mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-08-22 14:24:40 -07:00
Flask preview
This commit is contained in:
parent
247215d3a8
commit
4c3c7b6033
3 changed files with 423 additions and 6 deletions
12
main.py
12
main.py
|
@ -48,8 +48,8 @@ if __name__ == "__main__":
|
|||
p.add_argument('--manual-window-size', type=int, dest="manual_window_size", default=1368, help="Manual fix window size. Default: 1368.")
|
||||
p.add_argument('--cpu-only', action="store_true", dest="cpu_only", default=False, help="Extract on CPU. Forces to use MT extractor.")
|
||||
p.set_defaults (func=process_extract)
|
||||
|
||||
|
||||
|
||||
|
||||
def process_dev_extract_umd_csv(arguments):
|
||||
os_utils.set_process_lowest_prio()
|
||||
from mainscripts import Extractor
|
||||
|
@ -80,7 +80,7 @@ if __name__ == "__main__":
|
|||
p.add_argument('--cpu-only', action="store_true", dest="cpu_only", default=False, help="Extract on CPU.")
|
||||
p.set_defaults (func=process_extract_fanseg)
|
||||
"""
|
||||
|
||||
|
||||
def process_sort(arguments):
|
||||
os_utils.set_process_lowest_prio()
|
||||
from mainscripts import Sorter
|
||||
|
@ -106,7 +106,7 @@ if __name__ == "__main__":
|
|||
|
||||
#if arguments.remove_fanseg:
|
||||
# Util.remove_fanseg_folder (input_path=arguments.input_dir)
|
||||
|
||||
|
||||
if arguments.remove_ie_polys:
|
||||
Util.remove_ie_polys_folder (input_path=arguments.input_dir)
|
||||
|
||||
|
@ -134,8 +134,8 @@ if __name__ == "__main__":
|
|||
device_args = {'cpu_only' : arguments.cpu_only,
|
||||
'force_gpu_idx' : arguments.force_gpu_idx,
|
||||
}
|
||||
from mainscripts import Trainer
|
||||
Trainer.main(args, device_args)
|
||||
from mainscripts import FlaskTrainer
|
||||
FlaskTrainer.main(args, device_args)
|
||||
|
||||
p = subparsers.add_parser( "train", help="Trainer")
|
||||
p.add_argument('--training-data-src-dir', required=True, action=fixPathAction, dest="training_data_src_dir",
|
||||
|
|
416
mainscripts/FlaskTrainer.py
Normal file
416
mainscripts/FlaskTrainer.py
Normal file
|
@ -0,0 +1,416 @@
|
|||
import sys
|
||||
import traceback
|
||||
import queue
|
||||
import threading
|
||||
import time
|
||||
from io import BytesIO
|
||||
import base64
|
||||
import numpy as np
|
||||
import itertools
|
||||
from pathlib import Path
|
||||
from utils import Path_utils
|
||||
import imagelib
|
||||
import cv2
|
||||
import models
|
||||
from interact import interact as io
|
||||
from flask import Flask, send_file, Response, render_template, render_template_string, request, g
|
||||
from flask_caching import Cache
|
||||
|
||||
def trainerThread(s2c, c2s, e, args, device_args):
|
||||
while True:
|
||||
try:
|
||||
start_time = time.time()
|
||||
|
||||
training_data_src_path = Path(args.get('training_data_src_dir', ''))
|
||||
training_data_dst_path = Path(args.get('training_data_dst_dir', ''))
|
||||
|
||||
pretraining_data_path = args.get('pretraining_data_dir', '')
|
||||
pretraining_data_path = Path(pretraining_data_path) if pretraining_data_path is not None else None
|
||||
|
||||
model_path = Path(args.get('model_path', ''))
|
||||
model_name = args.get('model_name', '')
|
||||
save_interval_min = 15
|
||||
debug = args.get('debug', '')
|
||||
execute_programs = args.get('execute_programs', [])
|
||||
|
||||
if not training_data_src_path.exists():
|
||||
io.log_err('Training data src directory does not exist.')
|
||||
break
|
||||
|
||||
if not training_data_dst_path.exists():
|
||||
io.log_err('Training data dst directory does not exist.')
|
||||
break
|
||||
|
||||
if not model_path.exists():
|
||||
model_path.mkdir(exist_ok=True)
|
||||
|
||||
model = models.import_model(model_name)(
|
||||
model_path,
|
||||
training_data_src_path=training_data_src_path,
|
||||
training_data_dst_path=training_data_dst_path,
|
||||
pretraining_data_path=pretraining_data_path,
|
||||
debug=debug,
|
||||
device_args=device_args)
|
||||
|
||||
is_reached_goal = model.is_reached_iter_goal()
|
||||
|
||||
shared_state = {'after_save': False}
|
||||
loss_string = ""
|
||||
save_iter = model.get_iter()
|
||||
|
||||
def model_save():
|
||||
if not debug and not is_reached_goal:
|
||||
io.log_info("Saving....", end='\r')
|
||||
model.save()
|
||||
shared_state['after_save'] = True
|
||||
|
||||
def send_preview():
|
||||
if not debug:
|
||||
previews = model.get_previews()
|
||||
c2s.put({'op': 'show', 'previews': previews, 'iter': model.get_iter(),
|
||||
'loss_history': model.get_loss_history().copy()})
|
||||
else:
|
||||
previews = [('debug, press update for new', model.debug_one_iter())]
|
||||
c2s.put({'op': 'show', 'previews': previews})
|
||||
e.set() # Set the GUI Thread as Ready
|
||||
|
||||
if model.is_first_run():
|
||||
model_save()
|
||||
|
||||
if model.get_target_iter() != 0:
|
||||
if is_reached_goal:
|
||||
io.log_info('Model already trained to target iteration. You can use preview.')
|
||||
else:
|
||||
io.log_info('Starting. Target iteration: %d. Press "Enter" to stop training and save model.' % (
|
||||
model.get_target_iter()))
|
||||
else:
|
||||
io.log_info('Starting. Press "Enter" to stop training and save model.')
|
||||
|
||||
last_save_time = time.time()
|
||||
|
||||
execute_programs = [[x[0], x[1], time.time()] for x in execute_programs]
|
||||
|
||||
for i in itertools.count(0, 1):
|
||||
if not debug:
|
||||
cur_time = time.time()
|
||||
|
||||
for x in execute_programs:
|
||||
prog_time, prog, last_time = x
|
||||
exec_prog = False
|
||||
if prog_time > 0 and (cur_time - start_time) >= prog_time:
|
||||
x[0] = 0
|
||||
exec_prog = True
|
||||
elif prog_time < 0 and (cur_time - last_time) >= -prog_time:
|
||||
x[2] = cur_time
|
||||
exec_prog = True
|
||||
|
||||
if exec_prog:
|
||||
try:
|
||||
exec(prog)
|
||||
except Exception as e:
|
||||
print("Unable to execute program: %s" % (prog))
|
||||
|
||||
if not is_reached_goal:
|
||||
iter, iter_time, batch_size = model.train_one_iter()
|
||||
|
||||
loss_history = model.get_loss_history()
|
||||
time_str = time.strftime("[%H:%M:%S]")
|
||||
if iter_time >= 10:
|
||||
loss_string = "{0}[#{1:06d}][{2:.5s}s][bs: {3}]".format(time_str, iter,
|
||||
'{:0.4f}'.format(iter_time),
|
||||
batch_size)
|
||||
else:
|
||||
loss_string = "{0}[#{1:06d}][{2:04d}ms][bs: {3}]".format(time_str, iter,
|
||||
int(iter_time * 1000), batch_size)
|
||||
|
||||
if shared_state['after_save']:
|
||||
shared_state['after_save'] = False
|
||||
last_save_time = time.time() # upd last_save_time only after save+one_iter, because plaidML rebuilds programs after save https://github.com/plaidml/plaidml/issues/274
|
||||
|
||||
mean_loss = np.mean([np.array(loss_history[i]) for i in range(save_iter, iter)], axis=0)
|
||||
|
||||
for loss_value in mean_loss:
|
||||
loss_string += "[%.4f]" % (loss_value)
|
||||
|
||||
io.log_info(loss_string)
|
||||
|
||||
save_iter = iter
|
||||
else:
|
||||
for loss_value in loss_history[-1]:
|
||||
loss_string += "[%.4f]" % (loss_value)
|
||||
|
||||
if io.is_colab():
|
||||
io.log_info('\r' + loss_string, end='')
|
||||
else:
|
||||
io.log_info(loss_string, end='\r')
|
||||
|
||||
if model.get_target_iter() != 0 and model.is_reached_iter_goal():
|
||||
io.log_info('Reached target iteration.')
|
||||
model_save()
|
||||
is_reached_goal = True
|
||||
io.log_info('You can use preview now.')
|
||||
|
||||
if not is_reached_goal and (time.time() - last_save_time) >= save_interval_min * 60:
|
||||
model_save()
|
||||
send_preview()
|
||||
|
||||
if i == 0:
|
||||
if is_reached_goal:
|
||||
model.pass_one_iter()
|
||||
send_preview()
|
||||
|
||||
if debug:
|
||||
time.sleep(0.005)
|
||||
|
||||
while not s2c.empty():
|
||||
input = s2c.get()
|
||||
op = input['op']
|
||||
if op == 'save':
|
||||
model_save()
|
||||
elif op == 'preview':
|
||||
if is_reached_goal:
|
||||
model.pass_one_iter()
|
||||
send_preview()
|
||||
elif op == 'close':
|
||||
model_save()
|
||||
i = -1
|
||||
break
|
||||
|
||||
if i == -1:
|
||||
break
|
||||
|
||||
model.finalize()
|
||||
|
||||
except Exception as e:
|
||||
print('Error: %s' % (str(e)))
|
||||
traceback.print_exc()
|
||||
break
|
||||
c2s.put({'op': 'close'})
|
||||
|
||||
|
||||
class Preview:
|
||||
def __init__(self, c2s, s2c, preview_queue):
|
||||
self.c2s = c2s
|
||||
self.s2c = s2c
|
||||
self.preview_queue = preview_queue
|
||||
# self.wnd_name = "Training preview"
|
||||
# io.named_window(wnd_name)
|
||||
# io.capture_keys(wnd_name)
|
||||
|
||||
self.previews = None
|
||||
self.loss_history = None
|
||||
self.selected_preview = 0
|
||||
self.update_preview = False
|
||||
self.is_showing = False
|
||||
self.is_waiting_preview = False
|
||||
self.show_last_history_iters_count = 0
|
||||
self.iter = 0
|
||||
self.batch_size = 1
|
||||
self.preview_min_height = 512
|
||||
self.preview_max_height = 1024
|
||||
self.close = False
|
||||
|
||||
def get_preview(self):
|
||||
while not self.close:
|
||||
self.process_queue_items()
|
||||
self.update_preview_frame()
|
||||
|
||||
def process_queue_items(self):
|
||||
if not self.c2s.empty():
|
||||
input = self.c2s.get()
|
||||
op = input['op']
|
||||
if op == 'show':
|
||||
self.is_waiting_preview = False
|
||||
self.loss_history = input['loss_history'] if 'loss_history' in input.keys() else None
|
||||
self.previews = input['previews'] if 'previews' in input.keys() else None
|
||||
self.iter = input['iter'] if 'iter' in input.keys() else 0
|
||||
|
||||
if self.previews is not None:
|
||||
self.resize_previews()
|
||||
self.selected_preview = self.selected_preview % len(self.previews)
|
||||
self.update_preview = True
|
||||
elif op == 'close':
|
||||
self.close = True
|
||||
elif op == 'update':
|
||||
self.update()
|
||||
elif op == 'next_preview':
|
||||
self.next_preview()
|
||||
elif op == 'change_history_range':
|
||||
self.change_history_range()
|
||||
|
||||
def update_preview_frame(self):
|
||||
if self.update_preview:
|
||||
self.update_preview = False
|
||||
|
||||
selected_preview_name = self.previews[self.selected_preview][0]
|
||||
selected_preview_rgb = self.previews[self.selected_preview][1]
|
||||
(h, w, c) = selected_preview_rgb.shape
|
||||
|
||||
# HEAD
|
||||
head_lines = [
|
||||
'[s]:save [enter]:exit',
|
||||
'[p]:update [space]:next preview [l]:change history range',
|
||||
'Preview: "%s" [%d/%d]' % (selected_preview_name, self.selected_preview + 1, len(self.previews))
|
||||
]
|
||||
head_line_height = 15
|
||||
head_height = len(head_lines) * head_line_height
|
||||
head = np.ones((head_height, w, c)) * 0.1
|
||||
|
||||
for i in range(0, len(head_lines)):
|
||||
t = i * head_line_height
|
||||
b = (i + 1) * head_line_height
|
||||
head[t:b, 0:w] += imagelib.get_text_image((head_line_height, w, c), head_lines[i], color=[0.8] * c)
|
||||
|
||||
final = head
|
||||
|
||||
if self.loss_history is not None:
|
||||
if self.show_last_history_iters_count == 0:
|
||||
loss_history_to_show = self.loss_history
|
||||
else:
|
||||
loss_history_to_show = self.loss_history[-self.show_last_history_iters_count:]
|
||||
|
||||
lh_img = models.ModelBase.get_loss_history_preview(loss_history_to_show, self.iter, self.batch_size, w,
|
||||
c)
|
||||
final = np.concatenate([final, lh_img], axis=0)
|
||||
|
||||
final = np.concatenate([final, selected_preview_rgb], axis=0)
|
||||
final = np.clip(final, 0, 1)
|
||||
preview_pane = (final * 255).astype(np.uint8)
|
||||
retval, buffer = cv2.imencode('.jpg', preview_pane)
|
||||
# jpg_as_text = base64.b64encode(buffer)
|
||||
jpg_as_text = buffer.tostring()
|
||||
self.preview_queue.put(jpg_as_text)
|
||||
|
||||
def resize_previews(self):
|
||||
preview_height = max((h for h, w, c in (im.shape for name, im in self.previews)))
|
||||
if preview_height > self.preview_max_height:
|
||||
preview_height = self.preview_max_height
|
||||
elif preview_height < self.preview_min_height:
|
||||
preview_height = self.preview_min_height
|
||||
|
||||
# make all previews size equal
|
||||
for p in self.previews[:]:
|
||||
(preview_name, preview_rgb) = p
|
||||
(h, w, c) = preview_rgb.shape
|
||||
if h != preview_height:
|
||||
scale_factor = preview_height / float(h)
|
||||
self.previews.remove(p)
|
||||
self.previews.append((preview_name, cv2.resize(preview_rgb, (0, 0),
|
||||
fx=scale_factor,
|
||||
fy=scale_factor,
|
||||
interpolation=cv2.INTER_AREA)))
|
||||
self.selected_preview = self.selected_preview % len(self.previews)
|
||||
|
||||
def save(self):
|
||||
self.s2c.put({'op': 'save'})
|
||||
|
||||
def exit(self):
|
||||
self.s2c.put({'op': 'close'})
|
||||
|
||||
def update(self):
|
||||
if not self.is_waiting_preview:
|
||||
self.is_waiting_preview = True
|
||||
self.s2c.put({'op': 'preview'})
|
||||
|
||||
def next_preview(self):
|
||||
self.selected_preview = (self.selected_preview + 1) % len(self.previews)
|
||||
self.update_preview = True
|
||||
|
||||
def change_history_range(self):
|
||||
if self.show_last_history_iters_count == 0:
|
||||
self.show_last_history_iters_count = 5000
|
||||
elif self.show_last_history_iters_count == 5000:
|
||||
self.show_last_history_iters_count = 10000
|
||||
elif self.show_last_history_iters_count == 10000:
|
||||
self.show_last_history_iters_count = 50000
|
||||
elif self.show_last_history_iters_count == 50000:
|
||||
self.show_last_history_iters_count = 100000
|
||||
elif self.show_last_history_iters_count == 100000:
|
||||
self.show_last_history_iters_count = 0
|
||||
self.update_preview = True
|
||||
|
||||
|
||||
def flask_thread(s2c, c2s, preview_queue):
|
||||
config = {
|
||||
"DEBUG": True, # some Flask specific configs
|
||||
"CACHE_TYPE": "simple", # Flask-Caching related configs
|
||||
"CACHE_DEFAULT_TIMEOUT": 300
|
||||
}
|
||||
app = Flask(__name__)
|
||||
app.config.from_mapping(config)
|
||||
cache = Cache(app)
|
||||
template = """<html>
|
||||
<head>
|
||||
<title>Video Streaming Demonstration</title>
|
||||
</head>
|
||||
<body>
|
||||
<h1>Video Streaming Demonstration</h1>
|
||||
<form action="/" method="post">
|
||||
<button name="save" value="save">Save</button>
|
||||
<button name="exit" value="exit">Exit</button>
|
||||
<button name="update" value="update">Update</button>
|
||||
<button name="next_preview" value="next_preview">Next preview</button>
|
||||
<button name="change_history_range" value="change_history_range">Change History Range</button>
|
||||
</form>
|
||||
<img src="{{ url_for('preview_image') }}">
|
||||
</body>
|
||||
</html>"""
|
||||
|
||||
def gen():
|
||||
if not preview_queue.empty():
|
||||
frame = preview_queue.get()
|
||||
yield b'--frame\r\nContent-Type: image/jpeg\r\n\r\n'
|
||||
yield frame
|
||||
yield b'\r\n\r\n'
|
||||
|
||||
@app.route('/', methods=['GET', 'POST'])
|
||||
def index():
|
||||
if request.method == 'POST':
|
||||
if 'save' in request.form:
|
||||
s2c.put({'op': 'save'})
|
||||
elif 'exit' in request.form:
|
||||
s2c.put({'op': 'close'})
|
||||
elif 'update' in request.form:
|
||||
c2s.put({'op': 'update'})
|
||||
elif 'next_preview' in request.form:
|
||||
c2s.put({'op': 'preview'})
|
||||
elif 'change_history_range' in request.form:
|
||||
c2s.put({'op': 'change_history_range'})
|
||||
return render_template_string(template)
|
||||
|
||||
def queue_not_empty():
|
||||
return not preview_queue.empty()
|
||||
|
||||
# @app.route('/preview_image')
|
||||
# @cache.cached(timeout=300, unless=queue_not_empty)
|
||||
# def preview_image():
|
||||
# yield Response(preview_queue.get(),
|
||||
# mimetype='multipart/x-mixed-replace;boundary=frame')
|
||||
|
||||
@app.route('/preview_image')
|
||||
@cache.cached(timeout=300, unless=queue_not_empty)
|
||||
def preview_image():
|
||||
return Response(preview_queue.get(), mimetype='image/jpeg')
|
||||
|
||||
app.run(debug=True, use_reloader=False)
|
||||
|
||||
|
||||
def main(args, device_args):
|
||||
io.log_info("Running trainer.\r\n")
|
||||
|
||||
s2c = queue.Queue()
|
||||
c2s = queue.Queue()
|
||||
preview_queue = queue.Queue()
|
||||
|
||||
e = threading.Event()
|
||||
thread = threading.Thread(target=trainerThread, args=(s2c, c2s, e, args, device_args))
|
||||
thread.start()
|
||||
|
||||
e.wait() # Wait for inital load to occur.
|
||||
|
||||
flask_t = threading.Thread(target=flask_thread, args=(s2c, c2s, preview_queue))
|
||||
flask_t.start()
|
||||
|
||||
preview = Preview(c2s, s2c, preview_queue)
|
||||
preview.get_preview()
|
||||
|
|
@ -7,3 +7,4 @@ scikit-image
|
|||
tqdm
|
||||
ffmpeg-python==0.1.17
|
||||
git+https://www.github.com/keras-team/keras-contrib.git
|
||||
Flask==1.1.1
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue