mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-07-07 13:32:09 -07:00
removed AVATAR - useless model was just for demo removed MIAEF128 - use UFM insted removed LIAEF128YAW - use model option sort by yaw on start for any model All models now ask some options on start. Session options (such as target epoch, batch_size, write_preview_history etc) can be overrided by special command arg. Converter now always ask options and no more support to define options via command line. fix bug when ConverterMasked always used not predicted mask. SampleGenerator now always generate samples with replicated border, exclude mask samples. refactorings
298 lines
No EOL
16 KiB
Python
298 lines
No EOL
16 KiB
Python
import numpy as np
|
|
|
|
from nnlib import nnlib
|
|
from models import ModelBase
|
|
from facelib import FaceType
|
|
from samples import *
|
|
from utils.console_utils import *
|
|
|
|
#U-net Face Morpher
|
|
class UFMModel(ModelBase):
|
|
|
|
encoderH5 = 'encoder.h5'
|
|
decoder_srcH5 = 'decoder_src.h5'
|
|
decoder_dstH5 = 'decoder_dst.h5'
|
|
decoder_srcmH5 = 'decoder_srcm.h5'
|
|
decoder_dstmH5 = 'decoder_dstm.h5'
|
|
|
|
#override
|
|
def onInitializeOptions(self, is_first_run, ask_for_session_options):
|
|
default_resolution = 128
|
|
default_filters = 64
|
|
default_match_style = True
|
|
default_face_type = 'f'
|
|
|
|
if is_first_run:
|
|
#first run
|
|
self.options['resolution'] = input_int("Resolution (valid: 64,128,256, skip:128) : ", default_resolution, [64,128,256])
|
|
self.options['filters'] = np.clip ( input_int("Number of U-net filters (valid: 32-128, skip:64) : ", default_filters), 32, 128 )
|
|
self.options['match_style'] = input_bool ("Match style? (y/n skip:y) : ", default_match_style)
|
|
self.options['face_type'] = input_str ("Half or Full face? (h/f, skip:f) : ", default_face_type, ['h','f'])
|
|
|
|
else:
|
|
#not first run
|
|
self.options['resolution'] = self.options.get('resolution', default_resolution)
|
|
self.options['filters'] = self.options.get('filters', default_filters)
|
|
self.options['match_style'] = self.options.get('match_style', default_match_style)
|
|
self.options['face_type'] = self.options.get('face_type', default_face_type)
|
|
|
|
#override
|
|
def onInitialize(self, **in_options):
|
|
exec(nnlib.import_all(), locals(), globals())
|
|
|
|
self.set_vram_batch_requirements({2:1,3:2,4:6,5:8,6:16,7:24,8:32})
|
|
|
|
resolution = self.options['resolution']
|
|
bgr_shape = (resolution, resolution, 3)
|
|
mask_shape = (resolution, resolution, 1)
|
|
|
|
filters = self.options['filters']
|
|
|
|
if resolution == 64:
|
|
lowest_dense = 512
|
|
elif resolution == 128:
|
|
lowest_dense = 512
|
|
elif resolution == 256:
|
|
lowest_dense = 256
|
|
|
|
self.encoder = modelify(UFMModel.EncFlow (ngf=filters, lowest_dense=lowest_dense)) (Input(bgr_shape))
|
|
|
|
dec_Inputs = [ Input(K.int_shape(x)[1:]) for x in self.encoder.outputs ]
|
|
|
|
self.decoder_src = modelify(UFMModel.DecFlow (bgr_shape[2], ngf=filters)) (dec_Inputs)
|
|
self.decoder_dst = modelify(UFMModel.DecFlow (bgr_shape[2], ngf=filters)) (dec_Inputs)
|
|
|
|
self.decoder_srcm = modelify(UFMModel.DecFlow (mask_shape[2], ngf=filters//2)) (dec_Inputs)
|
|
self.decoder_dstm = modelify(UFMModel.DecFlow (mask_shape[2], ngf=filters//2)) (dec_Inputs)
|
|
|
|
if not self.is_first_run():
|
|
self.encoder.load_weights (self.get_strpath_storage_for_file(self.encoderH5))
|
|
self.decoder_src.load_weights (self.get_strpath_storage_for_file(self.decoder_srcH5))
|
|
self.decoder_dst.load_weights (self.get_strpath_storage_for_file(self.decoder_dstH5))
|
|
self.decoder_srcm.load_weights (self.get_strpath_storage_for_file(self.decoder_srcmH5))
|
|
self.decoder_dstm.load_weights (self.get_strpath_storage_for_file(self.decoder_dstmH5))
|
|
|
|
warped_src = Input(bgr_shape)
|
|
target_src = Input(bgr_shape)
|
|
target_srcm = Input(mask_shape)
|
|
|
|
warped_src_code = self.encoder (warped_src)
|
|
pred_src_src = self.decoder_src(warped_src_code)
|
|
pred_src_srcm = self.decoder_srcm(warped_src_code)
|
|
|
|
warped_dst = Input(bgr_shape)
|
|
target_dst = Input(bgr_shape)
|
|
target_dstm = Input(mask_shape)
|
|
|
|
warped_dst_code = self.encoder (warped_dst)
|
|
pred_dst_dst = self.decoder_dst(warped_dst_code)
|
|
pred_dst_dstm = self.decoder_dstm(warped_dst_code)
|
|
|
|
pred_src_dst = self.decoder_src(warped_dst_code)
|
|
pred_src_dstm = self.decoder_srcm(warped_dst_code)
|
|
|
|
target_srcm_blurred = tf_gaussian_blur(4.0)(target_srcm)
|
|
target_srcm_sigm = target_srcm_blurred / 2.0 + 0.5
|
|
target_srcm_anti_sigm = 1.0 - target_srcm_sigm
|
|
|
|
target_dstm_blurred = tf_gaussian_blur(4.0)(target_dstm)
|
|
target_dstm_sigm = target_dstm_blurred / 2.0 + 0.5
|
|
target_dstm_anti_sigm = 1.0 - target_dstm_sigm
|
|
|
|
target_src_sigm = target_src+1
|
|
target_dst_sigm = target_dst+1
|
|
|
|
pred_src_src_sigm = pred_src_src+1
|
|
pred_dst_dst_sigm = pred_dst_dst+1
|
|
pred_src_dst_sigm = pred_src_dst+1
|
|
|
|
target_src_masked = target_src_sigm*target_srcm_sigm
|
|
|
|
target_dst_masked = target_dst_sigm * target_dstm_sigm
|
|
target_dst_anti_masked = target_dst_sigm * target_dstm_anti_sigm
|
|
|
|
pred_src_src_masked = pred_src_src_sigm * target_srcm_sigm
|
|
pred_dst_dst_masked = pred_dst_dst_sigm * target_dstm_sigm
|
|
|
|
pred_src_dst_target_dst_masked = pred_src_dst_sigm * target_dstm_sigm
|
|
pred_src_dst_target_dst_anti_masked = pred_src_dst_sigm * target_dstm_anti_sigm
|
|
|
|
|
|
src_loss = K.mean( 100*K.square(tf_dssim(2.0)( target_src_masked, pred_src_src_masked )) )
|
|
if self.options['match_style']:
|
|
src_loss += tf_style_loss(gaussian_blur_radius=resolution // 8, loss_weight=0.015)(pred_src_dst_target_dst_masked, target_dst_masked)
|
|
src_loss += 0.05 * K.mean( tf_dssim(2.0)( pred_src_dst_target_dst_anti_masked, target_dst_anti_masked ))
|
|
|
|
self.src_train = K.function ([warped_src, target_src, target_srcm, warped_dst, target_dst, target_dstm ],[src_loss],
|
|
Adam(lr=5e-5, beta_1=0.5, beta_2=0.999).get_updates(src_loss, self.encoder.trainable_weights + self.decoder_src.trainable_weights) )
|
|
|
|
dst_loss = K.mean( 100*K.square(tf_dssim(2.0)( target_dst_masked, pred_dst_dst_masked )) )
|
|
self.dst_train = K.function ([warped_dst, target_dst, target_dstm],[dst_loss],
|
|
Adam(lr=5e-5, beta_1=0.5, beta_2=0.999).get_updates(dst_loss, self.encoder.trainable_weights + self.decoder_dst.trainable_weights) )
|
|
|
|
|
|
src_mask_loss = K.mean(K.square(target_srcm-pred_src_srcm))
|
|
self.src_mask_train = K.function ([warped_src, target_srcm],[src_mask_loss],
|
|
Adam(lr=5e-5, beta_1=0.5, beta_2=0.999).get_updates(src_mask_loss, self.encoder.trainable_weights + self.decoder_srcm.trainable_weights) )
|
|
|
|
dst_mask_loss = K.mean(K.square(target_dstm-pred_dst_dstm))
|
|
self.dst_mask_train = K.function ([warped_dst, target_dstm],[dst_mask_loss],
|
|
Adam(lr=5e-5, beta_1=0.5, beta_2=0.999).get_updates(dst_mask_loss, self.encoder.trainable_weights + self.decoder_dstm.trainable_weights) )
|
|
|
|
self.AE_view = K.function ([warped_src, warped_dst],[pred_src_src, pred_src_srcm, pred_dst_dst, pred_dst_dstm, pred_src_dst, pred_src_dstm])
|
|
self.AE_convert = K.function ([warped_dst],[pred_src_dst, pred_src_dstm])
|
|
|
|
if self.is_training_mode:
|
|
f = SampleProcessor.TypeFlags
|
|
|
|
face_type = f.FACE_ALIGN_FULL if self.options['face_type'] == 'f' else f.FACE_ALIGN_HALF
|
|
|
|
self.set_training_data_generators ([
|
|
SampleGeneratorFace(self.training_data_src_path, sort_by_yaw_target_samples_path=self.training_data_dst_path if self.sort_by_yaw else None,
|
|
debug=self.is_debug(), batch_size=self.batch_size,
|
|
sample_process_options=SampleProcessor.Options(normalize_tanh = True),
|
|
output_sample_types=[ [f.WARPED_TRANSFORMED | face_type | f.MODE_BGR, resolution],
|
|
[f.TRANSFORMED | face_type | f.MODE_BGR, resolution],
|
|
[f.TRANSFORMED | face_type | f.MODE_M | f.FACE_MASK_FULL, resolution] ] ),
|
|
|
|
SampleGeneratorFace(self.training_data_dst_path, debug=self.is_debug(), batch_size=self.batch_size,
|
|
sample_process_options=SampleProcessor.Options(normalize_tanh = True),
|
|
output_sample_types=[ [f.WARPED_TRANSFORMED | face_type | f.MODE_BGR, resolution],
|
|
[f.TRANSFORMED | face_type | f.MODE_BGR, resolution],
|
|
[f.TRANSFORMED | face_type | f.MODE_M | f.FACE_MASK_FULL, resolution] ] )
|
|
])
|
|
#override
|
|
def onSave(self):
|
|
self.save_weights_safe( [[self.encoder, self.get_strpath_storage_for_file(self.encoderH5)],
|
|
[self.decoder_src, self.get_strpath_storage_for_file(self.decoder_srcH5)],
|
|
[self.decoder_dst, self.get_strpath_storage_for_file(self.decoder_dstH5)],
|
|
[self.decoder_srcm, self.get_strpath_storage_for_file(self.decoder_srcmH5)],
|
|
[self.decoder_dstm, self.get_strpath_storage_for_file(self.decoder_dstmH5)]
|
|
] )
|
|
|
|
#override
|
|
def onTrainOneEpoch(self, sample):
|
|
warped_src, target_src, target_src_mask = sample[0]
|
|
warped_dst, target_dst, target_dst_mask = sample[1]
|
|
|
|
src_loss, = self.src_train ([warped_src, target_src, target_src_mask, warped_dst, target_dst, target_dst_mask])
|
|
dst_loss, = self.dst_train ([warped_dst, target_dst, target_dst_mask])
|
|
|
|
src_mask_loss, = self.src_mask_train ([warped_src, target_src_mask])
|
|
dst_mask_loss, = self.dst_mask_train ([warped_dst, target_dst_mask])
|
|
|
|
return ( ('src_loss', src_loss), ('dst_loss', dst_loss) )
|
|
|
|
|
|
#override
|
|
def onGetPreview(self, sample):
|
|
test_A = sample[0][1][0:4] #first 4 samples
|
|
test_A_m = sample[0][2][0:4] #first 4 samples
|
|
test_B = sample[1][1][0:4]
|
|
test_B_m = sample[1][2][0:4]
|
|
|
|
S = test_A
|
|
D = test_B
|
|
|
|
SS, SM, DD, DM, SD, SDM = self.AE_view ([test_A, test_B])
|
|
S, D, SS, SM, DD, DM, SD, SDM = [ x / 2 + 0.5 for x in [S, D, SS, SM, DD, DM, SD, SDM] ]
|
|
|
|
SM, DM, SDM = [ np.repeat (x, (3,), -1) for x in [SM, DM, SDM] ]
|
|
|
|
st = []
|
|
for i in range(0, len(test_A)):
|
|
st.append ( np.concatenate ( (
|
|
S[i], SS[i], #SM[i],
|
|
D[i], DD[i], #DM[i],
|
|
SD[i], #SDM[i]
|
|
), axis=1) )
|
|
|
|
return [ ('U-net Face Morpher', np.concatenate ( st, axis=0 ) ) ]
|
|
|
|
def predictor_func (self, face):
|
|
|
|
face = face * 2.0 - 1.0
|
|
|
|
face_128_bgr = face[...,0:3]
|
|
|
|
x, mx = [ (x[0] + 1.0) / 2.0 for x in self.AE_convert ( [ np.expand_dims(face_128_bgr,0) ] ) ]
|
|
|
|
if self.options['match_style']:
|
|
res = self.options['resolution']
|
|
s = int( res * 0.96875 )
|
|
mx = np.pad ( np.ones ( (s,s) ), (res-s) // 2 , mode='constant')
|
|
mx = np.expand_dims(mx, -1)
|
|
|
|
return np.concatenate ( (x,mx), -1 )
|
|
|
|
#override
|
|
def get_converter(self, **in_options):
|
|
from models import ConverterMasked
|
|
|
|
if self.options['match_style']:
|
|
base_erode_mask_modifier = 50
|
|
base_blur_mask_modifier = 50
|
|
else:
|
|
base_erode_mask_modifier = 30 if self.options['face_type'] == 'f' else 100
|
|
base_blur_mask_modifier = 0 if self.options['face_type'] == 'f' else 100
|
|
|
|
face_type = FaceType.FULL if self.options['face_type'] == 'f' else FaceType.HALF
|
|
|
|
return ConverterMasked(self.predictor_func,
|
|
predictor_input_size=self.options['resolution'],
|
|
output_size=self.options['resolution'],
|
|
face_type=face_type,
|
|
base_erode_mask_modifier=base_erode_mask_modifier,
|
|
base_blur_mask_modifier=base_blur_mask_modifier,
|
|
**in_options)
|
|
|
|
@staticmethod
|
|
def EncFlow(ngf=64, num_downs=4, lowest_dense=512):
|
|
exec (nnlib.import_all(), locals(), globals())
|
|
|
|
use_bias = True
|
|
def XNormalization(x):
|
|
return InstanceNormalization (axis=3, gamma_initializer=RandomNormal(1., 0.02))(x)
|
|
|
|
def Conv2D (filters, kernel_size, strides=(1, 1), padding='valid', data_format=None, dilation_rate=(1, 1), activation=None, use_bias=use_bias, kernel_initializer=RandomNormal(0, 0.02), bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None):
|
|
return keras.layers.Conv2D( filters=filters, kernel_size=kernel_size, strides=strides, padding=padding, data_format=data_format, dilation_rate=dilation_rate, activation=activation, use_bias=use_bias, kernel_initializer=kernel_initializer, bias_initializer=bias_initializer, kernel_regularizer=kernel_regularizer, bias_regularizer=bias_regularizer, activity_regularizer=activity_regularizer, kernel_constraint=kernel_constraint, bias_constraint=bias_constraint )
|
|
|
|
def func(input):
|
|
x = input
|
|
|
|
result = []
|
|
for i in range(num_downs):
|
|
x = LeakyReLU(0.1)(XNormalization(Conv2D( min(ngf* (2**i), ngf*8) , 5, 2, 'same')(x)))
|
|
|
|
if i == num_downs-1:
|
|
x_shape = K.int_shape(x)[1:]
|
|
x = Reshape(x_shape)(Dense( np.prod(x_shape) )(Dense(lowest_dense)(Flatten()(x))))
|
|
result += [x]
|
|
|
|
return result
|
|
return func
|
|
|
|
@staticmethod
|
|
def DecFlow(output_nc, ngf=64, activation='tanh'):
|
|
exec (nnlib.import_all(), locals(), globals())
|
|
|
|
use_bias = True
|
|
def XNormalization(x):
|
|
return InstanceNormalization (axis=3, gamma_initializer=RandomNormal(1., 0.02))(x)
|
|
|
|
def Conv2D (filters, kernel_size, strides=(1, 1), padding='valid', data_format=None, dilation_rate=(1, 1), activation=None, use_bias=use_bias, kernel_initializer=RandomNormal(0, 0.02), bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None):
|
|
return keras.layers.Conv2D( filters=filters, kernel_size=kernel_size, strides=strides, padding=padding, data_format=data_format, dilation_rate=dilation_rate, activation=activation, use_bias=use_bias, kernel_initializer=kernel_initializer, bias_initializer=bias_initializer, kernel_regularizer=kernel_regularizer, bias_regularizer=bias_regularizer, activity_regularizer=activity_regularizer, kernel_constraint=kernel_constraint, bias_constraint=bias_constraint )
|
|
|
|
def func(input):
|
|
input_len = len(input)
|
|
|
|
x = input[input_len-1]
|
|
for i in range(input_len-1, -1, -1):
|
|
x = SubpixelUpscaler()( LeakyReLU(0.1)(XNormalization(Conv2D( min(ngf* (2**i) *4, ngf*8 *4 ), 3, 1, 'same')(x))) )
|
|
if i != 0:
|
|
x = Concatenate(axis=3)([ input[i-1] , x])
|
|
|
|
return Conv2D(output_nc, 3, 1, 'same', activation=activation)(x)
|
|
return func
|
|
|
|
Model = UFMModel |