mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-08-22 14:24:40 -07:00
better flask previews
This commit is contained in:
parent
4c3c7b6033
commit
637bf69eb7
1 changed files with 255 additions and 203 deletions
|
@ -3,8 +3,9 @@ import traceback
|
|||
import queue
|
||||
import threading
|
||||
import time
|
||||
from io import BytesIO
|
||||
import base64
|
||||
from enum import Enum
|
||||
from os.path import getmtime
|
||||
|
||||
import numpy as np
|
||||
import itertools
|
||||
from pathlib import Path
|
||||
|
@ -14,20 +15,20 @@ import cv2
|
|||
import models
|
||||
from interact import interact as io
|
||||
from flask import Flask, send_file, Response, render_template, render_template_string, request, g
|
||||
from flask_caching import Cache
|
||||
# from flask_socketio import SocketIO
|
||||
|
||||
def trainerThread(s2c, c2s, e, args, device_args):
|
||||
def trainerThread (s2c, c2s, e, args, device_args):
|
||||
while True:
|
||||
try:
|
||||
start_time = time.time()
|
||||
|
||||
training_data_src_path = Path(args.get('training_data_src_dir', ''))
|
||||
training_data_dst_path = Path(args.get('training_data_dst_dir', ''))
|
||||
training_data_src_path = Path( args.get('training_data_src_dir', '') )
|
||||
training_data_dst_path = Path( args.get('training_data_dst_dir', '') )
|
||||
|
||||
pretraining_data_path = args.get('pretraining_data_dir', '')
|
||||
pretraining_data_path = Path(pretraining_data_path) if pretraining_data_path is not None else None
|
||||
|
||||
model_path = Path(args.get('model_path', ''))
|
||||
model_path = Path( args.get('model_path', '') )
|
||||
model_name = args.get('model_name', '')
|
||||
save_interval_min = 15
|
||||
debug = args.get('debug', '')
|
||||
|
@ -54,25 +55,24 @@ def trainerThread(s2c, c2s, e, args, device_args):
|
|||
|
||||
is_reached_goal = model.is_reached_iter_goal()
|
||||
|
||||
shared_state = {'after_save': False}
|
||||
shared_state = { 'after_save' : False }
|
||||
loss_string = ""
|
||||
save_iter = model.get_iter()
|
||||
|
||||
save_iter = model.get_iter()
|
||||
def model_save():
|
||||
if not debug and not is_reached_goal:
|
||||
io.log_info("Saving....", end='\r')
|
||||
io.log_info ("Saving....", end='\r')
|
||||
model.save()
|
||||
shared_state['after_save'] = True
|
||||
|
||||
def send_preview():
|
||||
if not debug:
|
||||
previews = model.get_previews()
|
||||
c2s.put({'op': 'show', 'previews': previews, 'iter': model.get_iter(),
|
||||
'loss_history': model.get_loss_history().copy()})
|
||||
c2s.put ( {'op':'show', 'previews': previews, 'iter':model.get_iter(), 'loss_history': model.get_loss_history().copy() } )
|
||||
else:
|
||||
previews = [('debug, press update for new', model.debug_one_iter())]
|
||||
c2s.put({'op': 'show', 'previews': previews})
|
||||
e.set() # Set the GUI Thread as Ready
|
||||
previews = [( 'debug, press update for new', model.debug_one_iter())]
|
||||
c2s.put ( {'op':'show', 'previews': previews} )
|
||||
e.set() #Set the GUI Thread as Ready
|
||||
|
||||
|
||||
if model.is_first_run():
|
||||
model_save()
|
||||
|
@ -81,16 +81,15 @@ def trainerThread(s2c, c2s, e, args, device_args):
|
|||
if is_reached_goal:
|
||||
io.log_info('Model already trained to target iteration. You can use preview.')
|
||||
else:
|
||||
io.log_info('Starting. Target iteration: %d. Press "Enter" to stop training and save model.' % (
|
||||
model.get_target_iter()))
|
||||
io.log_info('Starting. Target iteration: %d. Press "Enter" to stop training and save model.' % ( model.get_target_iter() ) )
|
||||
else:
|
||||
io.log_info('Starting. Press "Enter" to stop training and save model.')
|
||||
|
||||
last_save_time = time.time()
|
||||
|
||||
execute_programs = [[x[0], x[1], time.time()] for x in execute_programs]
|
||||
execute_programs = [ [x[0], x[1], time.time() ] for x in execute_programs ]
|
||||
|
||||
for i in itertools.count(0, 1):
|
||||
for i in itertools.count(0,1):
|
||||
if not debug:
|
||||
cur_time = time.time()
|
||||
|
||||
|
@ -100,7 +99,7 @@ def trainerThread(s2c, c2s, e, args, device_args):
|
|||
if prog_time > 0 and (cur_time - start_time) >= prog_time:
|
||||
x[0] = 0
|
||||
exec_prog = True
|
||||
elif prog_time < 0 and (cur_time - last_time) >= -prog_time:
|
||||
elif prog_time < 0 and (cur_time - last_time) >= -prog_time:
|
||||
x[2] = cur_time
|
||||
exec_prog = True
|
||||
|
||||
|
@ -108,7 +107,7 @@ def trainerThread(s2c, c2s, e, args, device_args):
|
|||
try:
|
||||
exec(prog)
|
||||
except Exception as e:
|
||||
print("Unable to execute program: %s" % (prog))
|
||||
print("Unable to execute program: %s" % (prog) )
|
||||
|
||||
if not is_reached_goal:
|
||||
iter, iter_time, batch_size = model.train_one_iter()
|
||||
|
@ -116,23 +115,20 @@ def trainerThread(s2c, c2s, e, args, device_args):
|
|||
loss_history = model.get_loss_history()
|
||||
time_str = time.strftime("[%H:%M:%S]")
|
||||
if iter_time >= 10:
|
||||
loss_string = "{0}[#{1:06d}][{2:.5s}s][bs: {3}]".format(time_str, iter,
|
||||
'{:0.4f}'.format(iter_time),
|
||||
batch_size)
|
||||
loss_string = "{0}[#{1:06d}][{2:.5s}s][bs: {3}]".format ( time_str, iter, '{:0.4f}'.format(iter_time), batch_size )
|
||||
else:
|
||||
loss_string = "{0}[#{1:06d}][{2:04d}ms][bs: {3}]".format(time_str, iter,
|
||||
int(iter_time * 1000), batch_size)
|
||||
loss_string = "{0}[#{1:06d}][{2:04d}ms][bs: {3}]".format ( time_str, iter, int(iter_time*1000), batch_size)
|
||||
|
||||
if shared_state['after_save']:
|
||||
shared_state['after_save'] = False
|
||||
last_save_time = time.time() # upd last_save_time only after save+one_iter, because plaidML rebuilds programs after save https://github.com/plaidml/plaidml/issues/274
|
||||
last_save_time = time.time() #upd last_save_time only after save+one_iter, because plaidML rebuilds programs after save https://github.com/plaidml/plaidml/issues/274
|
||||
|
||||
mean_loss = np.mean([np.array(loss_history[i]) for i in range(save_iter, iter)], axis=0)
|
||||
mean_loss = np.mean ( [ np.array(loss_history[i]) for i in range(save_iter, iter) ], axis=0)
|
||||
|
||||
for loss_value in mean_loss:
|
||||
loss_string += "[%.4f]" % (loss_value)
|
||||
|
||||
io.log_info(loss_string)
|
||||
io.log_info (loss_string)
|
||||
|
||||
save_iter = iter
|
||||
else:
|
||||
|
@ -140,21 +136,21 @@ def trainerThread(s2c, c2s, e, args, device_args):
|
|||
loss_string += "[%.4f]" % (loss_value)
|
||||
|
||||
if io.is_colab():
|
||||
io.log_info('\r' + loss_string, end='')
|
||||
io.log_info ('\r' + loss_string, end='')
|
||||
else:
|
||||
io.log_info(loss_string, end='\r')
|
||||
io.log_info (loss_string, end='\r')
|
||||
|
||||
if model.get_target_iter() != 0 and model.is_reached_iter_goal():
|
||||
io.log_info('Reached target iteration.')
|
||||
io.log_info ('Reached target iteration.')
|
||||
model_save()
|
||||
is_reached_goal = True
|
||||
io.log_info('You can use preview now.')
|
||||
io.log_info ('You can use preview now.')
|
||||
|
||||
if not is_reached_goal and (time.time() - last_save_time) >= save_interval_min * 60:
|
||||
if not is_reached_goal and (time.time() - last_save_time) >= save_interval_min*60:
|
||||
model_save()
|
||||
send_preview()
|
||||
|
||||
if i == 0:
|
||||
if i==0:
|
||||
if is_reached_goal:
|
||||
model.pass_one_iter()
|
||||
send_preview()
|
||||
|
@ -179,169 +175,127 @@ def trainerThread(s2c, c2s, e, args, device_args):
|
|||
if i == -1:
|
||||
break
|
||||
|
||||
|
||||
|
||||
model.finalize()
|
||||
|
||||
except Exception as e:
|
||||
print('Error: %s' % (str(e)))
|
||||
print ('Error: %s' % (str(e)))
|
||||
traceback.print_exc()
|
||||
break
|
||||
c2s.put({'op': 'close'})
|
||||
c2s.put ( {'op':'close'} )
|
||||
|
||||
|
||||
class Preview:
|
||||
def __init__(self, c2s, s2c, preview_queue):
|
||||
self.c2s = c2s
|
||||
self.s2c = s2c
|
||||
self.preview_queue = preview_queue
|
||||
# self.wnd_name = "Training preview"
|
||||
# io.named_window(wnd_name)
|
||||
# io.capture_keys(wnd_name)
|
||||
class Zoom(Enum):
|
||||
ZOOM_25 = (1/4, '25%')
|
||||
ZOOM_33 = (1/3, '33%')
|
||||
ZOOM_50 = (1/2, '50%')
|
||||
ZOOM_67 = (2/3, '67%')
|
||||
ZOOM_75 = (3/4, '75%')
|
||||
ZOOM_80 = (4/5, '80%')
|
||||
ZOOM_90 = (9/10, '90%')
|
||||
ZOOM_100 = (1, '100%')
|
||||
ZOOM_110 = (11/10, '110%')
|
||||
ZOOM_125 = (5/4, '125%')
|
||||
ZOOM_150 = (3/2, '150%')
|
||||
ZOOM_175 = (7/4, '175%')
|
||||
ZOOM_200 = (2, '200%')
|
||||
ZOOM_250 = (5/2, '250%')
|
||||
ZOOM_300 = (3, '300%')
|
||||
ZOOM_400 = (4, '400%')
|
||||
ZOOM_500 = (5, '500%')
|
||||
|
||||
self.previews = None
|
||||
self.loss_history = None
|
||||
self.selected_preview = 0
|
||||
self.update_preview = False
|
||||
self.is_showing = False
|
||||
self.is_waiting_preview = False
|
||||
self.show_last_history_iters_count = 0
|
||||
self.iter = 0
|
||||
self.batch_size = 1
|
||||
self.preview_min_height = 512
|
||||
self.preview_max_height = 1024
|
||||
self.close = False
|
||||
def __init__(self, scale, label):
|
||||
self.scale = scale
|
||||
self.label = label
|
||||
|
||||
def get_preview(self):
|
||||
while not self.close:
|
||||
self.process_queue_items()
|
||||
self.update_preview_frame()
|
||||
def prev(self):
|
||||
cls = self.__class__
|
||||
members = list(cls)
|
||||
index = members.index(self) - 1
|
||||
if index < 0:
|
||||
return self
|
||||
return members[index]
|
||||
|
||||
def process_queue_items(self):
|
||||
if not self.c2s.empty():
|
||||
input = self.c2s.get()
|
||||
op = input['op']
|
||||
if op == 'show':
|
||||
self.is_waiting_preview = False
|
||||
self.loss_history = input['loss_history'] if 'loss_history' in input.keys() else None
|
||||
self.previews = input['previews'] if 'previews' in input.keys() else None
|
||||
self.iter = input['iter'] if 'iter' in input.keys() else 0
|
||||
|
||||
if self.previews is not None:
|
||||
self.resize_previews()
|
||||
self.selected_preview = self.selected_preview % len(self.previews)
|
||||
self.update_preview = True
|
||||
elif op == 'close':
|
||||
self.close = True
|
||||
elif op == 'update':
|
||||
self.update()
|
||||
elif op == 'next_preview':
|
||||
self.next_preview()
|
||||
elif op == 'change_history_range':
|
||||
self.change_history_range()
|
||||
|
||||
def update_preview_frame(self):
|
||||
if self.update_preview:
|
||||
self.update_preview = False
|
||||
|
||||
selected_preview_name = self.previews[self.selected_preview][0]
|
||||
selected_preview_rgb = self.previews[self.selected_preview][1]
|
||||
(h, w, c) = selected_preview_rgb.shape
|
||||
|
||||
# HEAD
|
||||
head_lines = [
|
||||
'[s]:save [enter]:exit',
|
||||
'[p]:update [space]:next preview [l]:change history range',
|
||||
'Preview: "%s" [%d/%d]' % (selected_preview_name, self.selected_preview + 1, len(self.previews))
|
||||
]
|
||||
head_line_height = 15
|
||||
head_height = len(head_lines) * head_line_height
|
||||
head = np.ones((head_height, w, c)) * 0.1
|
||||
|
||||
for i in range(0, len(head_lines)):
|
||||
t = i * head_line_height
|
||||
b = (i + 1) * head_line_height
|
||||
head[t:b, 0:w] += imagelib.get_text_image((head_line_height, w, c), head_lines[i], color=[0.8] * c)
|
||||
|
||||
final = head
|
||||
|
||||
if self.loss_history is not None:
|
||||
if self.show_last_history_iters_count == 0:
|
||||
loss_history_to_show = self.loss_history
|
||||
else:
|
||||
loss_history_to_show = self.loss_history[-self.show_last_history_iters_count:]
|
||||
|
||||
lh_img = models.ModelBase.get_loss_history_preview(loss_history_to_show, self.iter, self.batch_size, w,
|
||||
c)
|
||||
final = np.concatenate([final, lh_img], axis=0)
|
||||
|
||||
final = np.concatenate([final, selected_preview_rgb], axis=0)
|
||||
final = np.clip(final, 0, 1)
|
||||
preview_pane = (final * 255).astype(np.uint8)
|
||||
retval, buffer = cv2.imencode('.jpg', preview_pane)
|
||||
# jpg_as_text = base64.b64encode(buffer)
|
||||
jpg_as_text = buffer.tostring()
|
||||
self.preview_queue.put(jpg_as_text)
|
||||
|
||||
def resize_previews(self):
|
||||
preview_height = max((h for h, w, c in (im.shape for name, im in self.previews)))
|
||||
if preview_height > self.preview_max_height:
|
||||
preview_height = self.preview_max_height
|
||||
elif preview_height < self.preview_min_height:
|
||||
preview_height = self.preview_min_height
|
||||
|
||||
# make all previews size equal
|
||||
for p in self.previews[:]:
|
||||
(preview_name, preview_rgb) = p
|
||||
(h, w, c) = preview_rgb.shape
|
||||
if h != preview_height:
|
||||
scale_factor = preview_height / float(h)
|
||||
self.previews.remove(p)
|
||||
self.previews.append((preview_name, cv2.resize(preview_rgb, (0, 0),
|
||||
fx=scale_factor,
|
||||
fy=scale_factor,
|
||||
interpolation=cv2.INTER_AREA)))
|
||||
self.selected_preview = self.selected_preview % len(self.previews)
|
||||
|
||||
def save(self):
|
||||
self.s2c.put({'op': 'save'})
|
||||
|
||||
def exit(self):
|
||||
self.s2c.put({'op': 'close'})
|
||||
|
||||
def update(self):
|
||||
if not self.is_waiting_preview:
|
||||
self.is_waiting_preview = True
|
||||
self.s2c.put({'op': 'preview'})
|
||||
|
||||
def next_preview(self):
|
||||
self.selected_preview = (self.selected_preview + 1) % len(self.previews)
|
||||
self.update_preview = True
|
||||
|
||||
def change_history_range(self):
|
||||
if self.show_last_history_iters_count == 0:
|
||||
self.show_last_history_iters_count = 5000
|
||||
elif self.show_last_history_iters_count == 5000:
|
||||
self.show_last_history_iters_count = 10000
|
||||
elif self.show_last_history_iters_count == 10000:
|
||||
self.show_last_history_iters_count = 50000
|
||||
elif self.show_last_history_iters_count == 50000:
|
||||
self.show_last_history_iters_count = 100000
|
||||
elif self.show_last_history_iters_count == 100000:
|
||||
self.show_last_history_iters_count = 0
|
||||
self.update_preview = True
|
||||
def next(self):
|
||||
cls = self.__class__
|
||||
members = list(cls)
|
||||
index = members.index(self) + 1
|
||||
if index >= len(members):
|
||||
return self
|
||||
return members[index]
|
||||
|
||||
|
||||
def flask_thread(s2c, c2s, preview_queue):
|
||||
config = {
|
||||
"DEBUG": True, # some Flask specific configs
|
||||
"CACHE_TYPE": "simple", # Flask-Caching related configs
|
||||
"CACHE_DEFAULT_TIMEOUT": 300
|
||||
}
|
||||
def scale_previews(previews, zoom=Zoom.ZOOM_100):
|
||||
scaled = []
|
||||
for preview in previews:
|
||||
preview_name, preview_rgb = preview
|
||||
scale_factor = zoom.scale
|
||||
if scale_factor < 1:
|
||||
scaled.append((preview_name, cv2.resize(preview_rgb, (0, 0),
|
||||
fx=scale_factor,
|
||||
fy=scale_factor,
|
||||
interpolation=cv2.INTER_AREA)))
|
||||
elif scale_factor > 1:
|
||||
scaled.append((preview_name, cv2.resize(preview_rgb, (0, 0),
|
||||
fx=scale_factor,
|
||||
fy=scale_factor,
|
||||
interpolation=cv2.INTER_LANCZOS4)))
|
||||
else:
|
||||
scaled.append((preview_name, preview_rgb))
|
||||
return scaled
|
||||
|
||||
|
||||
def create_preview_pane_image(previews, selected_preview, loss_history,
|
||||
show_last_history_iters_count, iteration, batch_size, zoom=Zoom.ZOOM_100):
|
||||
scaled_previews = scale_previews(previews, zoom)
|
||||
selected_preview_name = scaled_previews[selected_preview][0]
|
||||
selected_preview_rgb = scaled_previews[selected_preview][1]
|
||||
h, w, c = selected_preview_rgb.shape
|
||||
|
||||
# HEAD
|
||||
head_lines = [
|
||||
'[s]:save [enter]:exit [-/+]:zoom: %s' % zoom.label,
|
||||
'[p]:update [space]:next preview [l]:change history range',
|
||||
'Preview: "%s" [%d/%d]' % (selected_preview_name,selected_preview+1, len(previews))
|
||||
]
|
||||
head_line_height = int(15 * zoom.scale)
|
||||
head_height = len(head_lines) * head_line_height
|
||||
head = np.ones((head_height, w, c)) * 0.1
|
||||
|
||||
for i in range(0, len(head_lines)):
|
||||
t = i * head_line_height
|
||||
b = (i+1) * head_line_height
|
||||
head[t:b, 0:w] += imagelib.get_text_image((head_line_height, w, c), head_lines[i], color=[0.8]*c)
|
||||
|
||||
final = head
|
||||
|
||||
if loss_history is not None:
|
||||
if show_last_history_iters_count == 0:
|
||||
loss_history_to_show = loss_history
|
||||
else:
|
||||
loss_history_to_show = loss_history[-show_last_history_iters_count:]
|
||||
lh_height = int(100 * zoom.scale)
|
||||
lh_img = models.ModelBase.get_loss_history_preview(loss_history_to_show, iteration, batch_size, w, c, lh_height)
|
||||
final = np.concatenate ( [final, lh_img], axis=0 )
|
||||
|
||||
final = np.concatenate([final, selected_preview_rgb], axis=0)
|
||||
final = np.clip(final, 0, 1)
|
||||
return (final*255).astype(np.uint8)
|
||||
|
||||
|
||||
def flask_thread(s2c, c2s, s2flask, args):
|
||||
# config = {
|
||||
# "DEBUG": True, # some Flask specific configs
|
||||
# "CACHE_TYPE": "simple", # Flask-Caching related configs
|
||||
# "CACHE_DEFAULT_TIMEOUT": 300
|
||||
# }
|
||||
app = Flask(__name__)
|
||||
app.config.from_mapping(config)
|
||||
cache = Cache(app)
|
||||
# app.config.from_mapping(config)
|
||||
# cache = Cache(app)
|
||||
template = """<html>
|
||||
<head>
|
||||
<title>Video Streaming Demonstration</title>
|
||||
<title>Flask Server Demonstration</title>
|
||||
</head>
|
||||
<body>
|
||||
<h1>Video Streaming Demonstration</h1>
|
||||
|
@ -357,8 +311,17 @@ def flask_thread(s2c, c2s, preview_queue):
|
|||
</html>"""
|
||||
|
||||
def gen():
|
||||
if not preview_queue.empty():
|
||||
frame = preview_queue.get()
|
||||
model_path = Path(args.get('model_path', ''))
|
||||
print('[MainThread]', 'model_path:', model_path)
|
||||
filename = 'preview.jpg'
|
||||
preview_file = str(model_path / filename)
|
||||
print('[MainThread]', 'preview_file:', preview_file)
|
||||
frame = open(preview_file, 'rb').read()
|
||||
while True:
|
||||
try:
|
||||
frame = open(preview_file, 'rb').read()
|
||||
except:
|
||||
pass
|
||||
yield b'--frame\r\nContent-Type: image/jpeg\r\n\r\n'
|
||||
yield frame
|
||||
yield b'\r\n\r\n'
|
||||
|
@ -371,46 +334,135 @@ def flask_thread(s2c, c2s, preview_queue):
|
|||
elif 'exit' in request.form:
|
||||
s2c.put({'op': 'close'})
|
||||
elif 'update' in request.form:
|
||||
while not s2flask.empty():
|
||||
input = s2flask.get()
|
||||
c2s.put({'op': 'update'})
|
||||
while s2flask.empty():
|
||||
pass
|
||||
input = s2flask.get()
|
||||
elif 'next_preview' in request.form:
|
||||
c2s.put({'op': 'preview'})
|
||||
while not s2flask.empty():
|
||||
input = s2flask.get()
|
||||
c2s.put({'op': 'next_preview'})
|
||||
while s2flask.empty():
|
||||
pass
|
||||
input = s2flask.get()
|
||||
elif 'change_history_range' in request.form:
|
||||
while not s2flask.empty():
|
||||
input = s2flask.get()
|
||||
c2s.put({'op': 'change_history_range'})
|
||||
while s2flask.empty():
|
||||
pass
|
||||
input = s2flask.get()
|
||||
# return '', 204
|
||||
return render_template_string(template)
|
||||
|
||||
def queue_not_empty():
|
||||
return not preview_queue.empty()
|
||||
|
||||
# @app.route('/preview_image')
|
||||
# @cache.cached(timeout=300, unless=queue_not_empty)
|
||||
# def preview_image():
|
||||
# yield Response(preview_queue.get(),
|
||||
# mimetype='multipart/x-mixed-replace;boundary=frame')
|
||||
# return Response(gen(), mimetype='multipart/x-mixed-replace;boundary=frame')
|
||||
|
||||
@app.route('/preview_image')
|
||||
@cache.cached(timeout=300, unless=queue_not_empty)
|
||||
def preview_image():
|
||||
return Response(preview_queue.get(), mimetype='image/jpeg')
|
||||
model_path = Path(args.get('model_path', ''))
|
||||
filename = 'preview.jpg'
|
||||
preview_file = str(model_path / filename)
|
||||
return send_file(preview_file, mimetype='image/jpeg', cache_timeout=-1)
|
||||
|
||||
app.run(debug=True, use_reloader=False)
|
||||
app.run(debug=False, use_reloader=False)
|
||||
|
||||
|
||||
def main(args, device_args):
|
||||
io.log_info("Running trainer.\r\n")
|
||||
io.log_info ("Running trainer.\r\n")
|
||||
|
||||
no_preview = args.get('no_preview', False)
|
||||
|
||||
|
||||
s2c = queue.Queue()
|
||||
c2s = queue.Queue()
|
||||
preview_queue = queue.Queue()
|
||||
s2flask = queue.Queue()
|
||||
|
||||
e = threading.Event()
|
||||
thread = threading.Thread(target=trainerThread, args=(s2c, c2s, e, args, device_args))
|
||||
thread = threading.Thread(target=trainerThread, args=(s2c, c2s, e, args, device_args) )
|
||||
thread.start()
|
||||
|
||||
e.wait() # Wait for inital load to occur.
|
||||
e.wait() #Wait for inital load to occur.
|
||||
|
||||
flask_t = threading.Thread(target=flask_thread, args=(s2c, c2s, preview_queue))
|
||||
flask_t = threading.Thread(target=flask_thread, args=(s2c, c2s, s2flask, args))
|
||||
flask_t.start()
|
||||
|
||||
preview = Preview(c2s, s2c, preview_queue)
|
||||
preview.get_preview()
|
||||
wnd_name = "Training preview"
|
||||
io.named_window(wnd_name)
|
||||
io.capture_keys(wnd_name)
|
||||
|
||||
previews = None
|
||||
loss_history = None
|
||||
selected_preview = 0
|
||||
update_preview = False
|
||||
is_showing = False
|
||||
is_waiting_preview = False
|
||||
show_last_history_iters_count = 0
|
||||
iteration = 0
|
||||
batch_size = 1
|
||||
zoom = Zoom.ZOOM_100
|
||||
|
||||
while True:
|
||||
if not c2s.empty():
|
||||
input = c2s.get()
|
||||
op = input['op']
|
||||
if op == 'show':
|
||||
is_waiting_preview = False
|
||||
loss_history = input['loss_history'] if 'loss_history' in input.keys() else None
|
||||
previews = input['previews'] if 'previews' in input.keys() else None
|
||||
iteration = input['iter'] if 'iter' in input.keys() else 0
|
||||
#batch_size = input['batch_size'] if 'iter' in input.keys() else 1
|
||||
if previews is not None:
|
||||
update_preview = True
|
||||
elif op == 'update':
|
||||
if not is_waiting_preview:
|
||||
is_waiting_preview = True
|
||||
s2c.put({'op': 'preview'})
|
||||
elif op == 'next_preview':
|
||||
selected_preview = (selected_preview + 1) % len(previews)
|
||||
update_preview = True
|
||||
elif op == 'change_history_range':
|
||||
if show_last_history_iters_count == 0:
|
||||
show_last_history_iters_count = 5000
|
||||
elif show_last_history_iters_count == 5000:
|
||||
show_last_history_iters_count = 10000
|
||||
elif show_last_history_iters_count == 10000:
|
||||
show_last_history_iters_count = 50000
|
||||
elif show_last_history_iters_count == 50000:
|
||||
show_last_history_iters_count = 100000
|
||||
elif show_last_history_iters_count == 100000:
|
||||
show_last_history_iters_count = 0
|
||||
update_preview = True
|
||||
|
||||
if update_preview:
|
||||
update_preview = False
|
||||
selected_preview = selected_preview % len(previews)
|
||||
preview_pane_image = create_preview_pane_image(previews,
|
||||
selected_preview,
|
||||
loss_history,
|
||||
show_last_history_iters_count,
|
||||
iteration,
|
||||
batch_size,
|
||||
zoom)
|
||||
# io.show_image(wnd_name, preview_pane_image)
|
||||
model_path = Path(args.get('model_path', ''))
|
||||
filename = 'preview.jpg'
|
||||
preview_file = str(model_path / filename)
|
||||
cv2.imwrite(preview_file, preview_pane_image)
|
||||
s2flask.put({'op': 'show'})
|
||||
# socketio.emit('some event', {'data': 42})
|
||||
|
||||
# cv2.imshow(wnd_name, preview_pane_image)
|
||||
is_showing = True
|
||||
try:
|
||||
io.process_messages(0.01)
|
||||
except KeyboardInterrupt:
|
||||
s2c.put({'op': 'close'})
|
||||
|
||||
io.destroy_all_windows()
|
||||
|
||||
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue