SAE: removed simple_optimizer . Added optimizer mode for tensorflow only (NVIDIA cards), allows to train x2-x3 bigger networks with normal Adam optimizer, consuming VRAM and CPU power.

This commit is contained in:
iperov 2019-03-13 11:54:17 +04:00
parent 7d6ca32250
commit 58763756f5
3 changed files with 100 additions and 37 deletions

View file

@ -34,6 +34,11 @@ class ModelBase(object):
device_args['force_gpu_idx'] = io.input_int("Which GPU idx to choose? ( skip: best GPU ) : ", -1, [ x[0] for x in idxs_names_list] )
self.device_args = device_args
nnlib.import_all ( nnlib.DeviceConfig(allow_growth=False, **self.device_args) )
self.device_config = nnlib.active_DeviceConfig
self.keras = nnlib.keras
self.K = nnlib.keras.backend
io.log_info ("Loading model...")
self.model_path = model_path
@ -121,14 +126,9 @@ class ModelBase(object):
self.src_scale_mod = self.options['src_scale_mod']
if self.src_scale_mod == 0:
self.options.pop('src_scale_mod')
self.onInitializeOptions(self.iter == 0, ask_override)
nnlib.import_all ( nnlib.DeviceConfig(allow_growth=False, **self.device_args) )
self.device_config = nnlib.active_DeviceConfig
self.keras = nnlib.keras
self.K = nnlib.keras.backend
self.onInitialize()
self.options['batch_size'] = self.batch_size