mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-07-06 04:52:13 -07:00
Removed the wait at first launch for most graphics cards. Increased speed of training by 10-20%, but you have to retrain all models from scratch. SAEHD: added option 'use float16' Experimental option. Reduces the model size by half. Increases the speed of training. Decreases the accuracy of the model. The model may collapse or not train. Model may not learn the mask in large resolutions. true_face_training option is replaced by "True face power". 0.0000 .. 1.0 Experimental option. Discriminates the result face to be more like the src face. Higher value - stronger discrimination. Comparison - https://i.imgur.com/czScS9q.png
463 lines
22 KiB
Python
463 lines
22 KiB
Python
import multiprocessing
|
|
from functools import partial
|
|
|
|
import numpy as np
|
|
|
|
from core import mathlib
|
|
from core.interact import interact as io
|
|
from core.leras import nn
|
|
from facelib import FaceType
|
|
from models import ModelBase
|
|
from samplelib import *
|
|
|
|
class QModel(ModelBase):
|
|
#override
|
|
def on_initialize(self):
|
|
device_config = nn.getCurrentDeviceConfig()
|
|
self.model_data_format = "NCHW" if len(device_config.devices) != 0 else "NHWC"
|
|
nn.initialize(data_format=self.model_data_format)
|
|
tf = nn.tf
|
|
|
|
conv_kernel_initializer = nn.initializers.ca()
|
|
|
|
class Downscale(nn.ModelBase):
|
|
def __init__(self, in_ch, out_ch, kernel_size=5, dilations=1, subpixel=True, use_activator=True, *kwargs ):
|
|
self.in_ch = in_ch
|
|
self.out_ch = out_ch
|
|
self.kernel_size = kernel_size
|
|
self.dilations = dilations
|
|
self.subpixel = subpixel
|
|
self.use_activator = use_activator
|
|
super().__init__(*kwargs)
|
|
|
|
def on_build(self, *args, **kwargs ):
|
|
self.conv1 = nn.Conv2D( self.in_ch,
|
|
self.out_ch // (4 if self.subpixel else 1),
|
|
kernel_size=self.kernel_size,
|
|
strides=1 if self.subpixel else 2,
|
|
padding='SAME', dilations=self.dilations, kernel_initializer=conv_kernel_initializer )
|
|
|
|
def forward(self, x):
|
|
x = self.conv1(x)
|
|
|
|
if self.subpixel:
|
|
x = nn.tf_space_to_depth(x, 2)
|
|
|
|
if self.use_activator:
|
|
x = nn.tf_gelu(x)
|
|
return x
|
|
|
|
def get_out_ch(self):
|
|
return (self.out_ch // 4) * 4
|
|
|
|
class DownscaleBlock(nn.ModelBase):
|
|
def on_build(self, in_ch, ch, n_downscales, kernel_size, dilations=1, subpixel=True):
|
|
self.downs = []
|
|
|
|
last_ch = in_ch
|
|
for i in range(n_downscales):
|
|
cur_ch = ch*( min(2**i, 8) )
|
|
self.downs.append ( Downscale(last_ch, cur_ch, kernel_size=kernel_size, dilations=dilations, subpixel=subpixel) )
|
|
last_ch = self.downs[-1].get_out_ch()
|
|
|
|
def forward(self, inp):
|
|
x = inp
|
|
for down in self.downs:
|
|
x = down(x)
|
|
return x
|
|
|
|
class Upscale(nn.ModelBase):
|
|
def on_build(self, in_ch, out_ch, kernel_size=3 ):
|
|
self.conv1 = nn.Conv2D( in_ch, out_ch*4, kernel_size=kernel_size, padding='SAME', kernel_initializer=conv_kernel_initializer)
|
|
|
|
def forward(self, x):
|
|
x = self.conv1(x)
|
|
x = nn.tf_gelu(x)
|
|
x = nn.tf_depth_to_space(x, 2)
|
|
return x
|
|
|
|
class ResidualBlock(nn.ModelBase):
|
|
def on_build(self, ch, kernel_size=3 ):
|
|
self.conv1 = nn.Conv2D( ch, ch, kernel_size=kernel_size, padding='SAME', kernel_initializer=conv_kernel_initializer)
|
|
self.conv2 = nn.Conv2D( ch, ch, kernel_size=kernel_size, padding='SAME', kernel_initializer=conv_kernel_initializer)
|
|
|
|
def forward(self, inp):
|
|
x = self.conv1(inp)
|
|
x = nn.tf_gelu(x)
|
|
x = self.conv2(x)
|
|
x = inp + x
|
|
x = nn.tf_gelu(x)
|
|
return x
|
|
|
|
class Encoder(nn.ModelBase):
|
|
def on_build(self, in_ch, e_ch):
|
|
self.down1 = DownscaleBlock(in_ch, e_ch, n_downscales=4, kernel_size=5)
|
|
def forward(self, inp):
|
|
return nn.tf_flatten(self.down1(inp))
|
|
|
|
class Inter(nn.ModelBase):
|
|
def __init__(self, in_ch, lowest_dense_res, ae_ch, ae_out_ch, d_ch, **kwargs):
|
|
self.in_ch, self.lowest_dense_res, self.ae_ch, self.ae_out_ch, self.d_ch = in_ch, lowest_dense_res, ae_ch, ae_out_ch, d_ch
|
|
super().__init__(**kwargs)
|
|
|
|
def on_build(self):
|
|
in_ch, lowest_dense_res, ae_ch, ae_out_ch, d_ch = self.in_ch, self.lowest_dense_res, self.ae_ch, self.ae_out_ch, self.d_ch
|
|
|
|
self.dense1 = nn.Dense( in_ch, ae_ch, kernel_initializer=tf.initializers.orthogonal )
|
|
self.dense2 = nn.Dense( ae_ch, lowest_dense_res * lowest_dense_res * ae_out_ch, maxout_features=4, kernel_initializer=tf.initializers.orthogonal )
|
|
self.upscale1 = Upscale(ae_out_ch, d_ch*8)
|
|
self.res1 = ResidualBlock(d_ch*8)
|
|
|
|
def forward(self, inp):
|
|
x = self.dense1(inp)
|
|
x = self.dense2(x)
|
|
x = nn.tf_reshape_4D (x, lowest_dense_res, lowest_dense_res, self.ae_out_ch)
|
|
x = self.upscale1(x)
|
|
x = self.res1(x)
|
|
return x
|
|
|
|
def get_out_ch(self):
|
|
return self.ae_out_ch
|
|
|
|
class Decoder(nn.ModelBase):
|
|
def on_build(self, in_ch, d_ch):
|
|
self.upscale1 = Upscale(in_ch, d_ch*4)
|
|
self.res1 = ResidualBlock(d_ch*4)
|
|
self.upscale2 = Upscale(d_ch*4, d_ch*2)
|
|
self.res2 = ResidualBlock(d_ch*2)
|
|
self.upscale3 = Upscale(d_ch*2, d_ch*1)
|
|
self.res3 = ResidualBlock(d_ch*1)
|
|
|
|
self.upscalem1 = Upscale(in_ch, d_ch)
|
|
self.upscalem2 = Upscale(d_ch, d_ch//2)
|
|
self.upscalem3 = Upscale(d_ch//2, d_ch//2)
|
|
|
|
self.out_conv = nn.Conv2D( d_ch*1, 3, kernel_size=1, padding='SAME', kernel_initializer=conv_kernel_initializer)
|
|
self.out_convm = nn.Conv2D( d_ch//2, 1, kernel_size=1, padding='SAME', kernel_initializer=conv_kernel_initializer)
|
|
|
|
def forward(self, inp):
|
|
z = inp
|
|
x = self.upscale1 (z)
|
|
x = self.res1 (x)
|
|
x = self.upscale2 (x)
|
|
x = self.res2 (x)
|
|
x = self.upscale3 (x)
|
|
x = self.res3 (x)
|
|
|
|
y = self.upscalem1 (z)
|
|
y = self.upscalem2 (y)
|
|
y = self.upscalem3 (y)
|
|
|
|
return tf.nn.sigmoid(self.out_conv(x)), \
|
|
tf.nn.sigmoid(self.out_convm(y))
|
|
|
|
device_config = nn.getCurrentDeviceConfig()
|
|
devices = device_config.devices
|
|
|
|
resolution = self.resolution = 96
|
|
ae_dims = 128
|
|
e_dims = 128
|
|
d_dims = 64
|
|
self.pretrain = False
|
|
self.pretrain_just_disabled = False
|
|
|
|
masked_training = True
|
|
|
|
models_opt_on_gpu = len(devices) == 1 and devices[0].total_mem_gb >= 4
|
|
models_opt_device = '/GPU:0' if models_opt_on_gpu and self.is_training else '/CPU:0'
|
|
optimizer_vars_on_cpu = models_opt_device=='/CPU:0'
|
|
|
|
input_nc = 3
|
|
output_nc = 3
|
|
bgr_shape = nn.get4Dshape(resolution,resolution,input_nc)
|
|
mask_shape = nn.get4Dshape(resolution,resolution,1)
|
|
lowest_dense_res = resolution // 16
|
|
|
|
self.model_filename_list = []
|
|
|
|
|
|
with tf.device ('/CPU:0'):
|
|
#Place holders on CPU
|
|
self.warped_src = tf.placeholder (nn.tf_floatx, bgr_shape)
|
|
self.warped_dst = tf.placeholder (nn.tf_floatx, bgr_shape)
|
|
|
|
self.target_src = tf.placeholder (nn.tf_floatx, bgr_shape)
|
|
self.target_dst = tf.placeholder (nn.tf_floatx, bgr_shape)
|
|
|
|
self.target_srcm = tf.placeholder (nn.tf_floatx, mask_shape)
|
|
self.target_dstm = tf.placeholder (nn.tf_floatx, mask_shape)
|
|
|
|
# Initializing model classes
|
|
with tf.device (models_opt_device):
|
|
self.encoder = Encoder(in_ch=input_nc, e_ch=e_dims, name='encoder')
|
|
encoder_out_ch = self.encoder.compute_output_channels ( (nn.tf_floatx, bgr_shape))
|
|
|
|
self.inter = Inter (in_ch=encoder_out_ch, lowest_dense_res=lowest_dense_res, ae_ch=ae_dims, ae_out_ch=ae_dims, d_ch=d_dims, name='inter')
|
|
inter_out_ch = self.inter.compute_output_channels ( (nn.tf_floatx, (None,encoder_out_ch)))
|
|
|
|
self.decoder_src = Decoder(in_ch=inter_out_ch, d_ch=d_dims, name='decoder_src')
|
|
self.decoder_dst = Decoder(in_ch=inter_out_ch, d_ch=d_dims, name='decoder_dst')
|
|
|
|
self.model_filename_list += [ [self.encoder, 'encoder.npy' ],
|
|
[self.inter, 'inter.npy' ],
|
|
[self.decoder_src, 'decoder_src.npy'],
|
|
[self.decoder_dst, 'decoder_dst.npy'] ]
|
|
|
|
if self.is_training:
|
|
self.src_dst_trainable_weights = self.encoder.get_weights() + self.inter.get_weights() + self.decoder_src.get_weights() + self.decoder_dst.get_weights()
|
|
|
|
# Initialize optimizers
|
|
self.src_dst_opt = nn.TFRMSpropOptimizer(lr=2e-4, lr_dropout=0.3, name='src_dst_opt')
|
|
self.src_dst_opt.initialize_variables(self.src_dst_trainable_weights, vars_on_cpu=optimizer_vars_on_cpu )
|
|
self.model_filename_list += [ (self.src_dst_opt, 'src_dst_opt.npy') ]
|
|
|
|
if self.is_training:
|
|
# Adjust batch size for multiple GPU
|
|
gpu_count = max(1, len(devices) )
|
|
bs_per_gpu = max(1, 4 // gpu_count)
|
|
self.set_batch_size( gpu_count*bs_per_gpu)
|
|
|
|
# Compute losses per GPU
|
|
gpu_pred_src_src_list = []
|
|
gpu_pred_dst_dst_list = []
|
|
gpu_pred_src_dst_list = []
|
|
gpu_pred_src_srcm_list = []
|
|
gpu_pred_dst_dstm_list = []
|
|
gpu_pred_src_dstm_list = []
|
|
|
|
gpu_src_losses = []
|
|
gpu_dst_losses = []
|
|
gpu_src_dst_loss_gvs = []
|
|
|
|
for gpu_id in range(gpu_count):
|
|
with tf.device( f'/GPU:{gpu_id}' if len(devices) != 0 else f'/CPU:0' ):
|
|
batch_slice = slice( gpu_id*bs_per_gpu, (gpu_id+1)*bs_per_gpu )
|
|
with tf.device(f'/CPU:0'):
|
|
# slice on CPU, otherwise all batch data will be transfered to GPU first
|
|
gpu_warped_src = self.warped_src [batch_slice,:,:,:]
|
|
gpu_warped_dst = self.warped_dst [batch_slice,:,:,:]
|
|
gpu_target_src = self.target_src [batch_slice,:,:,:]
|
|
gpu_target_dst = self.target_dst [batch_slice,:,:,:]
|
|
gpu_target_srcm = self.target_srcm[batch_slice,:,:,:]
|
|
gpu_target_dstm = self.target_dstm[batch_slice,:,:,:]
|
|
|
|
# process model tensors
|
|
gpu_src_code = self.inter(self.encoder(gpu_warped_src))
|
|
gpu_dst_code = self.inter(self.encoder(gpu_warped_dst))
|
|
gpu_pred_src_src, gpu_pred_src_srcm = self.decoder_src(gpu_src_code)
|
|
gpu_pred_dst_dst, gpu_pred_dst_dstm = self.decoder_dst(gpu_dst_code)
|
|
gpu_pred_src_dst, gpu_pred_src_dstm = self.decoder_src(gpu_dst_code)
|
|
|
|
gpu_pred_src_src_list.append(gpu_pred_src_src)
|
|
gpu_pred_dst_dst_list.append(gpu_pred_dst_dst)
|
|
gpu_pred_src_dst_list.append(gpu_pred_src_dst)
|
|
|
|
gpu_pred_src_srcm_list.append(gpu_pred_src_srcm)
|
|
gpu_pred_dst_dstm_list.append(gpu_pred_dst_dstm)
|
|
gpu_pred_src_dstm_list.append(gpu_pred_src_dstm)
|
|
|
|
gpu_target_srcm_blur = nn.tf_gaussian_blur(gpu_target_srcm, max(1, resolution // 32) )
|
|
gpu_target_dstm_blur = nn.tf_gaussian_blur(gpu_target_dstm, max(1, resolution // 32) )
|
|
|
|
gpu_target_dst_masked = gpu_target_dst*gpu_target_dstm_blur
|
|
gpu_target_dst_anti_masked = gpu_target_dst*(1.0 - gpu_target_dstm_blur)
|
|
|
|
gpu_target_srcmasked_opt = gpu_target_src*gpu_target_srcm_blur if masked_training else gpu_target_src
|
|
gpu_target_dst_masked_opt = gpu_target_dst_masked if masked_training else gpu_target_dst
|
|
|
|
gpu_pred_src_src_masked_opt = gpu_pred_src_src*gpu_target_srcm_blur if masked_training else gpu_pred_src_src
|
|
gpu_pred_dst_dst_masked_opt = gpu_pred_dst_dst*gpu_target_dstm_blur if masked_training else gpu_pred_dst_dst
|
|
|
|
gpu_psd_target_dst_masked = gpu_pred_src_dst*gpu_target_dstm_blur
|
|
gpu_psd_target_dst_anti_masked = gpu_pred_src_dst*(1.0 - gpu_target_dstm_blur)
|
|
|
|
gpu_src_loss = tf.reduce_mean ( 10*nn.tf_dssim(gpu_target_srcmasked_opt, gpu_pred_src_src_masked_opt, max_val=1.0, filter_size=int(resolution/11.6)), axis=[1])
|
|
gpu_src_loss += tf.reduce_mean ( 10*tf.square ( gpu_target_srcmasked_opt - gpu_pred_src_src_masked_opt ), axis=[1,2,3])
|
|
gpu_src_loss += tf.reduce_mean ( 10*tf.square( gpu_target_srcm - gpu_pred_src_srcm ),axis=[1,2,3] )
|
|
|
|
gpu_dst_loss = tf.reduce_mean ( 10*nn.tf_dssim(gpu_target_dst_masked_opt, gpu_pred_dst_dst_masked_opt, max_val=1.0, filter_size=int(resolution/11.6) ), axis=[1])
|
|
gpu_dst_loss += tf.reduce_mean ( 10*tf.square( gpu_target_dst_masked_opt- gpu_pred_dst_dst_masked_opt ), axis=[1,2,3])
|
|
gpu_dst_loss += tf.reduce_mean ( 10*tf.square( gpu_target_dstm - gpu_pred_dst_dstm ),axis=[1,2,3] )
|
|
|
|
gpu_src_losses += [gpu_src_loss]
|
|
gpu_dst_losses += [gpu_dst_loss]
|
|
|
|
gpu_src_dst_loss = gpu_src_loss + gpu_dst_loss
|
|
gpu_src_dst_loss_gvs += [ nn.tf_gradients ( gpu_src_dst_loss, self.src_dst_trainable_weights ) ]
|
|
|
|
|
|
# Average losses and gradients, and create optimizer update ops
|
|
with tf.device (models_opt_device):
|
|
pred_src_src = nn.tf_concat(gpu_pred_src_src_list, 0)
|
|
pred_dst_dst = nn.tf_concat(gpu_pred_dst_dst_list, 0)
|
|
pred_src_dst = nn.tf_concat(gpu_pred_src_dst_list, 0)
|
|
pred_src_srcm = nn.tf_concat(gpu_pred_src_srcm_list, 0)
|
|
pred_dst_dstm = nn.tf_concat(gpu_pred_dst_dstm_list, 0)
|
|
pred_src_dstm = nn.tf_concat(gpu_pred_src_dstm_list, 0)
|
|
|
|
src_loss = nn.tf_average_tensor_list(gpu_src_losses)
|
|
dst_loss = nn.tf_average_tensor_list(gpu_dst_losses)
|
|
src_dst_loss_gv = nn.tf_average_gv_list (gpu_src_dst_loss_gvs)
|
|
src_dst_loss_gv_op = self.src_dst_opt.get_update_op (src_dst_loss_gv)
|
|
|
|
# Initializing training and view functions
|
|
def src_dst_train(warped_src, target_src, target_srcm, \
|
|
warped_dst, target_dst, target_dstm):
|
|
s, d, _ = nn.tf_sess.run ( [ src_loss, dst_loss, src_dst_loss_gv_op],
|
|
feed_dict={self.warped_src :warped_src,
|
|
self.target_src :target_src,
|
|
self.target_srcm:target_srcm,
|
|
self.warped_dst :warped_dst,
|
|
self.target_dst :target_dst,
|
|
self.target_dstm:target_dstm,
|
|
})
|
|
s = np.mean(s)
|
|
d = np.mean(d)
|
|
return s, d
|
|
self.src_dst_train = src_dst_train
|
|
|
|
def AE_view(warped_src, warped_dst):
|
|
return nn.tf_sess.run ( [pred_src_src, pred_dst_dst, pred_dst_dstm, pred_src_dst, pred_src_dstm],
|
|
feed_dict={self.warped_src:warped_src,
|
|
self.warped_dst:warped_dst})
|
|
|
|
self.AE_view = AE_view
|
|
else:
|
|
# Initializing merge function
|
|
with tf.device( f'/GPU:0' if len(devices) != 0 else f'/CPU:0'):
|
|
gpu_dst_code = self.inter(self.encoder(self.warped_dst))
|
|
gpu_pred_src_dst, gpu_pred_src_dstm = self.decoder_src(gpu_dst_code)
|
|
_, gpu_pred_dst_dstm = self.decoder_dst(gpu_dst_code)
|
|
|
|
def AE_merge( warped_dst):
|
|
|
|
return nn.tf_sess.run ( [gpu_pred_src_dst, gpu_pred_dst_dstm, gpu_pred_src_dstm], feed_dict={self.warped_dst:warped_dst})
|
|
|
|
self.AE_merge = AE_merge
|
|
|
|
# Loading/initializing all models/optimizers weights
|
|
for model, filename in io.progress_bar_generator(self.model_filename_list, "Initializing models"):
|
|
do_init = self.is_first_run()
|
|
|
|
if self.pretrain_just_disabled:
|
|
if model == self.inter:
|
|
do_init = True
|
|
|
|
if not do_init:
|
|
do_init = not model.load_weights( self.get_strpath_storage_for_file(filename) )
|
|
|
|
if do_init and self.pretrained_model_path is not None:
|
|
pretrained_filepath = self.pretrained_model_path / filename
|
|
if pretrained_filepath.exists():
|
|
do_init = not model.load_weights(pretrained_filepath)
|
|
|
|
if do_init:
|
|
model.init_weights()
|
|
|
|
# initializing sample generators
|
|
if self.is_training:
|
|
t = SampleProcessor.Types
|
|
face_type = t.FACE_TYPE_FULL
|
|
|
|
training_data_src_path = self.training_data_src_path if not self.pretrain else self.get_pretraining_data_path()
|
|
training_data_dst_path = self.training_data_dst_path if not self.pretrain else self.get_pretraining_data_path()
|
|
|
|
cpu_count = multiprocessing.cpu_count()
|
|
|
|
src_generators_count = cpu_count // 2
|
|
dst_generators_count = cpu_count - src_generators_count
|
|
|
|
self.set_training_data_generators ([
|
|
SampleGeneratorFace(training_data_src_path, debug=self.is_debug(), batch_size=self.get_batch_size(),
|
|
sample_process_options=SampleProcessor.Options(random_flip=True if self.pretrain else False),
|
|
output_sample_types = [ {'types' : (t.IMG_WARPED_TRANSFORMED, face_type, t.MODE_BGR), 'data_format':nn.data_format, 'resolution':resolution, },
|
|
{'types' : (t.IMG_TRANSFORMED, face_type, t.MODE_BGR), 'data_format':nn.data_format, 'resolution': resolution, },
|
|
{'types' : (t.IMG_TRANSFORMED, face_type, t.MODE_M), 'data_format':nn.data_format, 'resolution': resolution } ],
|
|
generators_count=src_generators_count ),
|
|
|
|
SampleGeneratorFace(training_data_dst_path, debug=self.is_debug(), batch_size=self.get_batch_size(),
|
|
sample_process_options=SampleProcessor.Options(random_flip=True if self.pretrain else False),
|
|
output_sample_types = [ {'types' : (t.IMG_WARPED_TRANSFORMED, face_type, t.MODE_BGR), 'data_format':nn.data_format, 'resolution':resolution},
|
|
{'types' : (t.IMG_TRANSFORMED, face_type, t.MODE_BGR), 'data_format':nn.data_format, 'resolution': resolution},
|
|
{'types' : (t.IMG_TRANSFORMED, face_type, t.MODE_M), 'data_format':nn.data_format, 'resolution': resolution} ],
|
|
generators_count=dst_generators_count )
|
|
])
|
|
|
|
self.last_samples = None
|
|
|
|
#override
|
|
def get_model_filename_list(self):
|
|
return self.model_filename_list
|
|
|
|
#override
|
|
def onSave(self):
|
|
for model, filename in io.progress_bar_generator(self.get_model_filename_list(), "Saving", leave=False):
|
|
model.save_weights ( self.get_strpath_storage_for_file(filename) )
|
|
|
|
#override
|
|
def onTrainOneIter(self):
|
|
if self.get_iter() % 3 == 0 and self.last_samples is not None:
|
|
( (warped_src, target_src, target_srcm), \
|
|
(warped_dst, target_dst, target_dstm) ) = self.last_samples
|
|
src_loss, dst_loss = self.src_dst_train (target_src, target_src, target_srcm,
|
|
target_dst, target_dst, target_dstm)
|
|
else:
|
|
samples = self.last_samples = self.generate_next_samples()
|
|
( (warped_src, target_src, target_srcm), \
|
|
(warped_dst, target_dst, target_dstm) ) = samples
|
|
|
|
src_loss, dst_loss = self.src_dst_train (warped_src, target_src, target_srcm,
|
|
warped_dst, target_dst, target_dstm)
|
|
|
|
return ( ('src_loss', src_loss), ('dst_loss', dst_loss), )
|
|
|
|
#override
|
|
def onGetPreview(self, samples):
|
|
n_samples = min(4, self.get_batch_size() )
|
|
|
|
( (warped_src, target_src, target_srcm),
|
|
(warped_dst, target_dst, target_dstm) ) = \
|
|
[ [sample[0:n_samples] for sample in sample_list ]
|
|
for sample_list in samples ]
|
|
|
|
S, D, SS, DD, DDM, SD, SDM = [ np.clip( nn.to_data_format(x,"NHWC", self.model_data_format), 0.0, 1.0) for x in ([target_src,target_dst] + self.AE_view (target_src, target_dst) ) ]
|
|
DDM, SDM, = [ np.repeat (x, (3,), -1) for x in [DDM, SDM] ]
|
|
|
|
target_srcm, target_dstm = [ nn.to_data_format(x,"NHWC", self.model_data_format) for x in ([target_srcm, target_dstm] )]
|
|
|
|
result = []
|
|
st = []
|
|
for i in range(n_samples):
|
|
ar = S[i], SS[i], D[i], DD[i], SD[i]
|
|
st.append ( np.concatenate ( ar, axis=1) )
|
|
|
|
result += [ ('Quick96', np.concatenate (st, axis=0 )), ]
|
|
|
|
st_m = []
|
|
for i in range(n_samples):
|
|
ar = S[i]*target_srcm[i], SS[i], D[i]*target_dstm[i], DD[i]*DDM[i], SD[i]*(DDM[i]*SDM[i])
|
|
st_m.append ( np.concatenate ( ar, axis=1) )
|
|
|
|
result += [ ('Quick96 masked', np.concatenate (st_m, axis=0 )), ]
|
|
|
|
return result
|
|
|
|
def predictor_func (self, face=None):
|
|
face = face[None,...]
|
|
face = nn.to_data_format(face, self.model_data_format, "NHWC")
|
|
|
|
bgr, mask_dst_dstm, mask_src_dstm = [ nn.to_data_format(x, "NHWC", self.model_data_format).astype(np.float32) for x in self.AE_merge (face) ]
|
|
mask = mask_dst_dstm[0] * mask_src_dstm[0]
|
|
return bgr[0], mask[...,0]
|
|
|
|
#override
|
|
def get_MergerConfig(self):
|
|
face_type = FaceType.FULL
|
|
|
|
import merger
|
|
return self.predictor_func, (self.resolution, self.resolution, 3), merger.MergerConfigMasked(face_type=face_type,
|
|
default_mode = 'overlay',
|
|
clip_hborder_mask_per=0.0625 if (face_type != FaceType.HALF) else 0,
|
|
)
|
|
|
|
Model = QModel
|