mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-07-14 00:53:48 -07:00
Upgraded to TF version 1.13.2
Removed the wait at first launch for most graphics cards. Increased speed of training by 10-20%, but you have to retrain all models from scratch. SAEHD: added option 'use float16' Experimental option. Reduces the model size by half. Increases the speed of training. Decreases the accuracy of the model. The model may collapse or not train. Model may not learn the mask in large resolutions. true_face_training option is replaced by "True face power". 0.0000 .. 1.0 Experimental option. Discriminates the result face to be more like the src face. Higher value - stronger discrimination. Comparison - https://i.imgur.com/czScS9q.png
This commit is contained in:
parent
a3dfcb91b9
commit
76ca79216e
49 changed files with 1320 additions and 1297 deletions
|
@ -8,7 +8,7 @@ import numpy as np
|
|||
|
||||
def initialize_layers(nn):
|
||||
tf = nn.tf
|
||||
|
||||
|
||||
class Saveable():
|
||||
def __init__(self, name=None):
|
||||
self.name = name
|
||||
|
@ -65,6 +65,8 @@ def initialize_layers(nn):
|
|||
sub_w_name = "/".join(w_name_split[1:])
|
||||
|
||||
w_val = d.get(sub_w_name, None)
|
||||
w_val = np.reshape( w_val, w.shape.as_list() )
|
||||
|
||||
if w_val is None:
|
||||
io.log_err(f"Weight {w.name} was not loaded from file {filename}")
|
||||
tuples.append ( (w, w.initializer) )
|
||||
|
@ -77,8 +79,8 @@ def initialize_layers(nn):
|
|||
|
||||
def init_weights(self):
|
||||
ops = []
|
||||
|
||||
ca_tuples_w = []
|
||||
|
||||
ca_tuples_w = []
|
||||
ca_tuples = []
|
||||
for w in self.get_weights():
|
||||
initializer = w.initializer
|
||||
|
@ -92,12 +94,12 @@ def initialize_layers(nn):
|
|||
|
||||
if len(ops) != 0:
|
||||
nn.tf_sess.run (ops)
|
||||
|
||||
|
||||
if len(ca_tuples) != 0:
|
||||
nn.tf_batch_set_value( [*zip(ca_tuples_w, nn.initializers.ca.generate_batch (ca_tuples))] )
|
||||
|
||||
|
||||
nn.Saveable = Saveable
|
||||
|
||||
|
||||
class LayerBase():
|
||||
def __init__(self, name=None, **kwargs):
|
||||
self.name = name
|
||||
|
@ -124,7 +126,7 @@ def initialize_layers(nn):
|
|||
|
||||
nn.tf_batch_set_value (tuples)
|
||||
nn.LayerBase = LayerBase
|
||||
|
||||
|
||||
class ModelBase(Saveable):
|
||||
def __init__(self, *args, name=None, **kwargs):
|
||||
super().__init__(name=name)
|
||||
|
@ -157,33 +159,33 @@ def initialize_layers(nn):
|
|||
|
||||
def build(self):
|
||||
with tf.variable_scope(self.name):
|
||||
|
||||
|
||||
current_vars = []
|
||||
generator = None
|
||||
while True:
|
||||
|
||||
|
||||
if generator is None:
|
||||
generator = self.on_build(*self.args, **self.kwargs)
|
||||
if not isinstance(generator, types.GeneratorType):
|
||||
generator = None
|
||||
|
||||
|
||||
if generator is not None:
|
||||
try:
|
||||
next(generator)
|
||||
except StopIteration:
|
||||
generator = None
|
||||
|
||||
v = vars(self)
|
||||
|
||||
v = vars(self)
|
||||
new_vars = self.xor_list (current_vars, list(v.keys()) )
|
||||
|
||||
for name in new_vars:
|
||||
self._build_sub(v[name],name)
|
||||
|
||||
|
||||
current_vars += new_vars
|
||||
|
||||
|
||||
if generator is None:
|
||||
break
|
||||
|
||||
break
|
||||
|
||||
self.built = True
|
||||
|
||||
#override
|
||||
|
@ -211,9 +213,9 @@ def initialize_layers(nn):
|
|||
def on_build(self, *args, **kwargs):
|
||||
"""
|
||||
init model layers here
|
||||
|
||||
|
||||
return 'yield' if build is not finished
|
||||
therefore dependency models will be initialized
|
||||
therefore dependency models will be initialized
|
||||
"""
|
||||
pass
|
||||
|
||||
|
@ -227,16 +229,16 @@ def initialize_layers(nn):
|
|||
self.build()
|
||||
|
||||
return self.forward(*args, **kwargs)
|
||||
|
||||
|
||||
def compute_output_shape(self, shapes):
|
||||
if not self.built:
|
||||
self.build()
|
||||
|
||||
|
||||
not_list = False
|
||||
if not isinstance(shapes, list):
|
||||
not_list = True
|
||||
shapes = [shapes]
|
||||
|
||||
|
||||
with tf.device('/CPU:0'):
|
||||
# CPU tensors will not impact any performance, only slightly RAM "leakage"
|
||||
phs = []
|
||||
|
@ -244,24 +246,33 @@ def initialize_layers(nn):
|
|||
phs += [ tf.placeholder(dtype, sh) ]
|
||||
|
||||
result = self.__call__(phs[0] if not_list else phs)
|
||||
|
||||
|
||||
if not isinstance(result, list):
|
||||
result = [result]
|
||||
|
||||
|
||||
result_shapes = []
|
||||
|
||||
|
||||
for t in result:
|
||||
result_shapes += [ t.shape.as_list() ]
|
||||
|
||||
result_shapes += [ t.shape.as_list() ]
|
||||
|
||||
return result_shapes[0] if not_list else result_shapes
|
||||
|
||||
def compute_output_channels(self, shapes):
|
||||
shape = self.compute_output_shape(shapes)
|
||||
shape_len = len(shape)
|
||||
|
||||
if shape_len == 4:
|
||||
if nn.data_format == "NCHW":
|
||||
return shape[1]
|
||||
return shape[-1]
|
||||
|
||||
def build_for_run(self, shapes_list):
|
||||
if not isinstance(shapes_list, list):
|
||||
raise ValueError("shapes_list must be a list.")
|
||||
|
||||
self.run_placeholders = []
|
||||
for dtype,sh in shapes_list:
|
||||
self.run_placeholders.append ( tf.placeholder(dtype, (None,)+sh) )
|
||||
self.run_placeholders.append ( tf.placeholder(dtype, sh) )
|
||||
|
||||
self.run_output = self.__call__(self.run_placeholders)
|
||||
|
||||
|
@ -279,7 +290,7 @@ def initialize_layers(nn):
|
|||
return nn.tf_sess.run ( self.run_output, feed_dict=feed_dict)
|
||||
|
||||
nn.ModelBase = ModelBase
|
||||
|
||||
|
||||
class Conv2D(LayerBase):
|
||||
"""
|
||||
use_wscale bool enables equalized learning rate, kernel_initializer will be forced to random_normal
|
||||
|
@ -292,6 +303,9 @@ def initialize_layers(nn):
|
|||
if not isinstance(dilations, int):
|
||||
raise ValueError ("dilations must be an int type")
|
||||
|
||||
if dtype is None:
|
||||
dtype = nn.tf_floatx
|
||||
|
||||
if isinstance(padding, str):
|
||||
if padding == "SAME":
|
||||
padding = ( (kernel_size - 1) * dilations + 1 ) // 2
|
||||
|
@ -302,37 +316,48 @@ def initialize_layers(nn):
|
|||
|
||||
if isinstance(padding, int):
|
||||
if padding != 0:
|
||||
padding = [ [0,0], [padding,padding], [padding,padding], [0,0] ]
|
||||
if nn.data_format == "NHWC":
|
||||
padding = [ [0,0], [padding,padding], [padding,padding], [0,0] ]
|
||||
else:
|
||||
padding = [ [0,0], [0,0], [padding,padding], [padding,padding] ]
|
||||
else:
|
||||
padding = None
|
||||
|
||||
if nn.data_format == "NHWC":
|
||||
strides = [1,strides,strides,1]
|
||||
else:
|
||||
strides = [1,1,strides,strides]
|
||||
|
||||
if nn.data_format == "NHWC":
|
||||
dilations = [1,dilations,dilations,1]
|
||||
else:
|
||||
dilations = [1,1,dilations,dilations]
|
||||
|
||||
self.in_ch = in_ch
|
||||
self.out_ch = out_ch
|
||||
self.kernel_size = kernel_size
|
||||
self.strides = [1,strides,strides,1]
|
||||
self.strides = strides
|
||||
self.padding = padding
|
||||
self.dilations = [1,dilations,dilations,1]
|
||||
self.dilations = dilations
|
||||
self.use_bias = use_bias
|
||||
self.use_wscale = use_wscale
|
||||
self.kernel_initializer = None if use_wscale else kernel_initializer
|
||||
self.kernel_initializer = kernel_initializer
|
||||
self.bias_initializer = bias_initializer
|
||||
self.trainable = trainable
|
||||
if dtype is None:
|
||||
dtype = nn.tf_floatx
|
||||
self.dtype = dtype
|
||||
super().__init__(**kwargs)
|
||||
|
||||
def build_weights(self):
|
||||
kernel_initializer = self.kernel_initializer
|
||||
if self.use_wscale:
|
||||
gain = 1.0 if self.kernel_size == 1 else np.sqrt(2)
|
||||
fan_in = self.kernel_size*self.kernel_size*self.in_ch
|
||||
he_std = gain / np.sqrt(fan_in) # He init
|
||||
self.wscale = tf.constant(he_std, dtype=self.dtype )
|
||||
kernel_initializer = tf.initializers.random_normal(0, 1.0, dtype=self.dtype)
|
||||
|
||||
if kernel_initializer is None:
|
||||
if self.use_wscale:
|
||||
gain = 1.0 if self.kernel_size == 1 else np.sqrt(2)
|
||||
fan_in = self.kernel_size*self.kernel_size*self.in_ch
|
||||
he_std = gain / np.sqrt(fan_in) # He init
|
||||
self.wscale = tf.constant(he_std, dtype=self.dtype )
|
||||
kernel_initializer = tf.initializers.random_normal(0, 1.0, dtype=self.dtype)
|
||||
else:
|
||||
kernel_initializer = tf.initializers.glorot_uniform(dtype=self.dtype)
|
||||
kernel_initializer = tf.initializers.glorot_uniform(dtype=self.dtype)
|
||||
|
||||
self.weight = tf.get_variable("weight", (self.kernel_size,self.kernel_size,self.in_ch,self.out_ch), dtype=self.dtype, initializer=kernel_initializer, trainable=self.trainable )
|
||||
|
||||
|
@ -341,7 +366,7 @@ def initialize_layers(nn):
|
|||
if bias_initializer is None:
|
||||
bias_initializer = tf.initializers.zeros(dtype=self.dtype)
|
||||
|
||||
self.bias = tf.get_variable("bias", (1,1,1,self.out_ch), dtype=self.dtype, initializer=bias_initializer, trainable=self.trainable )
|
||||
self.bias = tf.get_variable("bias", (self.out_ch,), dtype=self.dtype, initializer=bias_initializer, trainable=self.trainable )
|
||||
|
||||
def get_weights(self):
|
||||
weights = [self.weight]
|
||||
|
@ -357,9 +382,13 @@ def initialize_layers(nn):
|
|||
if self.padding is not None:
|
||||
x = tf.pad (x, self.padding, mode='CONSTANT')
|
||||
|
||||
x = tf.nn.conv2d(x, weight, self.strides, 'VALID', dilations=self.dilations)
|
||||
x = tf.nn.conv2d(x, weight, self.strides, 'VALID', dilations=self.dilations, data_format=nn.data_format)
|
||||
if self.use_bias:
|
||||
x = x + self.bias
|
||||
if nn.data_format == "NHWC":
|
||||
bias = tf.reshape (self.bias, (1,1,1,self.out_ch) )
|
||||
else:
|
||||
bias = tf.reshape (self.bias, (1,self.out_ch,1,1) )
|
||||
x = tf.add(x, bias)
|
||||
return x
|
||||
|
||||
def __str__(self):
|
||||
|
@ -367,7 +396,7 @@ def initialize_layers(nn):
|
|||
|
||||
return r
|
||||
nn.Conv2D = Conv2D
|
||||
|
||||
|
||||
class Conv2DTranspose(LayerBase):
|
||||
"""
|
||||
use_wscale enables weight scale (equalized learning rate)
|
||||
|
@ -376,6 +405,10 @@ def initialize_layers(nn):
|
|||
def __init__(self, in_ch, out_ch, kernel_size, strides=2, padding='SAME', use_bias=True, use_wscale=False, kernel_initializer=None, bias_initializer=None, trainable=True, dtype=None, **kwargs ):
|
||||
if not isinstance(strides, int):
|
||||
raise ValueError ("strides must be an int type")
|
||||
|
||||
if dtype is None:
|
||||
dtype = nn.tf_floatx
|
||||
|
||||
self.in_ch = in_ch
|
||||
self.out_ch = out_ch
|
||||
self.kernel_size = kernel_size
|
||||
|
@ -383,33 +416,30 @@ def initialize_layers(nn):
|
|||
self.padding = padding
|
||||
self.use_bias = use_bias
|
||||
self.use_wscale = use_wscale
|
||||
self.kernel_initializer = None if use_wscale else kernel_initializer
|
||||
self.kernel_initializer = kernel_initializer
|
||||
self.bias_initializer = bias_initializer
|
||||
self.trainable = trainable
|
||||
if dtype is None:
|
||||
dtype = nn.tf_floatx
|
||||
self.dtype = dtype
|
||||
super().__init__(**kwargs)
|
||||
|
||||
def build_weights(self):
|
||||
kernel_initializer = self.kernel_initializer
|
||||
if self.use_wscale:
|
||||
gain = 1.0 if self.kernel_size == 1 else np.sqrt(2)
|
||||
fan_in = self.kernel_size*self.kernel_size*self.in_ch
|
||||
he_std = gain / np.sqrt(fan_in) # He init
|
||||
self.wscale = tf.constant(he_std, dtype=self.dtype )
|
||||
kernel_initializer = tf.initializers.random_normal(0, 1.0, dtype=self.dtype)
|
||||
if kernel_initializer is None:
|
||||
if self.use_wscale:
|
||||
gain = 1.0 if self.kernel_size == 1 else np.sqrt(2)
|
||||
fan_in = self.kernel_size*self.kernel_size*self.in_ch
|
||||
he_std = gain / np.sqrt(fan_in) # He init
|
||||
self.wscale = tf.constant(he_std, dtype=self.dtype )
|
||||
kernel_initializer = tf.initializers.random_normal(0, 1.0, dtype=self.dtype)
|
||||
else:
|
||||
kernel_initializer = tf.initializers.glorot_uniform(dtype=self.dtype)
|
||||
|
||||
kernel_initializer = tf.initializers.glorot_uniform(dtype=self.dtype)
|
||||
self.weight = tf.get_variable("weight", (self.kernel_size,self.kernel_size,self.out_ch,self.in_ch), dtype=self.dtype, initializer=kernel_initializer, trainable=self.trainable )
|
||||
|
||||
if self.use_bias:
|
||||
bias_initializer = self.bias_initializer
|
||||
if bias_initializer is None:
|
||||
bias_initializer = tf.initializers.zeros(dtype=self.dtype)
|
||||
self.bias = tf.get_variable("bias", (1,1,1,self.out_ch), dtype=self.dtype, initializer=bias_initializer, trainable=self.trainable )
|
||||
|
||||
self.bias = tf.get_variable("bias", (self.out_ch,), dtype=self.dtype, initializer=bias_initializer, trainable=self.trainable )
|
||||
|
||||
def get_weights(self):
|
||||
weights = [self.weight]
|
||||
|
@ -420,21 +450,34 @@ def initialize_layers(nn):
|
|||
def __call__(self, x):
|
||||
shape = x.shape
|
||||
|
||||
h,w,c = shape[1], shape[2], shape[3]
|
||||
|
||||
output_shape = tf.stack ( (tf.shape(x)[0],
|
||||
self.deconv_length(w, self.strides, self.kernel_size, self.padding),
|
||||
self.deconv_length(h, self.strides, self.kernel_size, self.padding),
|
||||
self.out_ch) )
|
||||
if nn.data_format == "NHWC":
|
||||
h,w,c = shape[1], shape[2], shape[3]
|
||||
output_shape = tf.stack ( (tf.shape(x)[0],
|
||||
self.deconv_length(w, self.strides, self.kernel_size, self.padding),
|
||||
self.deconv_length(h, self.strides, self.kernel_size, self.padding),
|
||||
self.out_ch) )
|
||||
|
||||
strides = [1,self.strides,self.strides,1]
|
||||
else:
|
||||
c,h,w = shape[1], shape[2], shape[3]
|
||||
output_shape = tf.stack ( (tf.shape(x)[0],
|
||||
self.out_ch,
|
||||
self.deconv_length(w, self.strides, self.kernel_size, self.padding),
|
||||
self.deconv_length(h, self.strides, self.kernel_size, self.padding),
|
||||
) )
|
||||
strides = [1,1,self.strides,self.strides]
|
||||
weight = self.weight
|
||||
if self.use_wscale:
|
||||
weight = weight * self.wscale
|
||||
|
||||
x = tf.nn.conv2d_transpose(x, weight, output_shape, [1,self.strides,self.strides,1], padding=self.padding)
|
||||
x = tf.nn.conv2d_transpose(x, weight, output_shape, strides, padding=self.padding, data_format=nn.data_format)
|
||||
|
||||
if self.use_bias:
|
||||
x = x + self.bias
|
||||
if nn.data_format == "NHWC":
|
||||
bias = tf.reshape (self.bias, (1,1,1,self.out_ch) )
|
||||
else:
|
||||
bias = tf.reshape (self.bias, (1,self.out_ch,1,1) )
|
||||
x = tf.add(x, bias)
|
||||
return x
|
||||
|
||||
def __str__(self):
|
||||
|
@ -454,15 +497,18 @@ def initialize_layers(nn):
|
|||
dim_size = dim_size * stride_size
|
||||
return dim_size
|
||||
nn.Conv2DTranspose = Conv2DTranspose
|
||||
|
||||
|
||||
class BlurPool(LayerBase):
|
||||
def __init__(self, filt_size=3, stride=2, **kwargs ):
|
||||
self.strides = [1,stride,stride,1]
|
||||
self.filt_size = filt_size
|
||||
self.padding = [ [0,0],
|
||||
[ int(1.*(filt_size-1)/2), int(np.ceil(1.*(filt_size-1)/2)) ],
|
||||
[ int(1.*(filt_size-1)/2), int(np.ceil(1.*(filt_size-1)/2)) ],
|
||||
[0,0] ]
|
||||
pad = [ int(1.*(filt_size-1)/2), int(np.ceil(1.*(filt_size-1)/2)) ]
|
||||
|
||||
if nn.data_format == "NHWC":
|
||||
self.padding = [ [0,0], pad, pad, [0,0] ]
|
||||
else:
|
||||
self.padding = [ [0,0], [0,0], pad, pad ]
|
||||
|
||||
if(self.filt_size==1):
|
||||
a = np.array([1.,])
|
||||
elif(self.filt_size==2):
|
||||
|
@ -493,16 +539,16 @@ def initialize_layers(nn):
|
|||
x = tf.nn.depthwise_conv2d(x, k, self.strides, 'VALID')
|
||||
return x
|
||||
nn.BlurPool = BlurPool
|
||||
|
||||
|
||||
class Dense(LayerBase):
|
||||
def __init__(self, in_ch, out_ch, use_bias=True, use_wscale=False, maxout_ch=0, kernel_initializer=None, bias_initializer=None, trainable=True, dtype=None, **kwargs ):
|
||||
"""
|
||||
use_wscale enables weight scale (equalized learning rate)
|
||||
kernel_initializer will be forced to random_normal
|
||||
|
||||
|
||||
maxout_ch https://link.springer.com/article/10.1186/s40537-019-0233-0
|
||||
typical 2-4 if you want to enable DenseMaxout behaviour
|
||||
"""
|
||||
typical 2-4 if you want to enable DenseMaxout behaviour
|
||||
"""
|
||||
self.in_ch = in_ch
|
||||
self.out_ch = out_ch
|
||||
self.use_bias = use_bias
|
||||
|
@ -512,7 +558,8 @@ def initialize_layers(nn):
|
|||
self.bias_initializer = bias_initializer
|
||||
self.trainable = trainable
|
||||
if dtype is None:
|
||||
dtype = tf.float32
|
||||
dtype = nn.tf_floatx
|
||||
|
||||
self.dtype = dtype
|
||||
super().__init__(**kwargs)
|
||||
|
||||
|
@ -521,25 +568,26 @@ def initialize_layers(nn):
|
|||
weight_shape = (self.in_ch,self.out_ch*self.maxout_ch)
|
||||
else:
|
||||
weight_shape = (self.in_ch,self.out_ch)
|
||||
|
||||
|
||||
kernel_initializer = self.kernel_initializer
|
||||
|
||||
if self.use_wscale:
|
||||
gain = 1.0
|
||||
fan_in = np.prod( weight_shape[:-1] )
|
||||
he_std = gain / np.sqrt(fan_in) # He init
|
||||
self.wscale = tf.constant(he_std, dtype=self.dtype )
|
||||
kernel_initializer = tf.initializers.random_normal(0, 1.0, dtype=self.dtype)
|
||||
|
||||
if kernel_initializer is None:
|
||||
if self.use_wscale:
|
||||
gain = 1.0
|
||||
fan_in = np.prod( weight_shape[:-1] )
|
||||
he_std = gain / np.sqrt(fan_in) # He init
|
||||
self.wscale = tf.constant(he_std, dtype=self.dtype )
|
||||
kernel_initializer = tf.initializers.random_normal(0, 1.0, dtype=self.dtype)
|
||||
else:
|
||||
kernel_initializer = tf.initializers.glorot_uniform(dtype=self.dtype)
|
||||
|
||||
kernel_initializer = tf.initializers.glorot_uniform(dtype=self.dtype)
|
||||
|
||||
self.weight = tf.get_variable("weight", weight_shape, dtype=self.dtype, initializer=kernel_initializer, trainable=self.trainable )
|
||||
|
||||
if self.use_bias:
|
||||
bias_initializer = self.bias_initializer
|
||||
if bias_initializer is None:
|
||||
bias_initializer = tf.initializers.zeros(dtype=self.dtype)
|
||||
self.bias = tf.get_variable("bias", (1,self.out_ch), dtype=self.dtype, initializer=bias_initializer, trainable=self.trainable )
|
||||
self.bias = tf.get_variable("bias", (self.out_ch,), dtype=self.dtype, initializer=bias_initializer, trainable=self.trainable )
|
||||
|
||||
def get_weights(self):
|
||||
weights = [self.weight]
|
||||
|
@ -553,46 +601,53 @@ def initialize_layers(nn):
|
|||
weight = weight * self.wscale
|
||||
|
||||
x = tf.matmul(x, weight)
|
||||
|
||||
if self.maxout_ch > 1:
|
||||
|
||||
if self.maxout_ch > 1:
|
||||
x = tf.reshape (x, (-1, self.out_ch, self.maxout_ch) )
|
||||
x = tf.reduce_max(x, axis=-1)
|
||||
|
||||
|
||||
if self.use_bias:
|
||||
x = x + self.bias
|
||||
|
||||
x = tf.add(x, tf.reshape(self.bias, (1,self.out_ch) ) )
|
||||
|
||||
return x
|
||||
nn.Dense = Dense
|
||||
|
||||
|
||||
class BatchNorm2D(LayerBase):
|
||||
"""
|
||||
currently not for training
|
||||
"""
|
||||
def __init__(self, dim, eps=1e-05, momentum=0.1, dtype=None, **kwargs ):
|
||||
def __init__(self, dim, eps=1e-05, momentum=0.1, dtype=None, **kwargs):
|
||||
self.dim = dim
|
||||
self.eps = eps
|
||||
self.momentum = momentum
|
||||
if dtype is None:
|
||||
dtype = nn.tf_floatx
|
||||
self.dtype = dtype
|
||||
|
||||
self.shape = (1,1,1,dim)
|
||||
|
||||
super().__init__(**kwargs)
|
||||
|
||||
def build_weights(self):
|
||||
self.weight = tf.get_variable("weight", self.shape, dtype=self.dtype, initializer=tf.initializers.ones() )
|
||||
self.bias = tf.get_variable("bias", self.shape, dtype=self.dtype, initializer=tf.initializers.zeros() )
|
||||
self.running_mean = tf.get_variable("running_mean", self.shape, dtype=self.dtype, initializer=tf.initializers.zeros(), trainable=False )
|
||||
self.running_var = tf.get_variable("running_var", self.shape, dtype=self.dtype, initializer=tf.initializers.zeros(), trainable=False )
|
||||
self.weight = tf.get_variable("weight", (self.dim,), dtype=self.dtype, initializer=tf.initializers.ones() )
|
||||
self.bias = tf.get_variable("bias", (self.dim,), dtype=self.dtype, initializer=tf.initializers.zeros() )
|
||||
self.running_mean = tf.get_variable("running_mean", (self.dim,), dtype=self.dtype, initializer=tf.initializers.zeros(), trainable=False )
|
||||
self.running_var = tf.get_variable("running_var", (self.dim,), dtype=self.dtype, initializer=tf.initializers.zeros(), trainable=False )
|
||||
|
||||
def get_weights(self):
|
||||
return [self.weight, self.bias, self.running_mean, self.running_var]
|
||||
|
||||
def __call__(self, x):
|
||||
x = (x - self.running_mean) / tf.sqrt( self.running_var + self.eps )
|
||||
x *= self.weight
|
||||
x += self.bias
|
||||
if nn.data_format == "NHWC":
|
||||
shape = (1,1,1,self.dim)
|
||||
else:
|
||||
shape = (1,self.dim,1,1)
|
||||
|
||||
weight = tf.reshape ( self.weight , shape )
|
||||
bias = tf.reshape ( self.bias , shape )
|
||||
running_mean = tf.reshape ( self.running_mean, shape )
|
||||
running_var = tf.reshape ( self.running_var , shape )
|
||||
|
||||
x = (x - running_mean) / tf.sqrt( running_var + self.eps )
|
||||
x *= weight
|
||||
x += bias
|
||||
return x
|
||||
|
||||
|
||||
nn.BatchNorm2D = BatchNorm2D
|
Loading…
Add table
Add a link
Reference in a new issue