DeepFaceLab/models/ModelBase.py

491 lines
No EOL
21 KiB
Python

import os
import json
import time
import inspect
import pickle
import colorsys
from pathlib import Path
from utils import Path_utils
from utils import std_utils
from utils import image_utils
from utils.cv2_utils import *
import numpy as np
import cv2
from samples import SampleGeneratorBase
from nnlib import nnlib
from interact import interact as io
'''
You can implement your own model. Check examples.
'''
class ModelBase(object):
#DONT OVERRIDE
def __init__(self, model_path, training_data_src_path=None, training_data_dst_path=None, debug = False, device_args = None):
device_args['force_gpu_idx'] = device_args.get('force_gpu_idx',-1)
if device_args['force_gpu_idx'] == -1:
idxs_names_list = nnlib.device.getValidDevicesIdxsWithNamesList()
if len(idxs_names_list) > 1:
io.log_info ("You have multi GPUs in a system: ")
for idx, name in idxs_names_list:
io.log_info ("[%d] : %s" % (idx, name) )
device_args['force_gpu_idx'] = io.input_int("Which GPU idx to choose? ( skip: best GPU ) : ", -1, [ x[0] for x in idxs_names_list] )
self.device_args = device_args
nnlib.import_all ( nnlib.DeviceConfig(allow_growth=False, **self.device_args) )
self.device_config = nnlib.active_DeviceConfig
self.keras = nnlib.keras
self.K = nnlib.keras.backend
io.log_info ("Loading model...")
self.model_path = model_path
self.model_data_path = Path( self.get_strpath_storage_for_file('data.dat') )
self.training_data_src_path = training_data_src_path
self.training_data_dst_path = training_data_dst_path
self.src_images_paths = None
self.dst_images_paths = None
self.src_yaw_images_paths = None
self.dst_yaw_images_paths = None
self.src_data_generator = None
self.dst_data_generator = None
self.debug = debug
self.is_training_mode = (training_data_src_path is not None and training_data_dst_path is not None)
self.iter = 0
self.options = {}
self.loss_history = []
self.sample_for_preview = None
if self.model_data_path.exists():
model_data = pickle.loads ( self.model_data_path.read_bytes() )
self.iter = max( model_data.get('iter',0), model_data.get('epoch',0) )
if 'epoch' in self.options:
self.options.pop('epoch')
if self.iter != 0:
self.options = model_data['options']
self.loss_history = model_data['loss_history'] if 'loss_history' in model_data.keys() else []
self.sample_for_preview = model_data['sample_for_preview'] if 'sample_for_preview' in model_data.keys() else None
ask_override = self.is_training_mode and self.iter != 0 and io.input_in_time ("Press enter in 2 seconds to override model settings.", 2)
yn_str = {True:'y',False:'n'}
if self.iter == 0:
io.log_info ("\nModel first run. Enter model options as default for each run.")
if self.iter == 0 or ask_override:
default_write_preview_history = False if self.iter == 0 else self.options.get('write_preview_history',False)
self.options['write_preview_history'] = io.input_bool("Write preview history? (y/n ?:help skip:%s) : " % (yn_str[default_write_preview_history]) , default_write_preview_history, help_message="Preview history will be writed to <ModelName>_history folder.")
else:
self.options['write_preview_history'] = self.options.get('write_preview_history', False)
if self.iter == 0 or ask_override:
self.options['target_iter'] = max(0, io.input_int("Target iteration (skip:unlimited/default) : ", 0))
else:
self.options['target_iter'] = max(model_data.get('target_iter',0), self.options.get('target_epoch',0))
if 'target_epoch' in self.options:
self.options.pop('target_epoch')
if self.iter == 0 or ask_override:
default_batch_size = 0 if self.iter == 0 else self.options.get('batch_size',0)
self.options['batch_size'] = max(0, io.input_int("Batch_size (?:help skip:0/default) : ", default_batch_size, help_message="Larger batch size is always better for NN's generalization, but it can cause Out of Memory error. Tune this value for your videocard manually."))
else:
self.options['batch_size'] = self.options.get('batch_size', 0)
if self.iter == 0:
self.options['sort_by_yaw'] = io.input_bool("Feed faces to network sorted by yaw? (y/n ?:help skip:n) : ", False, help_message="NN will not learn src face directions that don't match dst face directions." )
else:
self.options['sort_by_yaw'] = self.options.get('sort_by_yaw', False)
if self.iter == 0:
self.options['random_flip'] = io.input_bool("Flip faces randomly? (y/n ?:help skip:y) : ", True, help_message="Predicted face will look more naturally without this option, but src faceset should cover all face directions as dst faceset.")
else:
self.options['random_flip'] = self.options.get('random_flip', True)
if self.iter == 0:
self.options['src_scale_mod'] = np.clip( io.input_int("Src face scale modifier % ( -30...30, ?:help skip:0) : ", 0, help_message="If src face shape is wider than dst, try to decrease this value to get a better result."), -30, 30)
else:
self.options['src_scale_mod'] = self.options.get('src_scale_mod', 0)
self.write_preview_history = self.options['write_preview_history']
if not self.options['write_preview_history']:
self.options.pop('write_preview_history')
self.target_iter = self.options['target_iter']
if self.options['target_iter'] == 0:
self.options.pop('target_iter')
self.batch_size = self.options['batch_size']
self.sort_by_yaw = self.options['sort_by_yaw']
self.random_flip = self.options['random_flip']
self.src_scale_mod = self.options['src_scale_mod']
if self.src_scale_mod == 0:
self.options.pop('src_scale_mod')
self.onInitializeOptions(self.iter == 0, ask_override)
self.onInitialize()
self.options['batch_size'] = self.batch_size
if self.debug or self.batch_size == 0:
self.batch_size = 1
if self.is_training_mode:
if self.write_preview_history:
if self.device_args['force_gpu_idx'] == -1:
self.preview_history_path = self.model_path / ( '%s_history' % (self.get_model_name()) )
else:
self.preview_history_path = self.model_path / ( '%d_%s_history' % (self.device_args['force_gpu_idx'], self.get_model_name()) )
if not self.preview_history_path.exists():
self.preview_history_path.mkdir(exist_ok=True)
else:
if self.iter == 0:
for filename in Path_utils.get_image_paths(self.preview_history_path):
Path(filename).unlink()
if self.generator_list is None:
raise ValueError( 'You didnt set_training_data_generators()')
else:
for i, generator in enumerate(self.generator_list):
if not isinstance(generator, SampleGeneratorBase):
raise ValueError('training data generator is not subclass of SampleGeneratorBase')
if (self.sample_for_preview is None) or (self.iter == 0):
self.sample_for_preview = self.generate_next_sample()
model_summary_text = []
model_summary_text += ["===== Model summary ====="]
model_summary_text += ["== Model name: " + self.get_model_name()]
model_summary_text += ["=="]
model_summary_text += ["== Current iteration: " + str(self.iter)]
model_summary_text += ["=="]
model_summary_text += ["== Model options:"]
for key in self.options.keys():
model_summary_text += ["== |== %s : %s" % (key, self.options[key])]
if self.device_config.multi_gpu:
model_summary_text += ["== |== multi_gpu : True "]
model_summary_text += ["== Running on:"]
if self.device_config.cpu_only:
model_summary_text += ["== |== [CPU]"]
else:
for idx in self.device_config.gpu_idxs:
model_summary_text += ["== |== [%d : %s]" % (idx, nnlib.device.getDeviceName(idx))]
if not self.device_config.cpu_only and self.device_config.gpu_vram_gb[0] == 2:
model_summary_text += ["=="]
model_summary_text += ["== WARNING: You are using 2GB GPU. Result quality may be significantly decreased."]
model_summary_text += ["== If training does not start, close all programs and try again."]
model_summary_text += ["== Also you can disable Windows Aero Desktop to get extra free VRAM."]
model_summary_text += ["=="]
model_summary_text += ["========================="]
model_summary_text = "\r\n".join (model_summary_text)
self.model_summary_text = model_summary_text
io.log_info(model_summary_text)
#overridable
def onInitializeOptions(self, is_first_run, ask_override):
pass
#overridable
def onInitialize(self):
'''
initialize your keras models
store and retrieve your model options in self.options['']
check example
'''
pass
#overridable
def onSave(self):
#save your keras models here
pass
#overridable
def onTrainOneIter(self, sample, generator_list):
#train your keras models here
#return array of losses
return ( ('loss_src', 0), ('loss_dst', 0) )
#overridable
def onGetPreview(self, sample):
#you can return multiple previews
#return [ ('preview_name',preview_rgb), ... ]
return []
#overridable if you want model name differs from folder name
def get_model_name(self):
return Path(inspect.getmodule(self).__file__).parent.name.rsplit("_", 1)[1]
#overridable
def get_converter(self):
raise NotImplementeError
#return existing or your own converter which derived from base
def get_target_iter(self):
return self.target_iter
def is_reached_iter_goal(self):
return self.target_iter != 0 and self.iter >= self.target_iter
#multi gpu in keras actually is fake and doesn't work for training https://github.com/keras-team/keras/issues/11976
#def to_multi_gpu_model_if_possible (self, models_list):
# if len(self.device_config.gpu_idxs) > 1:
# #make batch_size to divide on GPU count without remainder
# self.batch_size = int( self.batch_size / len(self.device_config.gpu_idxs) )
# if self.batch_size == 0:
# self.batch_size = 1
# self.batch_size *= len(self.device_config.gpu_idxs)
#
# result = []
# for model in models_list:
# for i in range( len(model.output_names) ):
# model.output_names = 'output_%d' % (i)
# result += [ nnlib.keras.utils.multi_gpu_model( model, self.device_config.gpu_idxs ) ]
#
# return result
# else:
# return models_list
def get_previews(self):
return self.onGetPreview ( self.last_sample )
def get_static_preview(self):
return self.onGetPreview (self.sample_for_preview)[0][1] #first preview, and bgr
def save(self):
Path( self.get_strpath_storage_for_file('summary.txt') ).write_text(self.model_summary_text)
self.onSave()
model_data = {
'iter': self.iter,
'options': self.options,
'loss_history': self.loss_history,
'sample_for_preview' : self.sample_for_preview
}
self.model_data_path.write_bytes( pickle.dumps(model_data) )
def load_weights_safe(self, model_filename_list, optimizer_filename_list=[]):
for model, filename in model_filename_list:
filename = self.get_strpath_storage_for_file(filename)
if Path(filename).exists():
model.load_weights(filename)
if len(optimizer_filename_list) != 0:
opt_filename = self.get_strpath_storage_for_file('opt.h5')
if Path(opt_filename).exists():
try:
with open(opt_filename, "rb") as f:
d = pickle.loads(f.read())
for x in optimizer_filename_list:
opt, filename = x
if filename in d:
weights = d[filename].get('weights', None)
if weights:
opt.set_weights(weights)
print("set ok")
except Exception as e:
print ("Unable to load ", opt_filename)
def save_weights_safe(self, model_filename_list, optimizer_filename_list=[]):
for model, filename in model_filename_list:
filename = self.get_strpath_storage_for_file(filename)
model.save_weights( filename + '.tmp' )
rename_list = model_filename_list
if len(optimizer_filename_list) != 0:
opt_filename = self.get_strpath_storage_for_file('opt.h5')
try:
d = {}
for opt, filename in optimizer_filename_list:
fd = {}
symbolic_weights = getattr(opt, 'weights')
if symbolic_weights:
fd['weights'] = self.K.batch_get_value(symbolic_weights)
d[filename] = fd
with open(opt_filename+'.tmp', 'wb') as f:
f.write( pickle.dumps(d) )
rename_list += [('', 'opt.h5')]
except Exception as e:
print ("Unable to save ", opt_filename)
for _, filename in rename_list:
filename = self.get_strpath_storage_for_file(filename)
source_filename = Path(filename+'.tmp')
if source_filename.exists():
target_filename = Path(filename)
if target_filename.exists():
target_filename.unlink()
source_filename.rename ( str(target_filename) )
def debug_one_iter(self):
images = []
for generator in self.generator_list:
for i,batch in enumerate(next(generator)):
if len(batch.shape) == 4:
images.append( batch[0] )
return image_utils.equalize_and_stack_square (images)
def generate_next_sample(self):
return [next(generator) for generator in self.generator_list]
def train_one_iter(self):
sample = self.generate_next_sample()
iter_time = time.time()
losses = self.onTrainOneIter(sample, self.generator_list)
iter_time = time.time() - iter_time
self.last_sample = sample
self.loss_history.append ( [float(loss[1]) for loss in losses] )
if self.write_preview_history:
if self.iter % 10 == 0:
preview = self.get_static_preview()
preview_lh = ModelBase.get_loss_history_preview(self.loss_history, self.iter, preview.shape[1], preview.shape[2])
img = (np.concatenate ( [preview_lh, preview], axis=0 ) * 255).astype(np.uint8)
cv2_imwrite ( str (self.preview_history_path / ('%.6d.jpg' %( self.iter) )), img )
self.iter += 1
time_str = time.strftime("[%H:%M:%S]")
if iter_time >= 10:
loss_string = "{0}[#{1:06d}][{2:.5s}s]".format ( time_str, self.iter, '{:0.4f}'.format(iter_time) )
else:
loss_string = "{0}[#{1:06d}][{2:04d}ms]".format ( time_str, self.iter, int(iter_time*1000) )
for (loss_name, loss_value) in losses:
loss_string += " %s:%.3f" % (loss_name, loss_value)
return loss_string
def pass_one_iter(self):
self.last_sample = self.generate_next_sample()
def finalize(self):
nnlib.finalize_all()
def is_first_run(self):
return self.iter == 0
def is_debug(self):
return self.debug
def set_batch_size(self, batch_size):
self.batch_size = batch_size
def get_batch_size(self):
return self.batch_size
def get_iter(self):
return self.iter
def get_loss_history(self):
return self.loss_history
def set_training_data_generators (self, generator_list):
self.generator_list = generator_list
def get_training_data_generators (self):
return self.generator_list
def get_strpath_storage_for_file(self, filename):
if self.device_args['force_gpu_idx'] == -1:
return str( self.model_path / ( self.get_model_name() + '_' + filename) )
else:
return str( self.model_path / ( str(self.device_args['force_gpu_idx']) + '_' + self.get_model_name() + '_' + filename) )
def set_vram_batch_requirements (self, d):
#example d = {2:2,3:4,4:8,5:16,6:32,7:32,8:32,9:48}
keys = [x for x in d.keys()]
if self.device_config.cpu_only:
if self.batch_size == 0:
self.batch_size = 2
else:
if self.batch_size == 0:
for x in keys:
if self.device_config.gpu_vram_gb[0] <= x:
self.batch_size = d[x]
break
if self.batch_size == 0:
self.batch_size = d[ keys[-1] ]
@staticmethod
def get_loss_history_preview(loss_history, iter, w, c):
loss_history = np.array (loss_history.copy())
lh_height = 100
lh_img = np.ones ( (lh_height,w,c) ) * 0.1
loss_count = len(loss_history[0])
lh_len = len(loss_history)
l_per_col = lh_len / w
plist_max = [ [ max (0.0, loss_history[int(col*l_per_col)][p],
*[ loss_history[i_ab][p]
for i_ab in range( int(col*l_per_col), int((col+1)*l_per_col) )
]
)
for p in range(loss_count)
]
for col in range(w)
]
plist_min = [ [ min (plist_max[col][p], loss_history[int(col*l_per_col)][p],
*[ loss_history[i_ab][p]
for i_ab in range( int(col*l_per_col), int((col+1)*l_per_col) )
]
)
for p in range(loss_count)
]
for col in range(w)
]
plist_abs_max = np.mean(loss_history[ len(loss_history) // 5 : ]) * 2
for col in range(0, w):
for p in range(0,loss_count):
point_color = [1.0]*c
point_color[0:3] = colorsys.hsv_to_rgb ( p * (1.0/loss_count), 1.0, 1.0 )
ph_max = int ( (plist_max[col][p] / plist_abs_max) * (lh_height-1) )
ph_max = np.clip( ph_max, 0, lh_height-1 )
ph_min = int ( (plist_min[col][p] / plist_abs_max) * (lh_height-1) )
ph_min = np.clip( ph_min, 0, lh_height-1 )
for ph in range(ph_min, ph_max+1):
lh_img[ (lh_height-ph-1), col ] = point_color
lh_lines = 5
lh_line_height = (lh_height-1)/lh_lines
for i in range(0,lh_lines+1):
lh_img[ int(i*lh_line_height), : ] = (0.8,)*c
last_line_t = int((lh_lines-1)*lh_line_height)
last_line_b = int(lh_lines*lh_line_height)
lh_text = 'Iter: %d' % (iter) if iter != 0 else ''
lh_img[last_line_t:last_line_b, 0:w] += image_utils.get_text_image ( (w,last_line_b-last_line_t,c), lh_text, color=[0.8]*c )
return lh_img