DeepFaceLab/samplelib/SampleGeneratorFacePerson.py
2019-12-22 19:00:59 +04:00

280 lines
No EOL
12 KiB
Python

import copy
import multiprocessing
import traceback
import cv2
import numpy as np
from facelib import LandmarksProcessor
from samplelib import (SampleGeneratorBase, SampleHost, SampleProcessor,
SampleType)
from utils import iter_utils, mp_utils
'''
arg
output_sample_types = [
[SampleProcessor.TypeFlags, size, (optional) {} opts ] ,
...
]
'''
class SampleGeneratorFacePerson(SampleGeneratorBase):
def __init__ (self, samples_path, debug=False, batch_size=1,
sample_process_options=SampleProcessor.Options(),
output_sample_types=[],
person_id_mode=1,
**kwargs):
super().__init__(samples_path, debug, batch_size)
self.sample_process_options = sample_process_options
self.output_sample_types = output_sample_types
self.person_id_mode = person_id_mode
samples_host = SampleHost.mp_host (SampleType.FACE, self.samples_path)
samples = samples_host.get_list()
self.samples_len = len(samples)
if self.samples_len == 0:
raise ValueError('No training data provided.')
persons_name_idxs = {}
for i,sample in enumerate(samples):
person_name = sample.person_name
if person_name not in persons_name_idxs:
persons_name_idxs[person_name] = []
persons_name_idxs[person_name].append (i)
indexes2D = [ persons_name_idxs[person_name] for person_name in sorted(list(persons_name_idxs.keys())) ]
index2d_host = mp_utils.Index2DHost(indexes2D)
if self.debug:
self.generators_count = 1
self.generators = [iter_utils.ThisThreadGenerator ( self.batch_func, (samples_host.create_cli(), index2d_host.create_cli(),) )]
else:
self.generators_count = np.clip(multiprocessing.cpu_count(), 2, 4)
self.generators = [iter_utils.SubprocessGenerator ( self.batch_func, (samples_host.create_cli(), index2d_host.create_cli(),), start_now=True ) for i in range(self.generators_count) ]
self.generator_counter = -1
#overridable
def get_total_sample_count(self):
return self.samples_len
def __iter__(self):
return self
def __next__(self):
self.generator_counter += 1
generator = self.generators[self.generator_counter % len(self.generators) ]
return next(generator)
def batch_func(self, param ):
samples, index2d_host, = param
bs = self.batch_size
while True:
person_idxs = index2d_host.get_1D(bs)
samples_idxs = index2d_host.get_2D(person_idxs, 1)
batches = None
for n_batch in range(bs):
person_id = person_idxs[n_batch]
sample_idx = samples_idxs[n_batch][0]
sample = samples[ sample_idx ]
try:
x, = SampleProcessor.process ([sample], self.sample_process_options, self.output_sample_types, self.debug)
except:
raise Exception ("Exception occured in sample %s. Error: %s" % (sample.filename, traceback.format_exc() ) )
if batches is None:
batches = [ [] for _ in range(len(x)) ]
batches += [ [] ]
i_person_id = len(batches)-1
for i in range(len(x)):
batches[i].append ( x[i] )
batches[i_person_id].append ( np.array([person_id]) )
yield [ np.array(batch) for batch in batches]
@staticmethod
def get_person_id_max_count(samples_path):
return SampleHost.get_person_id_max_count(samples_path)
"""
if self.person_id_mode==1:
samples_len = len(samples)
samples_idxs = [*range(samples_len)]
shuffle_idxs = []
elif self.person_id_mode==2:
persons_count = len(samples)
person_idxs = []
for j in range(persons_count):
for i in range(j+1,persons_count):
person_idxs += [ [i,j] ]
shuffle_person_idxs = []
samples_idxs = [None]*persons_count
shuffle_idxs = [None]*persons_count
for i in range(persons_count):
samples_idxs[i] = [*range(len(samples[i]))]
shuffle_idxs[i] = []
elif self.person_id_mode==3:
persons_count = len(samples)
person_idxs = [ *range(persons_count) ]
shuffle_person_idxs = []
samples_idxs = [None]*persons_count
shuffle_idxs = [None]*persons_count
for i in range(persons_count):
samples_idxs[i] = [*range(len(samples[i]))]
shuffle_idxs[i] = []
if self.person_id_mode==2:
if len(shuffle_person_idxs) == 0:
shuffle_person_idxs = person_idxs.copy()
np.random.shuffle(shuffle_person_idxs)
person_ids = shuffle_person_idxs.pop()
batches = None
for n_batch in range(self.batch_size):
if self.person_id_mode==1:
if len(shuffle_idxs) == 0:
shuffle_idxs = samples_idxs.copy()
np.random.shuffle(shuffle_idxs) ###
idx = shuffle_idxs.pop()
sample = samples[ idx ]
try:
x, = SampleProcessor.process ([sample], self.sample_process_options, self.output_sample_types, self.debug)
except:
raise Exception ("Exception occured in sample %s. Error: %s" % (sample.filename, traceback.format_exc() ) )
if type(x) != tuple and type(x) != list:
raise Exception('SampleProcessor.process returns NOT tuple/list')
if batches is None:
batches = [ [] for _ in range(len(x)) ]
batches += [ [] ]
i_person_id = len(batches)-1
for i in range(len(x)):
batches[i].append ( x[i] )
batches[i_person_id].append ( np.array([sample.person_id]) )
elif self.person_id_mode==2:
person_id1, person_id2 = person_ids
if len(shuffle_idxs[person_id1]) == 0:
shuffle_idxs[person_id1] = samples_idxs[person_id1].copy()
np.random.shuffle(shuffle_idxs[person_id1])
idx = shuffle_idxs[person_id1].pop()
sample1 = samples[person_id1][idx]
if len(shuffle_idxs[person_id2]) == 0:
shuffle_idxs[person_id2] = samples_idxs[person_id2].copy()
np.random.shuffle(shuffle_idxs[person_id2])
idx = shuffle_idxs[person_id2].pop()
sample2 = samples[person_id2][idx]
if sample1 is not None and sample2 is not None:
try:
x1, = SampleProcessor.process ([sample1], self.sample_process_options, self.output_sample_types, self.debug)
except:
raise Exception ("Exception occured in sample %s. Error: %s" % (sample1.filename, traceback.format_exc() ) )
try:
x2, = SampleProcessor.process ([sample2], self.sample_process_options, self.output_sample_types, self.debug)
except:
raise Exception ("Exception occured in sample %s. Error: %s" % (sample2.filename, traceback.format_exc() ) )
x1_len = len(x1)
if batches is None:
batches = [ [] for _ in range(x1_len) ]
batches += [ [] ]
i_person_id1 = len(batches)-1
batches += [ [] for _ in range(len(x2)) ]
batches += [ [] ]
i_person_id2 = len(batches)-1
for i in range(x1_len):
batches[i].append ( x1[i] )
for i in range(len(x2)):
batches[x1_len+1+i].append ( x2[i] )
batches[i_person_id1].append ( np.array([sample1.person_id]) )
batches[i_person_id2].append ( np.array([sample2.person_id]) )
elif self.person_id_mode==3:
if len(shuffle_person_idxs) == 0:
shuffle_person_idxs = person_idxs.copy()
np.random.shuffle(shuffle_person_idxs)
person_id = shuffle_person_idxs.pop()
if len(shuffle_idxs[person_id]) == 0:
shuffle_idxs[person_id] = samples_idxs[person_id].copy()
np.random.shuffle(shuffle_idxs[person_id])
idx = shuffle_idxs[person_id].pop()
sample1 = samples[person_id][idx]
if len(shuffle_idxs[person_id]) == 0:
shuffle_idxs[person_id] = samples_idxs[person_id].copy()
np.random.shuffle(shuffle_idxs[person_id])
idx = shuffle_idxs[person_id].pop()
sample2 = samples[person_id][idx]
if sample1 is not None and sample2 is not None:
try:
x1, = SampleProcessor.process ([sample1], self.sample_process_options, self.output_sample_types, self.debug)
except:
raise Exception ("Exception occured in sample %s. Error: %s" % (sample1.filename, traceback.format_exc() ) )
try:
x2, = SampleProcessor.process ([sample2], self.sample_process_options, self.output_sample_types, self.debug)
except:
raise Exception ("Exception occured in sample %s. Error: %s" % (sample2.filename, traceback.format_exc() ) )
x1_len = len(x1)
if batches is None:
batches = [ [] for _ in range(x1_len) ]
batches += [ [] ]
i_person_id1 = len(batches)-1
batches += [ [] for _ in range(len(x2)) ]
batches += [ [] ]
i_person_id2 = len(batches)-1
for i in range(x1_len):
batches[i].append ( x1[i] )
for i in range(len(x2)):
batches[x1_len+1+i].append ( x2[i] )
batches[i_person_id1].append ( np.array([sample1.person_id]) )
batches[i_person_id2].append ( np.array([sample2.person_id]) )
"""