mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-07-06 13:02:15 -07:00
Removed the wait at first launch for most graphics cards. Increased speed of training by 10-20%, but you have to retrain all models from scratch. SAEHD: added option 'use float16' Experimental option. Reduces the model size by half. Increases the speed of training. Decreases the accuracy of the model. The model may collapse or not train. Model may not learn the mask in large resolutions. true_face_training option is replaced by "True face power". 0.0000 .. 1.0 Experimental option. Discriminates the result face to be more like the src face. Higher value - stronger discrimination. Comparison - https://i.imgur.com/czScS9q.png
653 lines
No EOL
24 KiB
Python
653 lines
No EOL
24 KiB
Python
import pickle
|
|
import types
|
|
from pathlib import Path
|
|
from core import pathex
|
|
from core.interact import interact as io
|
|
import numpy as np
|
|
|
|
|
|
def initialize_layers(nn):
|
|
tf = nn.tf
|
|
|
|
class Saveable():
|
|
def __init__(self, name=None):
|
|
self.name = name
|
|
|
|
#override
|
|
def get_weights(self):
|
|
#return tf tensors that should be initialized/loaded/saved
|
|
pass
|
|
|
|
def save_weights(self, filename, force_dtype=None):
|
|
d = {}
|
|
weights = self.get_weights()
|
|
|
|
if self.name is None:
|
|
raise Exception("name must be defined.")
|
|
|
|
name = self.name
|
|
for w, w_val in zip(weights, nn.tf_sess.run (weights)):
|
|
w_name_split = w.name.split('/', 1)
|
|
if name != w_name_split[0]:
|
|
raise Exception("weight first name != Saveable.name")
|
|
|
|
if force_dtype is not None:
|
|
w_val = w_val.astype(force_dtype)
|
|
|
|
d[ w_name_split[1] ] = w_val
|
|
|
|
d_dumped = pickle.dumps (d, 4)
|
|
pathex.write_bytes_safe ( Path(filename), d_dumped )
|
|
|
|
def load_weights(self, filename):
|
|
"""
|
|
returns True if file exists
|
|
"""
|
|
filepath = Path(filename)
|
|
if filepath.exists():
|
|
result = True
|
|
d_dumped = filepath.read_bytes()
|
|
d = pickle.loads(d_dumped)
|
|
else:
|
|
return False
|
|
|
|
weights = self.get_weights()
|
|
|
|
if self.name is None:
|
|
raise Exception("name must be defined.")
|
|
|
|
tuples = []
|
|
for w in weights:
|
|
w_name_split = w.name.split('/')
|
|
if self.name != w_name_split[0]:
|
|
raise Exception("weight first name != Saveable.name")
|
|
|
|
sub_w_name = "/".join(w_name_split[1:])
|
|
|
|
w_val = d.get(sub_w_name, None)
|
|
w_val = np.reshape( w_val, w.shape.as_list() )
|
|
|
|
if w_val is None:
|
|
io.log_err(f"Weight {w.name} was not loaded from file {filename}")
|
|
tuples.append ( (w, w.initializer) )
|
|
else:
|
|
tuples.append ( (w, w_val) )
|
|
|
|
nn.tf_batch_set_value(tuples)
|
|
|
|
return True
|
|
|
|
def init_weights(self):
|
|
ops = []
|
|
|
|
ca_tuples_w = []
|
|
ca_tuples = []
|
|
for w in self.get_weights():
|
|
initializer = w.initializer
|
|
for input in initializer.inputs:
|
|
if "_cai_" in input.name:
|
|
ca_tuples_w.append (w)
|
|
ca_tuples.append ( (w.shape.as_list(), w.dtype.as_numpy_dtype) )
|
|
break
|
|
else:
|
|
ops.append (initializer)
|
|
|
|
if len(ops) != 0:
|
|
nn.tf_sess.run (ops)
|
|
|
|
if len(ca_tuples) != 0:
|
|
nn.tf_batch_set_value( [*zip(ca_tuples_w, nn.initializers.ca.generate_batch (ca_tuples))] )
|
|
|
|
nn.Saveable = Saveable
|
|
|
|
class LayerBase():
|
|
def __init__(self, name=None, **kwargs):
|
|
self.name = name
|
|
|
|
#override
|
|
def build_weights(self):
|
|
pass
|
|
|
|
#override
|
|
def get_weights(self):
|
|
return []
|
|
|
|
def set_weights(self, new_weights):
|
|
weights = self.get_weights()
|
|
if len(weights) != len(new_weights):
|
|
raise ValueError ('len of lists mismatch')
|
|
|
|
tuples = []
|
|
for w, new_w in zip(weights, new_weights):
|
|
if len(w.shape) != new_w.shape:
|
|
new_w = new_w.reshape(w.shape)
|
|
|
|
tuples.append ( (w, new_w) )
|
|
|
|
nn.tf_batch_set_value (tuples)
|
|
nn.LayerBase = LayerBase
|
|
|
|
class ModelBase(Saveable):
|
|
def __init__(self, *args, name=None, **kwargs):
|
|
super().__init__(name=name)
|
|
self.layers = []
|
|
self.built = False
|
|
self.args = args
|
|
self.kwargs = kwargs
|
|
self.run_placeholders = None
|
|
|
|
def _build_sub(self, layer, name):
|
|
if isinstance (layer, list):
|
|
for i,sublayer in enumerate(layer):
|
|
self._build_sub(sublayer, f"{name}_{i}")
|
|
elif isinstance (layer, LayerBase) or \
|
|
isinstance (layer, ModelBase):
|
|
|
|
if layer.name is None:
|
|
layer.name = name
|
|
|
|
if isinstance (layer, LayerBase):
|
|
with tf.variable_scope(layer.name):
|
|
layer.build_weights()
|
|
elif isinstance (layer, ModelBase):
|
|
layer.build()
|
|
|
|
self.layers.append (layer)
|
|
|
|
def xor_list(self, lst1, lst2):
|
|
return [value for value in lst1+lst2 if (value not in lst1) or (value not in lst2) ]
|
|
|
|
def build(self):
|
|
with tf.variable_scope(self.name):
|
|
|
|
current_vars = []
|
|
generator = None
|
|
while True:
|
|
|
|
if generator is None:
|
|
generator = self.on_build(*self.args, **self.kwargs)
|
|
if not isinstance(generator, types.GeneratorType):
|
|
generator = None
|
|
|
|
if generator is not None:
|
|
try:
|
|
next(generator)
|
|
except StopIteration:
|
|
generator = None
|
|
|
|
v = vars(self)
|
|
new_vars = self.xor_list (current_vars, list(v.keys()) )
|
|
|
|
for name in new_vars:
|
|
self._build_sub(v[name],name)
|
|
|
|
current_vars += new_vars
|
|
|
|
if generator is None:
|
|
break
|
|
|
|
self.built = True
|
|
|
|
#override
|
|
def get_weights(self):
|
|
if not self.built:
|
|
self.build()
|
|
|
|
weights = []
|
|
for layer in self.layers:
|
|
weights += layer.get_weights()
|
|
return weights
|
|
|
|
def get_layers(self):
|
|
if not self.built:
|
|
self.build()
|
|
layers = []
|
|
for layer in self.layers:
|
|
if isinstance (layer, LayerBase):
|
|
layers.append(layer)
|
|
else:
|
|
layers += layer.get_layers()
|
|
return layers
|
|
|
|
#override
|
|
def on_build(self, *args, **kwargs):
|
|
"""
|
|
init model layers here
|
|
|
|
return 'yield' if build is not finished
|
|
therefore dependency models will be initialized
|
|
"""
|
|
pass
|
|
|
|
#override
|
|
def forward(self, *args, **kwargs):
|
|
#flow layers/models/tensors here
|
|
pass
|
|
|
|
def __call__(self, *args, **kwargs):
|
|
if not self.built:
|
|
self.build()
|
|
|
|
return self.forward(*args, **kwargs)
|
|
|
|
def compute_output_shape(self, shapes):
|
|
if not self.built:
|
|
self.build()
|
|
|
|
not_list = False
|
|
if not isinstance(shapes, list):
|
|
not_list = True
|
|
shapes = [shapes]
|
|
|
|
with tf.device('/CPU:0'):
|
|
# CPU tensors will not impact any performance, only slightly RAM "leakage"
|
|
phs = []
|
|
for dtype,sh in shapes:
|
|
phs += [ tf.placeholder(dtype, sh) ]
|
|
|
|
result = self.__call__(phs[0] if not_list else phs)
|
|
|
|
if not isinstance(result, list):
|
|
result = [result]
|
|
|
|
result_shapes = []
|
|
|
|
for t in result:
|
|
result_shapes += [ t.shape.as_list() ]
|
|
|
|
return result_shapes[0] if not_list else result_shapes
|
|
|
|
def compute_output_channels(self, shapes):
|
|
shape = self.compute_output_shape(shapes)
|
|
shape_len = len(shape)
|
|
|
|
if shape_len == 4:
|
|
if nn.data_format == "NCHW":
|
|
return shape[1]
|
|
return shape[-1]
|
|
|
|
def build_for_run(self, shapes_list):
|
|
if not isinstance(shapes_list, list):
|
|
raise ValueError("shapes_list must be a list.")
|
|
|
|
self.run_placeholders = []
|
|
for dtype,sh in shapes_list:
|
|
self.run_placeholders.append ( tf.placeholder(dtype, sh) )
|
|
|
|
self.run_output = self.__call__(self.run_placeholders)
|
|
|
|
def run (self, inputs):
|
|
if self.run_placeholders is None:
|
|
raise Exception ("Model didn't build for run.")
|
|
|
|
if len(inputs) != len(self.run_placeholders):
|
|
raise ValueError("len(inputs) != self.run_placeholders")
|
|
|
|
feed_dict = {}
|
|
for ph, inp in zip(self.run_placeholders, inputs):
|
|
feed_dict[ph] = inp
|
|
|
|
return nn.tf_sess.run ( self.run_output, feed_dict=feed_dict)
|
|
|
|
nn.ModelBase = ModelBase
|
|
|
|
class Conv2D(LayerBase):
|
|
"""
|
|
use_wscale bool enables equalized learning rate, kernel_initializer will be forced to random_normal
|
|
|
|
|
|
"""
|
|
def __init__(self, in_ch, out_ch, kernel_size, strides=1, padding='SAME', dilations=1, use_bias=True, use_wscale=False, kernel_initializer=None, bias_initializer=None, trainable=True, dtype=None, **kwargs ):
|
|
if not isinstance(strides, int):
|
|
raise ValueError ("strides must be an int type")
|
|
if not isinstance(dilations, int):
|
|
raise ValueError ("dilations must be an int type")
|
|
|
|
if dtype is None:
|
|
dtype = nn.tf_floatx
|
|
|
|
if isinstance(padding, str):
|
|
if padding == "SAME":
|
|
padding = ( (kernel_size - 1) * dilations + 1 ) // 2
|
|
elif padding == "VALID":
|
|
padding = 0
|
|
else:
|
|
raise ValueError ("Wrong padding type. Should be VALID SAME or INT or 4x INTs")
|
|
|
|
if isinstance(padding, int):
|
|
if padding != 0:
|
|
if nn.data_format == "NHWC":
|
|
padding = [ [0,0], [padding,padding], [padding,padding], [0,0] ]
|
|
else:
|
|
padding = [ [0,0], [0,0], [padding,padding], [padding,padding] ]
|
|
else:
|
|
padding = None
|
|
|
|
if nn.data_format == "NHWC":
|
|
strides = [1,strides,strides,1]
|
|
else:
|
|
strides = [1,1,strides,strides]
|
|
|
|
if nn.data_format == "NHWC":
|
|
dilations = [1,dilations,dilations,1]
|
|
else:
|
|
dilations = [1,1,dilations,dilations]
|
|
|
|
self.in_ch = in_ch
|
|
self.out_ch = out_ch
|
|
self.kernel_size = kernel_size
|
|
self.strides = strides
|
|
self.padding = padding
|
|
self.dilations = dilations
|
|
self.use_bias = use_bias
|
|
self.use_wscale = use_wscale
|
|
self.kernel_initializer = kernel_initializer
|
|
self.bias_initializer = bias_initializer
|
|
self.trainable = trainable
|
|
self.dtype = dtype
|
|
super().__init__(**kwargs)
|
|
|
|
def build_weights(self):
|
|
kernel_initializer = self.kernel_initializer
|
|
if self.use_wscale:
|
|
gain = 1.0 if self.kernel_size == 1 else np.sqrt(2)
|
|
fan_in = self.kernel_size*self.kernel_size*self.in_ch
|
|
he_std = gain / np.sqrt(fan_in) # He init
|
|
self.wscale = tf.constant(he_std, dtype=self.dtype )
|
|
kernel_initializer = tf.initializers.random_normal(0, 1.0, dtype=self.dtype)
|
|
|
|
if kernel_initializer is None:
|
|
kernel_initializer = tf.initializers.glorot_uniform(dtype=self.dtype)
|
|
|
|
self.weight = tf.get_variable("weight", (self.kernel_size,self.kernel_size,self.in_ch,self.out_ch), dtype=self.dtype, initializer=kernel_initializer, trainable=self.trainable )
|
|
|
|
if self.use_bias:
|
|
bias_initializer = self.bias_initializer
|
|
if bias_initializer is None:
|
|
bias_initializer = tf.initializers.zeros(dtype=self.dtype)
|
|
|
|
self.bias = tf.get_variable("bias", (self.out_ch,), dtype=self.dtype, initializer=bias_initializer, trainable=self.trainable )
|
|
|
|
def get_weights(self):
|
|
weights = [self.weight]
|
|
if self.use_bias:
|
|
weights += [self.bias]
|
|
return weights
|
|
|
|
def __call__(self, x):
|
|
weight = self.weight
|
|
if self.use_wscale:
|
|
weight = weight * self.wscale
|
|
|
|
if self.padding is not None:
|
|
x = tf.pad (x, self.padding, mode='CONSTANT')
|
|
|
|
x = tf.nn.conv2d(x, weight, self.strides, 'VALID', dilations=self.dilations, data_format=nn.data_format)
|
|
if self.use_bias:
|
|
if nn.data_format == "NHWC":
|
|
bias = tf.reshape (self.bias, (1,1,1,self.out_ch) )
|
|
else:
|
|
bias = tf.reshape (self.bias, (1,self.out_ch,1,1) )
|
|
x = tf.add(x, bias)
|
|
return x
|
|
|
|
def __str__(self):
|
|
r = f"{self.__class__.__name__} : in_ch:{self.in_ch} out_ch:{self.out_ch} "
|
|
|
|
return r
|
|
nn.Conv2D = Conv2D
|
|
|
|
class Conv2DTranspose(LayerBase):
|
|
"""
|
|
use_wscale enables weight scale (equalized learning rate)
|
|
kernel_initializer will be forced to random_normal
|
|
"""
|
|
def __init__(self, in_ch, out_ch, kernel_size, strides=2, padding='SAME', use_bias=True, use_wscale=False, kernel_initializer=None, bias_initializer=None, trainable=True, dtype=None, **kwargs ):
|
|
if not isinstance(strides, int):
|
|
raise ValueError ("strides must be an int type")
|
|
|
|
if dtype is None:
|
|
dtype = nn.tf_floatx
|
|
|
|
self.in_ch = in_ch
|
|
self.out_ch = out_ch
|
|
self.kernel_size = kernel_size
|
|
self.strides = strides
|
|
self.padding = padding
|
|
self.use_bias = use_bias
|
|
self.use_wscale = use_wscale
|
|
self.kernel_initializer = kernel_initializer
|
|
self.bias_initializer = bias_initializer
|
|
self.trainable = trainable
|
|
self.dtype = dtype
|
|
super().__init__(**kwargs)
|
|
|
|
def build_weights(self):
|
|
kernel_initializer = self.kernel_initializer
|
|
if self.use_wscale:
|
|
gain = 1.0 if self.kernel_size == 1 else np.sqrt(2)
|
|
fan_in = self.kernel_size*self.kernel_size*self.in_ch
|
|
he_std = gain / np.sqrt(fan_in) # He init
|
|
self.wscale = tf.constant(he_std, dtype=self.dtype )
|
|
kernel_initializer = tf.initializers.random_normal(0, 1.0, dtype=self.dtype)
|
|
if kernel_initializer is None:
|
|
kernel_initializer = tf.initializers.glorot_uniform(dtype=self.dtype)
|
|
self.weight = tf.get_variable("weight", (self.kernel_size,self.kernel_size,self.out_ch,self.in_ch), dtype=self.dtype, initializer=kernel_initializer, trainable=self.trainable )
|
|
|
|
if self.use_bias:
|
|
bias_initializer = self.bias_initializer
|
|
if bias_initializer is None:
|
|
bias_initializer = tf.initializers.zeros(dtype=self.dtype)
|
|
|
|
self.bias = tf.get_variable("bias", (self.out_ch,), dtype=self.dtype, initializer=bias_initializer, trainable=self.trainable )
|
|
|
|
def get_weights(self):
|
|
weights = [self.weight]
|
|
if self.use_bias:
|
|
weights += [self.bias]
|
|
return weights
|
|
|
|
def __call__(self, x):
|
|
shape = x.shape
|
|
|
|
if nn.data_format == "NHWC":
|
|
h,w,c = shape[1], shape[2], shape[3]
|
|
output_shape = tf.stack ( (tf.shape(x)[0],
|
|
self.deconv_length(w, self.strides, self.kernel_size, self.padding),
|
|
self.deconv_length(h, self.strides, self.kernel_size, self.padding),
|
|
self.out_ch) )
|
|
|
|
strides = [1,self.strides,self.strides,1]
|
|
else:
|
|
c,h,w = shape[1], shape[2], shape[3]
|
|
output_shape = tf.stack ( (tf.shape(x)[0],
|
|
self.out_ch,
|
|
self.deconv_length(w, self.strides, self.kernel_size, self.padding),
|
|
self.deconv_length(h, self.strides, self.kernel_size, self.padding),
|
|
) )
|
|
strides = [1,1,self.strides,self.strides]
|
|
weight = self.weight
|
|
if self.use_wscale:
|
|
weight = weight * self.wscale
|
|
|
|
x = tf.nn.conv2d_transpose(x, weight, output_shape, strides, padding=self.padding, data_format=nn.data_format)
|
|
|
|
if self.use_bias:
|
|
if nn.data_format == "NHWC":
|
|
bias = tf.reshape (self.bias, (1,1,1,self.out_ch) )
|
|
else:
|
|
bias = tf.reshape (self.bias, (1,self.out_ch,1,1) )
|
|
x = tf.add(x, bias)
|
|
return x
|
|
|
|
def __str__(self):
|
|
r = f"{self.__class__.__name__} : in_ch:{self.in_ch} out_ch:{self.out_ch} "
|
|
|
|
return r
|
|
|
|
def deconv_length(self, dim_size, stride_size, kernel_size, padding):
|
|
assert padding in {'SAME', 'VALID', 'FULL'}
|
|
if dim_size is None:
|
|
return None
|
|
if padding == 'VALID':
|
|
dim_size = dim_size * stride_size + max(kernel_size - stride_size, 0)
|
|
elif padding == 'FULL':
|
|
dim_size = dim_size * stride_size - (stride_size + kernel_size - 2)
|
|
elif padding == 'SAME':
|
|
dim_size = dim_size * stride_size
|
|
return dim_size
|
|
nn.Conv2DTranspose = Conv2DTranspose
|
|
|
|
class BlurPool(LayerBase):
|
|
def __init__(self, filt_size=3, stride=2, **kwargs ):
|
|
self.strides = [1,stride,stride,1]
|
|
self.filt_size = filt_size
|
|
pad = [ int(1.*(filt_size-1)/2), int(np.ceil(1.*(filt_size-1)/2)) ]
|
|
|
|
if nn.data_format == "NHWC":
|
|
self.padding = [ [0,0], pad, pad, [0,0] ]
|
|
else:
|
|
self.padding = [ [0,0], [0,0], pad, pad ]
|
|
|
|
if(self.filt_size==1):
|
|
a = np.array([1.,])
|
|
elif(self.filt_size==2):
|
|
a = np.array([1., 1.])
|
|
elif(self.filt_size==3):
|
|
a = np.array([1., 2., 1.])
|
|
elif(self.filt_size==4):
|
|
a = np.array([1., 3., 3., 1.])
|
|
elif(self.filt_size==5):
|
|
a = np.array([1., 4., 6., 4., 1.])
|
|
elif(self.filt_size==6):
|
|
a = np.array([1., 5., 10., 10., 5., 1.])
|
|
elif(self.filt_size==7):
|
|
a = np.array([1., 6., 15., 20., 15., 6., 1.])
|
|
|
|
a = a[:,None]*a[None,:]
|
|
a = a / np.sum(a)
|
|
a = a[:,:,None,None]
|
|
self.a = a
|
|
super().__init__(**kwargs)
|
|
|
|
def build_weights(self):
|
|
self.k = tf.constant (self.a, dtype=nn.tf_floatx )
|
|
|
|
def __call__(self, x):
|
|
k = tf.tile (self.k, (1,1,x.shape[-1],1) )
|
|
x = tf.pad(x, self.padding )
|
|
x = tf.nn.depthwise_conv2d(x, k, self.strides, 'VALID')
|
|
return x
|
|
nn.BlurPool = BlurPool
|
|
|
|
class Dense(LayerBase):
|
|
def __init__(self, in_ch, out_ch, use_bias=True, use_wscale=False, maxout_ch=0, kernel_initializer=None, bias_initializer=None, trainable=True, dtype=None, **kwargs ):
|
|
"""
|
|
use_wscale enables weight scale (equalized learning rate)
|
|
kernel_initializer will be forced to random_normal
|
|
|
|
maxout_ch https://link.springer.com/article/10.1186/s40537-019-0233-0
|
|
typical 2-4 if you want to enable DenseMaxout behaviour
|
|
"""
|
|
self.in_ch = in_ch
|
|
self.out_ch = out_ch
|
|
self.use_bias = use_bias
|
|
self.use_wscale = use_wscale
|
|
self.maxout_ch = maxout_ch
|
|
self.kernel_initializer = kernel_initializer
|
|
self.bias_initializer = bias_initializer
|
|
self.trainable = trainable
|
|
if dtype is None:
|
|
dtype = nn.tf_floatx
|
|
|
|
self.dtype = dtype
|
|
super().__init__(**kwargs)
|
|
|
|
def build_weights(self):
|
|
if self.maxout_ch > 1:
|
|
weight_shape = (self.in_ch,self.out_ch*self.maxout_ch)
|
|
else:
|
|
weight_shape = (self.in_ch,self.out_ch)
|
|
|
|
kernel_initializer = self.kernel_initializer
|
|
|
|
if self.use_wscale:
|
|
gain = 1.0
|
|
fan_in = np.prod( weight_shape[:-1] )
|
|
he_std = gain / np.sqrt(fan_in) # He init
|
|
self.wscale = tf.constant(he_std, dtype=self.dtype )
|
|
kernel_initializer = tf.initializers.random_normal(0, 1.0, dtype=self.dtype)
|
|
|
|
if kernel_initializer is None:
|
|
kernel_initializer = tf.initializers.glorot_uniform(dtype=self.dtype)
|
|
|
|
self.weight = tf.get_variable("weight", weight_shape, dtype=self.dtype, initializer=kernel_initializer, trainable=self.trainable )
|
|
|
|
if self.use_bias:
|
|
bias_initializer = self.bias_initializer
|
|
if bias_initializer is None:
|
|
bias_initializer = tf.initializers.zeros(dtype=self.dtype)
|
|
self.bias = tf.get_variable("bias", (self.out_ch,), dtype=self.dtype, initializer=bias_initializer, trainable=self.trainable )
|
|
|
|
def get_weights(self):
|
|
weights = [self.weight]
|
|
if self.use_bias:
|
|
weights += [self.bias]
|
|
return weights
|
|
|
|
def __call__(self, x):
|
|
weight = self.weight
|
|
if self.use_wscale:
|
|
weight = weight * self.wscale
|
|
|
|
x = tf.matmul(x, weight)
|
|
|
|
if self.maxout_ch > 1:
|
|
x = tf.reshape (x, (-1, self.out_ch, self.maxout_ch) )
|
|
x = tf.reduce_max(x, axis=-1)
|
|
|
|
if self.use_bias:
|
|
x = tf.add(x, tf.reshape(self.bias, (1,self.out_ch) ) )
|
|
|
|
return x
|
|
nn.Dense = Dense
|
|
|
|
class BatchNorm2D(LayerBase):
|
|
"""
|
|
currently not for training
|
|
"""
|
|
def __init__(self, dim, eps=1e-05, momentum=0.1, dtype=None, **kwargs):
|
|
self.dim = dim
|
|
self.eps = eps
|
|
self.momentum = momentum
|
|
if dtype is None:
|
|
dtype = nn.tf_floatx
|
|
self.dtype = dtype
|
|
super().__init__(**kwargs)
|
|
|
|
def build_weights(self):
|
|
self.weight = tf.get_variable("weight", (self.dim,), dtype=self.dtype, initializer=tf.initializers.ones() )
|
|
self.bias = tf.get_variable("bias", (self.dim,), dtype=self.dtype, initializer=tf.initializers.zeros() )
|
|
self.running_mean = tf.get_variable("running_mean", (self.dim,), dtype=self.dtype, initializer=tf.initializers.zeros(), trainable=False )
|
|
self.running_var = tf.get_variable("running_var", (self.dim,), dtype=self.dtype, initializer=tf.initializers.zeros(), trainable=False )
|
|
|
|
def get_weights(self):
|
|
return [self.weight, self.bias, self.running_mean, self.running_var]
|
|
|
|
def __call__(self, x):
|
|
if nn.data_format == "NHWC":
|
|
shape = (1,1,1,self.dim)
|
|
else:
|
|
shape = (1,self.dim,1,1)
|
|
|
|
weight = tf.reshape ( self.weight , shape )
|
|
bias = tf.reshape ( self.bias , shape )
|
|
running_mean = tf.reshape ( self.running_mean, shape )
|
|
running_var = tf.reshape ( self.running_var , shape )
|
|
|
|
x = (x - running_mean) / tf.sqrt( running_var + self.eps )
|
|
x *= weight
|
|
x += bias
|
|
return x
|
|
|
|
nn.BatchNorm2D = BatchNorm2D |