssim(2.0)( pred_src_dst_target_dst_anti_masked, target_dst_anti_masked ))
self.src_train = K.function ([warped_src, target_src, target_srcm, warped_dst, target_dst, target_dstm ],[src_loss],
Adam(lr=5e-5, beta_1=0.5, beta_2=0.999).get_updates(src_loss, self.encoder.trainable_weights + self.decoder_src.trainable_weights) )
dst_loss = K.mean( 100*K.square(tf_dssim(2.0)( target_dst_masked, pred_dst_dst_masked )) )
self.dst_train = K.function ([warped_dst, target_dst, target_dstm],[dst_loss],
Adam(lr=5e-5, beta_1=0.5, beta_2=0.999).get_updates(dst_loss, self.encoder.trainable_weights + self.decoder_dst.trainable_weights) )
src_mask_loss = K.mean(K.square(target_srcm-pred_src_srcm))
self.src_mask_train = K.function ([warped_src, target_srcm],[src_mask_loss],
Adam(lr=5e-5, beta_1=0.5, beta_2=0.999).get_updates(src_mask_loss, self.encoder.trainable_weights + self.decoder_srcm.trainable_weights) )
dst_mask_loss = K.mean(K.square(target_dstm-pred_dst_dstm))
self.dst_mask_train = K.function ([warped_dst, target_dstm],[dst_mask_loss],
Adam(lr=5e-5, beta_1=0.5, beta_2=0.999).get_updates(dst_mask_loss, self.encoder.trainable_weights + self.decoder_dstm.trainable_weights) )
self.AE_view = K.function ([warped_src, warped_dst],[pred_src_src, pred_src_srcm, pred_dst_dst, pred_dst_dstm, pred_src_dst, pred_src_dstm])
self.AE_convert = K.function ([warped_dst],[pred_src_dst, pred_src_dstm])
if self.is_training_mode:
f = SampleProcessor.TypeFlags
face_type = f.FACE_ALIGN_FULL if self.options['face_type'] == 'f' else f.FACE_ALIGN_HALF
self.set_training_data_generators ([
SampleGeneratorFace(self.training_data_src_path, sort_by_yaw_target_samples_path=self.training_data_dst_path if self.sort_by_yaw else None,
debug=self.is_debug(), batch_size=self.batch_size,
sample_process_options=SampleProcessor.Options(normalize_tanh = True),
output_sample_types=[ [f.WARPED_TRANSFORMED | face_type | f.MODE_BGR, resolution],
[f.TRANSFORMED | face_type | f.MODE_BGR, resolution],
[f.TRANSFORMED | face_type | f.MODE_M | f.FACE_MASK_FULL, resolution] ] ),
SampleGeneratorFace(self.training_data_dst_path, debug=self.is_debug(), batch_size=self.batch_size,
sample_process_options=SampleProcessor.Options(normalize_tanh = True),
output_sample_types=[ [f.WARPED_TRANSFORMED | face_type | f.MODE_BGR, resolution],
[f.TRANSFORMED | face_type | f.MODE_BGR, resolution],
[f.TRANSFORMED | face_type | f.MODE_M | f.FACE_MASK_FULL, resolution] ] )
])
#override
def onSave(self):
self.save_weights_safe( [[self.encoder, self.get_strpath_storage_for_file(self.encoderH5)],
[self.decoder_src, self.get_strpath_storage_for_file(self.decoder_srcH5)],
[self.decoder_dst, self.get_strpath_storage_for_file(self.decoder_dstH5)],
[self.decoder_srcm, self.get_strpath_storage_for_file(self.decoder_srcmH5)],
[self.decoder_dstm, self.get_strpath_storage_for_file(self.decoder_dstmH5)]
] )
#override
def onTrainOneEpoch(self, sample):
warped_src, target_src, target_src_mask = sample[0]
warped_dst, target_dst, target_dst_mask = sample[1]
src_loss, = self.src_train ([warped_src, target_src, target_src_mask, warped_dst, target_dst, target_dst_mask])
dst_loss, = self.dst_train ([warped_dst, target_dst, target_dst_mask])
src_mask_loss, = self.src_mask_train ([warped_src, target_src_mask])
dst_mask_loss, = self.dst_mask_train ([warped_dst, target_dst_mask])
return ( ('src_loss', src_loss), ('dst_loss', dst_loss) )
#override
def onGetPreview(self, sample):
test_A = sample[0][1][0:4] #first 4 samples
test_A_m = sample[0][2][0:4] #first 4 samples
test_B = sample[1][1][0:4]
test_B_m = sample[1][2][0:4]
S = test_A
D = test_B
SS, SM, DD, DM, SD, SDM = self.AE_view ([test_A, test_B])
S, D, SS, SM, DD, DM, SD, SDM = [ x / 2 + 0.5 for x in [S, D, SS, SM, DD, DM, SD, SDM] ]
SM, DM, SDM = [ np.repeat (x, (3,), -1) for x in [SM, DM, SDM] ]
st = []
for i in range(0, len(test_A)):
st.append ( np.concatenate ( (
S[i], SS[i], #SM[i],
D[i], DD[i], #DM[i],
SD[i], #SDM[i]
), axis=1) )
return [ ('U-net Face Morpher', np.concatenate ( st, axis=0 ) ) ]
def predictor_func (self, face):
face = face * 2.0 - 1.0
face_128_bgr = face[...,0:3]
x, mx = [ (x[0] + 1.0) / 2.0 for x in self.AE_convert ( [ np.expand_dims(face_128_bgr,0) ] ) ]
if self.options['match_style']:
res = self.options['resolution']
s = int( res * 0.96875 )
mx = np.pad ( np.ones ( (s,s) ), (res-s) // 2 , mode='constant')
mx = np.expand_dims(mx, -1)
return np.concatenate ( (x,mx), -1 )
#override
def get_converter(self, **in_options):
from models import ConverterMasked
if self.options['match_style']:
base_erode_mask_modifier = 50
base_blur_mask_modifier = 50
else:
base_erode_mask_modifier = 30 if self.options['face_type'] == 'f' else 100
base_blur_mask_modifier = 0 if self.options['face_type'] == 'f' else 100
face_type = FaceType.FULL if self.options['face_type'] == 'f' else FaceType.HALF
return ConverterMasked(self.predictor_func,
predictor_input_size=self.options['resolution'],
output_size=self.options['resolution'],
face_type=face_type,
base_erode_mask_modifier=base_erode_mask_modifier,
base_blur_mask_modifier=base_blur_mask_modifier,
**in_options)
@staticmethod
def EncFlow(ngf=64, num_downs=4, lowest_dense=512):
exec (nnlib.import_all(), locals(), globals())
use_bias = True
def XNormalization(x):
return InstanceNormalization (axis=3, gamma_initializer=RandomNormal(1., 0.02))(x)
def Conv2D (filters, kernel_size, strides=(1, 1), padding='valid', data_format=None, dilation_rate=(1, 1), activation=None, use_bias=use_bias, kernel_initializer=RandomNormal(0, 0.02), bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None):
return keras.layers.Conv2D( filters=filters, kernel_size=kernel_size, strides=strides, padding=padding, data_format=data_format, dilation_rate=dilation_rate, activation=activation, use_bias=use_bias, kernel_initializer=kernel_initializer, bias_initializer=bias_initializer, kernel_regularizer=kernel_regularizer, bias_regularizer=bias_regularizer, activity_regularizer=activity_regularizer, kernel_constraint=kernel_constraint, bias_constraint=bias_constraint )
def func(input):
x = input
result = []
for i in range(num_downs):
x = LeakyReLU(0.1)(XNormalization(Conv2D( min(ngf* (2**i), ngf*8) , 5, 2, 'same')(x)))
if i == num_downs-1:
x_shape = K.int_shape(x)[1:]
x = Reshape(x_shape)(Dense( np.prod(x_shape) )(Dense(lowest_dense)(Flatten()(x))))
result += [x]
return result
return func
@staticmethod
def DecFlow(output_nc, ngf=64, activation='tanh'):
exec (nnlib.import_all(), locals(), globals())
use_bias = True
def XNormalization(x):
return InstanceNormalization (axis=3, gamma_initializer=RandomNormal(1., 0.02))(x)
def Conv2D (filters, kernel_size, strides=(1, 1), padding='valid', data_format=None, dilation_rate=(1, 1), activation=None, use_bias=use_bias, kernel_initializer=RandomNormal(0, 0.02), bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None):
return keras.layers.Conv2D( filters=filters, kernel_size=kernel_size, strides=strides, padding=padding, data_format=data_format, dilation_rate=dilation_rate, activation=activation, use_bias=use_bias, kernel_initializer=kernel_initializer, bias_initializer=bias_initializer, kernel_regularizer=kernel_regularizer, bias_regularizer=bias_regularizer, activity_regularizer=activity_regularizer, kernel_constraint=kernel_constraint, bias_constraint=bias_constraint )
def func(input):
input_len = len(input)
x = input[input_len-1]
for i in range(input_len-1, -1, -1):
x = SubpixelUpscaler()( LeakyReLU(0.1)(XNormalization(Conv2D( min(ngf* (2**i) *4, ngf*8 *4 ), 3, 1, 'same')(x))) )
if i != 0:
x = Concatenate(axis=3)([ input[i-1] , x])
return Conv2D(output_nc, 3, 1, 'same', activation=activation)(x)
return func
Model = UFMModel