mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-07-06 04:52:13 -07:00
refactorings
This commit is contained in:
parent
e0e8970ab9
commit
754d6c385c
13 changed files with 243 additions and 104 deletions
|
@ -8,7 +8,7 @@ import numpy as np
|
|||
from facelib import LandmarksProcessor
|
||||
from samplelib import (SampleGeneratorBase, SampleHost, SampleProcessor,
|
||||
SampleType)
|
||||
from utils import iter_utils
|
||||
from utils import iter_utils, mp_utils
|
||||
|
||||
|
||||
'''
|
||||
|
@ -23,9 +23,6 @@ class SampleGeneratorFacePerson(SampleGeneratorBase):
|
|||
sample_process_options=SampleProcessor.Options(),
|
||||
output_sample_types=[],
|
||||
person_id_mode=1,
|
||||
use_caching=False,
|
||||
generators_count=2,
|
||||
generators_random_seed=None,
|
||||
**kwargs):
|
||||
|
||||
super().__init__(samples_path, debug, batch_size)
|
||||
|
@ -33,51 +30,32 @@ class SampleGeneratorFacePerson(SampleGeneratorBase):
|
|||
self.output_sample_types = output_sample_types
|
||||
self.person_id_mode = person_id_mode
|
||||
|
||||
if generators_random_seed is not None and len(generators_random_seed) != generators_count:
|
||||
raise ValueError("len(generators_random_seed) != generators_count")
|
||||
self.generators_random_seed = generators_random_seed
|
||||
|
||||
samples = SampleHost.load (SampleType.FACE, self.samples_path, person_id_mode=True, use_caching=use_caching)
|
||||
samples = copy.copy(samples)
|
||||
for i in range(len(samples)):
|
||||
samples[i] = copy.copy(samples[i])
|
||||
|
||||
if person_id_mode==1:
|
||||
#np.random.shuffle(samples)
|
||||
#
|
||||
#new_samples = []
|
||||
#while len(samples) > 0:
|
||||
# for i in range( len(samples)-1, -1, -1):
|
||||
# sample = samples[i]
|
||||
#
|
||||
# if len(sample) > 0:
|
||||
# new_samples.append(sample.pop(0))
|
||||
#
|
||||
# if len(sample) == 0:
|
||||
# samples.pop(i)
|
||||
# i -= 1
|
||||
#samples = new_samples
|
||||
new_samples = []
|
||||
for s in samples:
|
||||
new_samples += s
|
||||
samples = new_samples
|
||||
np.random.shuffle(samples)
|
||||
|
||||
|
||||
samples_host = SampleHost.mp_host (SampleType.FACE, self.samples_path)
|
||||
samples = samples_host.get_list()
|
||||
self.samples_len = len(samples)
|
||||
|
||||
|
||||
if self.samples_len == 0:
|
||||
raise ValueError('No training data provided.')
|
||||
raise ValueError('No training data provided.')
|
||||
|
||||
persons_name_idxs = {}
|
||||
|
||||
for i,sample in enumerate(samples):
|
||||
person_name = sample.person_name
|
||||
if person_name not in persons_name_idxs:
|
||||
persons_name_idxs[person_name] = []
|
||||
persons_name_idxs[person_name].append (i)
|
||||
|
||||
indexes2D = [ persons_name_idxs[person_name] for person_name in sorted(list(persons_name_idxs.keys())) ]
|
||||
index2d_host = mp_utils.Index2DHost(indexes2D)
|
||||
|
||||
|
||||
if self.debug:
|
||||
self.generators_count = 1
|
||||
self.generators = [iter_utils.ThisThreadGenerator ( self.batch_func, (0, samples) )]
|
||||
self.generators = [iter_utils.ThisThreadGenerator ( self.batch_func, (samples_host.create_cli(), index2d_host.create_cli(),) )]
|
||||
else:
|
||||
self.generators_count = min ( generators_count, self.samples_len )
|
||||
|
||||
if person_id_mode==1:
|
||||
self.generators = [iter_utils.SubprocessGenerator ( self.batch_func, (i, samples[i::self.generators_count]) ) for i in range(self.generators_count) ]
|
||||
else:
|
||||
self.generators = [iter_utils.SubprocessGenerator ( self.batch_func, (i, samples) ) for i in range(self.generators_count) ]
|
||||
self.generators_count = np.clip(multiprocessing.cpu_count(), 2, 4)
|
||||
self.generators = [iter_utils.SubprocessGenerator ( self.batch_func, (samples_host.create_cli(), index2d_host.create_cli(),), start_now=True ) for i in range(self.generators_count) ]
|
||||
|
||||
self.generator_counter = -1
|
||||
|
||||
|
@ -94,12 +72,43 @@ class SampleGeneratorFacePerson(SampleGeneratorBase):
|
|||
return next(generator)
|
||||
|
||||
def batch_func(self, param ):
|
||||
generator_id, samples = param
|
||||
samples, index2d_host, = param
|
||||
bs = self.batch_size
|
||||
|
||||
if self.generators_random_seed is not None:
|
||||
np.random.seed ( self.generators_random_seed[generator_id] )
|
||||
while True:
|
||||
person_idxs = index2d_host.get_1D(bs)
|
||||
samples_idxs = index2d_host.get_2D(person_idxs, 1)
|
||||
|
||||
batches = None
|
||||
for n_batch in range(bs):
|
||||
person_id = person_idxs[n_batch]
|
||||
sample_idx = samples_idxs[n_batch][0]
|
||||
|
||||
if self.person_id_mode==1:
|
||||
sample = samples[ sample_idx ]
|
||||
try:
|
||||
x, = SampleProcessor.process ([sample], self.sample_process_options, self.output_sample_types, self.debug)
|
||||
except:
|
||||
raise Exception ("Exception occured in sample %s. Error: %s" % (sample.filename, traceback.format_exc() ) )
|
||||
|
||||
if batches is None:
|
||||
batches = [ [] for _ in range(len(x)) ]
|
||||
|
||||
batches += [ [] ]
|
||||
i_person_id = len(batches)-1
|
||||
|
||||
for i in range(len(x)):
|
||||
batches[i].append ( x[i] )
|
||||
|
||||
batches[i_person_id].append ( np.array([person_id]) )
|
||||
|
||||
yield [ np.array(batch) for batch in batches]
|
||||
|
||||
@staticmethod
|
||||
def get_person_id_max_count(samples_path):
|
||||
return SampleHost.get_person_id_max_count(samples_path)
|
||||
|
||||
"""
|
||||
if self.person_id_mode==1:
|
||||
samples_len = len(samples)
|
||||
samples_idxs = [*range(samples_len)]
|
||||
shuffle_idxs = []
|
||||
|
@ -132,9 +141,7 @@ class SampleGeneratorFacePerson(SampleGeneratorBase):
|
|||
samples_idxs[i] = [*range(len(samples[i]))]
|
||||
shuffle_idxs[i] = []
|
||||
|
||||
while True:
|
||||
|
||||
if self.person_id_mode==2:
|
||||
if self.person_id_mode==2:
|
||||
if len(shuffle_person_idxs) == 0:
|
||||
shuffle_person_idxs = person_idxs.copy()
|
||||
np.random.shuffle(shuffle_person_idxs)
|
||||
|
@ -270,9 +277,4 @@ class SampleGeneratorFacePerson(SampleGeneratorBase):
|
|||
batches[i_person_id1].append ( np.array([sample1.person_id]) )
|
||||
|
||||
batches[i_person_id2].append ( np.array([sample2.person_id]) )
|
||||
|
||||
yield [ np.array(batch) for batch in batches]
|
||||
|
||||
@staticmethod
|
||||
def get_person_id_max_count(samples_path):
|
||||
return SampleHost.get_person_id_max_count(samples_path)
|
||||
"""
|
Loading…
Add table
Add a link
Reference in a new issue