Upgraded to TF version 1.13.2

Removed the wait at first launch for most graphics cards.

Increased speed of training by 10-20%, but you have to retrain all models from scratch.

SAEHD:

added option 'use float16'
	Experimental option. Reduces the model size by half.
	Increases the speed of training.
	Decreases the accuracy of the model.
	The model may collapse or not train.
	Model may not learn the mask in large resolutions.

true_face_training option is replaced by
"True face power". 0.0000 .. 1.0
Experimental option. Discriminates the result face to be more like the src face. Higher value - stronger discrimination.
Comparison - https://i.imgur.com/czScS9q.png
This commit is contained in:
Colombo 2020-01-25 21:58:19 +04:00
parent a3dfcb91b9
commit 76ca79216e
49 changed files with 1320 additions and 1297 deletions

View file

@ -13,11 +13,13 @@ from samplelib import *
class QModel(ModelBase):
#override
def on_initialize(self):
nn.initialize()
device_config = nn.getCurrentDeviceConfig()
self.model_data_format = "NCHW" if len(device_config.devices) != 0 else "NHWC"
nn.initialize(data_format=self.model_data_format)
tf = nn.tf
conv_kernel_initializer = nn.initializers.ca
conv_kernel_initializer = nn.initializers.ca()
class Downscale(nn.ModelBase):
def __init__(self, in_ch, out_ch, kernel_size=5, dilations=1, subpixel=True, use_activator=True, *kwargs ):
self.in_ch = in_ch
@ -39,7 +41,7 @@ class QModel(ModelBase):
x = self.conv1(x)
if self.subpixel:
x = tf.nn.space_to_depth(x, 2)
x = nn.tf_space_to_depth(x, 2)
if self.use_activator:
x = nn.tf_gelu(x)
@ -63,7 +65,7 @@ class QModel(ModelBase):
for down in self.downs:
x = down(x)
return x
class Upscale(nn.ModelBase):
def on_build(self, in_ch, out_ch, kernel_size=3 ):
self.conv1 = nn.Conv2D( in_ch, out_ch*4, kernel_size=kernel_size, padding='SAME', kernel_initializer=conv_kernel_initializer)
@ -71,9 +73,9 @@ class QModel(ModelBase):
def forward(self, x):
x = self.conv1(x)
x = nn.tf_gelu(x)
x = tf.nn.depth_to_space(x, 2)
x = nn.tf_depth_to_space(x, 2)
return x
class ResidualBlock(nn.ModelBase):
def on_build(self, ch, kernel_size=3 ):
self.conv1 = nn.Conv2D( ch, ch, kernel_size=kernel_size, padding='SAME', kernel_initializer=conv_kernel_initializer)
@ -109,7 +111,7 @@ class QModel(ModelBase):
def forward(self, inp):
x = self.dense1(inp)
x = self.dense2(x)
x = tf.reshape (x, (-1, lowest_dense_res, lowest_dense_res, self.ae_out_ch))
x = nn.tf_reshape_4D (x, lowest_dense_res, lowest_dense_res, self.ae_out_ch)
x = self.upscale1(x)
x = self.res1(x)
return x
@ -118,11 +120,11 @@ class QModel(ModelBase):
return self.ae_out_ch
class Decoder(nn.ModelBase):
def on_build(self, in_ch, d_ch):
self.upscale1 = Upscale(in_ch, d_ch*4)
self.res1 = ResidualBlock(d_ch*4)
self.upscale2 = Upscale(d_ch*4, d_ch*2)
self.res2 = ResidualBlock(d_ch*2)
def on_build(self, in_ch, d_ch):
self.upscale1 = Upscale(in_ch, d_ch*4)
self.res1 = ResidualBlock(d_ch*4)
self.upscale2 = Upscale(d_ch*4, d_ch*2)
self.res2 = ResidualBlock(d_ch*2)
self.upscale3 = Upscale(d_ch*2, d_ch*1)
self.res3 = ResidualBlock(d_ch*1)
@ -134,8 +136,8 @@ class QModel(ModelBase):
self.out_convm = nn.Conv2D( d_ch//2, 1, kernel_size=1, padding='SAME', kernel_initializer=conv_kernel_initializer)
def forward(self, inp):
z = inp
x = self.upscale1 (z)
z = inp
x = self.upscale1 (z)
x = self.res1 (x)
x = self.upscale2 (x)
x = self.res2 (x)
@ -158,7 +160,7 @@ class QModel(ModelBase):
d_dims = 64
self.pretrain = False
self.pretrain_just_disabled = False
masked_training = True
models_opt_on_gpu = len(devices) == 1 and devices[0].total_mem_gb >= 4
@ -167,8 +169,8 @@ class QModel(ModelBase):
input_nc = 3
output_nc = 3
bgr_shape = (resolution, resolution, output_nc)
mask_shape = (resolution, resolution, 1)
bgr_shape = nn.get4Dshape(resolution,resolution,input_nc)
mask_shape = nn.get4Dshape(resolution,resolution,1)
lowest_dense_res = resolution // 16
self.model_filename_list = []
@ -176,22 +178,22 @@ class QModel(ModelBase):
with tf.device ('/CPU:0'):
#Place holders on CPU
self.warped_src = tf.placeholder (tf.float32, (None,)+bgr_shape)
self.warped_dst = tf.placeholder (tf.float32, (None,)+bgr_shape)
self.warped_src = tf.placeholder (nn.tf_floatx, bgr_shape)
self.warped_dst = tf.placeholder (nn.tf_floatx, bgr_shape)
self.target_src = tf.placeholder (tf.float32, (None,)+bgr_shape)
self.target_dst = tf.placeholder (tf.float32, (None,)+bgr_shape)
self.target_src = tf.placeholder (nn.tf_floatx, bgr_shape)
self.target_dst = tf.placeholder (nn.tf_floatx, bgr_shape)
self.target_srcm = tf.placeholder (tf.float32, (None,)+mask_shape)
self.target_dstm = tf.placeholder (tf.float32, (None,)+mask_shape)
self.target_srcm = tf.placeholder (nn.tf_floatx, mask_shape)
self.target_dstm = tf.placeholder (nn.tf_floatx, mask_shape)
# Initializing model classes
with tf.device (models_opt_device):
self.encoder = Encoder(in_ch=input_nc, e_ch=e_dims, name='encoder')
encoder_out_ch = self.encoder.compute_output_shape ( (tf.float32, (None,resolution,resolution,input_nc)))[-1]
encoder_out_ch = self.encoder.compute_output_channels ( (nn.tf_floatx, bgr_shape))
self.inter = Inter (in_ch=encoder_out_ch, lowest_dense_res=lowest_dense_res, ae_ch=ae_dims, ae_out_ch=ae_dims, d_ch=d_dims, name='inter')
inter_out_ch = self.inter.compute_output_shape ( (tf.float32, (None,encoder_out_ch)))[-1]
inter_out_ch = self.inter.compute_output_channels ( (nn.tf_floatx, (None,encoder_out_ch)))
self.decoder_src = Decoder(in_ch=inter_out_ch, d_ch=d_dims, name='decoder_src')
self.decoder_dst = Decoder(in_ch=inter_out_ch, d_ch=d_dims, name='decoder_dst')
@ -203,7 +205,7 @@ class QModel(ModelBase):
if self.is_training:
self.src_dst_trainable_weights = self.encoder.get_weights() + self.inter.get_weights() + self.decoder_src.get_weights() + self.decoder_dst.get_weights()
# Initialize optimizers
self.src_dst_opt = nn.TFRMSpropOptimizer(lr=2e-4, lr_dropout=0.3, name='src_dst_opt')
self.src_dst_opt.initialize_variables(self.src_dst_trainable_weights, vars_on_cpu=optimizer_vars_on_cpu )
@ -222,7 +224,7 @@ class QModel(ModelBase):
gpu_pred_src_srcm_list = []
gpu_pred_dst_dstm_list = []
gpu_pred_src_dstm_list = []
gpu_src_losses = []
gpu_dst_losses = []
gpu_src_dst_loss_gvs = []
@ -239,7 +241,7 @@ class QModel(ModelBase):
gpu_target_srcm = self.target_srcm[batch_slice,:,:,:]
gpu_target_dstm = self.target_dstm[batch_slice,:,:,:]
# process model tensors
# process model tensors
gpu_src_code = self.inter(self.encoder(gpu_warped_src))
gpu_dst_code = self.inter(self.encoder(gpu_warped_dst))
gpu_pred_src_src, gpu_pred_src_srcm = self.decoder_src(gpu_src_code)
@ -249,11 +251,11 @@ class QModel(ModelBase):
gpu_pred_src_src_list.append(gpu_pred_src_src)
gpu_pred_dst_dst_list.append(gpu_pred_dst_dst)
gpu_pred_src_dst_list.append(gpu_pred_src_dst)
gpu_pred_src_srcm_list.append(gpu_pred_src_srcm)
gpu_pred_dst_dstm_list.append(gpu_pred_dst_dstm)
gpu_pred_src_dstm_list.append(gpu_pred_src_dstm)
gpu_target_srcm_blur = nn.tf_gaussian_blur(gpu_target_srcm, max(1, resolution // 32) )
gpu_target_dstm_blur = nn.tf_gaussian_blur(gpu_target_dstm, max(1, resolution // 32) )
@ -271,11 +273,11 @@ class QModel(ModelBase):
gpu_src_loss = tf.reduce_mean ( 10*nn.tf_dssim(gpu_target_srcmasked_opt, gpu_pred_src_src_masked_opt, max_val=1.0, filter_size=int(resolution/11.6)), axis=[1])
gpu_src_loss += tf.reduce_mean ( 10*tf.square ( gpu_target_srcmasked_opt - gpu_pred_src_src_masked_opt ), axis=[1,2,3])
gpu_src_loss += tf.reduce_mean ( tf.square( gpu_target_srcm - gpu_pred_src_srcm ),axis=[1,2,3] )
gpu_src_loss += tf.reduce_mean ( 10*tf.square( gpu_target_srcm - gpu_pred_src_srcm ),axis=[1,2,3] )
gpu_dst_loss = tf.reduce_mean ( 10*nn.tf_dssim(gpu_target_dst_masked_opt, gpu_pred_dst_dst_masked_opt, max_val=1.0, filter_size=int(resolution/11.6) ), axis=[1])
gpu_dst_loss += tf.reduce_mean ( 10*tf.square( gpu_target_dst_masked_opt- gpu_pred_dst_dst_masked_opt ), axis=[1,2,3])
gpu_dst_loss += tf.reduce_mean ( tf.square( gpu_target_dstm - gpu_pred_dst_dstm ),axis=[1,2,3] )
gpu_dst_loss += tf.reduce_mean ( 10*tf.square( gpu_target_dstm - gpu_pred_dst_dstm ),axis=[1,2,3] )
gpu_src_losses += [gpu_src_loss]
gpu_dst_losses += [gpu_dst_loss]
@ -286,29 +288,16 @@ class QModel(ModelBase):
# Average losses and gradients, and create optimizer update ops
with tf.device (models_opt_device):
if gpu_count == 1:
pred_src_src = gpu_pred_src_src_list[0]
pred_dst_dst = gpu_pred_dst_dst_list[0]
pred_src_dst = gpu_pred_src_dst_list[0]
pred_src_srcm = gpu_pred_src_srcm_list[0]
pred_dst_dstm = gpu_pred_dst_dstm_list[0]
pred_src_dstm = gpu_pred_src_dstm_list[0]
src_loss = gpu_src_losses[0]
dst_loss = gpu_dst_losses[0]
src_dst_loss_gv = gpu_src_dst_loss_gvs[0]
else:
pred_src_src = tf.concat(gpu_pred_src_src_list, 0)
pred_dst_dst = tf.concat(gpu_pred_dst_dst_list, 0)
pred_src_dst = tf.concat(gpu_pred_src_dst_list, 0)
pred_src_srcm = tf.concat(gpu_pred_src_srcm_list, 0)
pred_dst_dstm = tf.concat(gpu_pred_dst_dstm_list, 0)
pred_src_dstm = tf.concat(gpu_pred_src_dstm_list, 0)
src_loss = nn.tf_average_tensor_list(gpu_src_losses)
dst_loss = nn.tf_average_tensor_list(gpu_dst_losses)
src_dst_loss_gv = nn.tf_average_gv_list (gpu_src_dst_loss_gvs)
pred_src_src = nn.tf_concat(gpu_pred_src_src_list, 0)
pred_dst_dst = nn.tf_concat(gpu_pred_dst_dst_list, 0)
pred_src_dst = nn.tf_concat(gpu_pred_src_dst_list, 0)
pred_src_srcm = nn.tf_concat(gpu_pred_src_srcm_list, 0)
pred_dst_dstm = nn.tf_concat(gpu_pred_dst_dstm_list, 0)
pred_src_dstm = nn.tf_concat(gpu_pred_src_dstm_list, 0)
src_loss = nn.tf_average_tensor_list(gpu_src_losses)
dst_loss = nn.tf_average_tensor_list(gpu_dst_losses)
src_dst_loss_gv = nn.tf_average_gv_list (gpu_src_dst_loss_gvs)
src_dst_loss_gv_op = self.src_dst_opt.get_update_op (src_dst_loss_gv)
# Initializing training and view functions
@ -341,17 +330,15 @@ class QModel(ModelBase):
_, gpu_pred_dst_dstm = self.decoder_dst(gpu_dst_code)
def AE_merge( warped_dst):
return nn.tf_sess.run ( [gpu_pred_src_dst, gpu_pred_dst_dstm, gpu_pred_src_dstm], feed_dict={self.warped_dst:warped_dst})
self.AE_merge = AE_merge
# Loading/initializing all models/optimizers weights
for model, filename in io.progress_bar_generator(self.model_filename_list, "Initializing models"):
do_init = self.is_first_run()
if self.pretrain_just_disabled:
if model == self.inter:
do_init = True
@ -359,16 +346,15 @@ class QModel(ModelBase):
if not do_init:
do_init = not model.load_weights( self.get_strpath_storage_for_file(filename) )
if do_init and self.pretrained_model_path is not None:
if do_init and self.pretrained_model_path is not None:
pretrained_filepath = self.pretrained_model_path / filename
if pretrained_filepath.exists():
do_init = not model.load_weights(pretrained_filepath)
if do_init:
model.init_weights()
# initializing sample generators
if self.is_training:
t = SampleProcessor.Types
face_type = t.FACE_TYPE_FULL
@ -384,19 +370,19 @@ class QModel(ModelBase):
self.set_training_data_generators ([
SampleGeneratorFace(training_data_src_path, debug=self.is_debug(), batch_size=self.get_batch_size(),
sample_process_options=SampleProcessor.Options(random_flip=True if self.pretrain else False),
output_sample_types = [ {'types' : (t.IMG_WARPED_TRANSFORMED, face_type, t.MODE_BGR), 'resolution':resolution, },
{'types' : (t.IMG_TRANSFORMED, face_type, t.MODE_BGR), 'resolution': resolution, },
{'types' : (t.IMG_TRANSFORMED, face_type, t.MODE_M), 'resolution': resolution } ],
output_sample_types = [ {'types' : (t.IMG_WARPED_TRANSFORMED, face_type, t.MODE_BGR), 'data_format':nn.data_format, 'resolution':resolution, },
{'types' : (t.IMG_TRANSFORMED, face_type, t.MODE_BGR), 'data_format':nn.data_format, 'resolution': resolution, },
{'types' : (t.IMG_TRANSFORMED, face_type, t.MODE_M), 'data_format':nn.data_format, 'resolution': resolution } ],
generators_count=src_generators_count ),
SampleGeneratorFace(training_data_dst_path, debug=self.is_debug(), batch_size=self.get_batch_size(),
sample_process_options=SampleProcessor.Options(random_flip=True if self.pretrain else False),
output_sample_types = [ {'types' : (t.IMG_WARPED_TRANSFORMED, face_type, t.MODE_BGR), 'resolution':resolution},
{'types' : (t.IMG_TRANSFORMED, face_type, t.MODE_BGR), 'resolution': resolution},
{'types' : (t.IMG_TRANSFORMED, face_type, t.MODE_M), 'resolution': resolution} ],
output_sample_types = [ {'types' : (t.IMG_WARPED_TRANSFORMED, face_type, t.MODE_BGR), 'data_format':nn.data_format, 'resolution':resolution},
{'types' : (t.IMG_TRANSFORMED, face_type, t.MODE_BGR), 'data_format':nn.data_format, 'resolution': resolution},
{'types' : (t.IMG_TRANSFORMED, face_type, t.MODE_M), 'data_format':nn.data_format, 'resolution': resolution} ],
generators_count=dst_generators_count )
])
self.last_samples = None
#override
@ -408,22 +394,21 @@ class QModel(ModelBase):
for model, filename in io.progress_bar_generator(self.get_model_filename_list(), "Saving", leave=False):
model.save_weights ( self.get_strpath_storage_for_file(filename) )
#override
def onTrainOneIter(self):
if self.get_iter() % 3 == 0 and self.last_samples is not None:
( (warped_src, target_src, target_srcm), \
(warped_dst, target_dst, target_dstm) ) = self.last_samples
src_loss, dst_loss = self.src_dst_train (target_src, target_src, target_srcm,
(warped_dst, target_dst, target_dstm) ) = self.last_samples
src_loss, dst_loss = self.src_dst_train (target_src, target_src, target_srcm,
target_dst, target_dst, target_dstm)
else:
samples = self.last_samples = self.generate_next_samples()
( (warped_src, target_src, target_srcm), \
(warped_dst, target_dst, target_dstm) ) = samples
src_loss, dst_loss = self.src_dst_train (warped_src, target_src, target_srcm,
src_loss, dst_loss = self.src_dst_train (warped_src, target_src, target_srcm,
warped_dst, target_dst, target_dstm)
return ( ('src_loss', src_loss), ('dst_loss', dst_loss), )
#override
@ -435,9 +420,11 @@ class QModel(ModelBase):
[ [sample[0:n_samples] for sample in sample_list ]
for sample_list in samples ]
S, D, SS, DD, DDM, SD, SDM = [ np.clip(x, 0.0, 1.0) for x in ([target_src,target_dst] + self.AE_view (target_src, target_dst) ) ]
S, D, SS, DD, DDM, SD, SDM = [ np.clip( nn.to_data_format(x,"NHWC", self.model_data_format), 0.0, 1.0) for x in ([target_src,target_dst] + self.AE_view (target_src, target_dst) ) ]
DDM, SDM, = [ np.repeat (x, (3,), -1) for x in [DDM, SDM] ]
target_srcm, target_dstm = [ nn.to_data_format(x,"NHWC", self.model_data_format) for x in ([target_srcm, target_dstm] )]
result = []
st = []
for i in range(n_samples):
@ -456,8 +443,10 @@ class QModel(ModelBase):
return result
def predictor_func (self, face=None):
face = face[None,...]
face = nn.to_data_format(face, self.model_data_format, "NHWC")
bgr, mask_dst_dstm, mask_src_dstm = self.AE_merge (face[np.newaxis,...])
bgr, mask_dst_dstm, mask_src_dstm = [ nn.to_data_format(x, "NHWC", self.model_data_format).astype(np.float32) for x in self.AE_merge (face) ]
mask = mask_dst_dstm[0] * mask_src_dstm[0]
return bgr[0], mask[...,0]