manual extractor: increased FPS,

sort by final : now you can specify target number of images,
converter: fix seamless mask and exception,
huge refactoring
This commit is contained in:
iperov 2019-02-28 11:56:31 +04:00
commit 438213e97c
30 changed files with 1834 additions and 1718 deletions

View file

@ -4,7 +4,6 @@ import traceback
from pathlib import Path
from utils import Path_utils
import cv2
from tqdm import tqdm
from utils.DFLPNG import DFLPNG
from utils.DFLJPG import DFLJPG
from utils.cv2_utils import *
@ -13,219 +12,196 @@ import shutil
import numpy as np
import time
import multiprocessing
from models import ConverterBase
from converters import Converter
from joblib import Subprocessor, SubprocessFunctionCaller
from interact import interact as io
class model_process_predictor(object):
def __init__(self, sq, cq, lock):
self.sq = sq
self.cq = cq
self.lock = lock
class ConvertSubprocessor(Subprocessor):
class Cli(Subprocessor.Cli):
def __call__(self, face):
self.lock.acquire()
self.sq.put ( {'op': 'predict', 'face' : face} )
while True:
if not self.cq.empty():
obj = self.cq.get()
obj_op = obj['op']
if obj_op == 'predict_result':
self.lock.release()
return obj['result']
time.sleep(0.005)
def model_process(stdin_fd, model_name, model_dir, in_options, sq, cq):
sys.stdin = os.fdopen(stdin_fd)
try:
model_path = Path(model_dir)
import models
model = models.import_model(model_name)(model_path, **in_options)
converter = model.get_converter(**in_options)
converter.dummy_predict()
cq.put ( {'op':'init', 'converter' : converter.copy_and_set_predictor( None ) } )
#override
def on_initialize(self, client_dict):
io.log_info ('Running on %s.' % (client_dict['device_name']) )
self.device_idx = client_dict['device_idx']
self.device_name = client_dict['device_name']
self.converter = client_dict['converter']
self.output_path = Path(client_dict['output_dir']) if 'output_dir' in client_dict.keys() else None
self.alignments = client_dict['alignments']
self.debug = client_dict['debug']
while True:
while not sq.empty():
obj = sq.get()
obj_op = obj['op']
if obj_op == 'predict':
result = converter.predictor ( obj['face'] )
cq.put ( {'op':'predict_result', 'result':result} )
time.sleep(0.005)
except Exception as e:
print ( 'Error: %s' % (str(e)))
traceback.print_exc()
from utils.SubprocessorBase import SubprocessorBase
class ConvertSubprocessor(SubprocessorBase):
from nnlib import nnlib
#model process ate all GPU mem,
#so we cannot use GPU for any TF operations in converter processes
#therefore forcing active_DeviceConfig to CPU only
nnlib.active_DeviceConfig = nnlib.DeviceConfig (cpu_only=True)
return None
#override
def process_data(self, data):
filename_path = Path(data)
files_processed = 1
faces_processed = 0
output_filename_path = self.output_path / (filename_path.stem + '.png')
if self.converter.type == Converter.TYPE_FACE and filename_path.stem not in self.alignments.keys():
if not self.debug:
self.log_info ( 'no faces found for %s, copying without faces' % (filename_path.name) )
shutil.copy ( str(filename_path), str(output_filename_path) )
else:
image = (cv2_imread(str(filename_path)) / 255.0).astype(np.float32)
if self.converter.type == Converter.TYPE_IMAGE:
image = self.converter.convert_image(image, None, self.debug)
if self.debug:
raise NotImplementedError
#for img in image:
# io.show_image ('Debug convert', img )
# cv2.waitKey(0)
faces_processed = 1
elif self.converter.type == Converter.TYPE_IMAGE_WITH_LANDMARKS:
if filename_path.suffix == '.png':
dflimg = DFLPNG.load( str(filename_path) )
elif filename_path.suffix == '.jpg':
dflimg = DFLJPG.load ( str(filename_path) )
else:
dflimg = None
if dflimg is not None:
image_landmarks = dflimg.get_landmarks()
image = self.converter.convert_image(image, image_landmarks, self.debug)
if self.debug:
raise NotImplementedError
#for img in image:
# io.show_image ('Debug convert', img )
# cv2.waitKey(0)
faces_processed = 1
else:
self.log_err ("%s is not a dfl image file" % (filename_path.name) )
elif self.converter.type == Converter.TYPE_FACE:
faces = self.alignments[filename_path.stem]
if self.debug:
debug_images = []
for face_num, image_landmarks in enumerate(faces):
try:
if self.debug:
self.log_info ( '\nConverting face_num [%d] in file [%s]' % (face_num, filename_path) )
if self.debug:
debug_images += self.converter.convert_face(image, image_landmarks, self.debug)
else:
image = self.converter.convert_face(image, image_landmarks, self.debug)
except Exception as e:
self.log_info ( 'Error while converting face_num [%d] in file [%s]: %s' % (face_num, filename_path, str(e)) )
traceback.print_exc()
if self.debug:
return (1, debug_images)
faces_processed = len(faces)
if not self.debug:
cv2_imwrite (str(output_filename_path), (image*255).astype(np.uint8) )
return (0, files_processed, faces_processed)
#overridable
def get_data_name (self, data):
#return string identificator of your data
return data
#override
def __init__(self, converter, input_path_image_paths, output_path, alignments, debug = False, **in_options):
super().__init__('Converter', 86400 if debug == True else 60)
self.converter = converter
self.input_path_image_paths = input_path_image_paths
def __init__(self, converter, input_path_image_paths, output_path, alignments, debug = False):
super().__init__('Converter', ConvertSubprocessor.Cli, 86400 if debug == True else 60)
self.converter = converter
self.host_processor, self.cli_func = SubprocessFunctionCaller.make_pair ( self.converter.predictor_func )
self.process_converter = self.converter.copy_and_set_predictor(self.cli_func)
self.input_data = self.input_path_image_paths = input_path_image_paths
self.output_path = output_path
self.alignments = alignments
self.debug = debug
self.in_options = in_options
self.input_data = self.input_path_image_paths
self.files_processed = 0
self.faces_processed = 0
#override
def process_info_generator(self):
r = [0] if self.debug else range( min(multiprocessing.cpu_count(), 6) )
for i in r:
yield 'CPU%d' % (i), {}, {'device_idx': i,
'device_name': 'CPU%d' % (i),
'converter' : self.converter,
'converter' : self.process_converter,
'output_dir' : str(self.output_path),
'alignments' : self.alignments,
'debug': self.debug,
'in_options': self.in_options
'debug': self.debug
}
#override
def get_no_process_started_message(self):
return 'Unable to start CPU processes.'
#overridable optional
def on_clients_initialized(self):
if self.debug:
io.named_window ("Debug convert")
io.progress_bar ("Converting", len (self.input_data) )
#overridable optional
def on_clients_finalized(self):
io.progress_bar_close()
if self.debug:
io.destroy_all_windows()
#override
def onHostGetProgressBarDesc(self):
return "Converting"
#override
def onHostGetProgressBarLen(self):
return len (self.input_data)
#override
def onHostGetData(self, host_dict):
def get_data(self, host_dict):
if len (self.input_data) > 0:
return self.input_data.pop(0)
return None
#override
def onHostDataReturn (self, host_dict, data):
def on_data_return (self, host_dict, data):
self.input_data.insert(0, data)
#overridable
def onClientGetDataName (self, data):
#return string identificator of your data
return data
#override
def onClientInitialize(self, client_dict):
print ('Running on %s.' % (client_dict['device_name']) )
self.device_idx = client_dict['device_idx']
self.device_name = client_dict['device_name']
self.converter = client_dict['converter']
self.output_path = Path(client_dict['output_dir']) if 'output_dir' in client_dict.keys() else None
self.alignments = client_dict['alignments']
self.debug = client_dict['debug']
from nnlib import nnlib
#model process ate all GPU mem,
#so we cannot use GPU for any TF operations in converter processes (for example image_utils.TFLabConverter)
#therefore forcing active_DeviceConfig to CPU only
nnlib.active_DeviceConfig = nnlib.DeviceConfig (cpu_only=True)
return None
#override
def onClientFinalize(self):
pass
def on_result (self, host_dict, data, result):
if result[0] == 0:
self.files_processed += result[0]
self.faces_processed += result[1]
elif result[0] == 1:
for img in result[1]:
io.show_image ('Debug convert', (img*255).astype(np.uint8) )
io.wait_any_key()
io.progress_bar_inc(1)
#override
def on_tick(self):
self.host_processor.process_messages()
#override
def onClientProcessData(self, data):
filename_path = Path(data)
files_processed = 1
faces_processed = 0
output_filename_path = self.output_path / (filename_path.stem + '.png')
if self.converter.get_mode() == ConverterBase.MODE_FACE and filename_path.stem not in self.alignments.keys():
if not self.debug:
print ( 'no faces found for %s, copying without faces' % (filename_path.name) )
shutil.copy ( str(filename_path), str(output_filename_path) )
else:
image = (cv2_imread(str(filename_path)) / 255.0).astype(np.float32)
if self.converter.get_mode() == ConverterBase.MODE_IMAGE:
image = self.converter.convert_image(image, None, self.debug)
if self.debug:
for img in image:
cv2.imshow ('Debug convert', img )
cv2.waitKey(0)
faces_processed = 1
elif self.converter.get_mode() == ConverterBase.MODE_IMAGE_WITH_LANDMARKS:
if filename_path.suffix == '.png':
dflimg = DFLPNG.load( str(filename_path), throw_on_no_embedded_data=True )
elif filename_path.suffix == '.jpg':
dflimg = DFLJPG.load ( str(filename_path), throw_on_no_embedded_data=True )
else:
raise Exception ("%s is not a dfl image file" % (filename_path.name) )
image_landmarks = dflimg.get_landmarks()
image = self.converter.convert_image(image, image_landmarks, self.debug)
if self.debug:
for img in image:
cv2.imshow ('Debug convert', img )
cv2.waitKey(0)
faces_processed = 1
elif self.converter.get_mode() == ConverterBase.MODE_FACE:
faces = self.alignments[filename_path.stem]
for face_num, image_landmarks in enumerate(faces):
try:
if self.debug:
print ( '\nConverting face_num [%d] in file [%s]' % (face_num, filename_path) )
image = self.converter.convert_face(image, image_landmarks, self.debug)
if self.debug:
for img in image:
cv2.imshow ('Debug convert', (img*255).astype(np.uint8) )
cv2.waitKey(0)
except Exception as e:
print ( 'Error while converting face_num [%d] in file [%s]: %s' % (face_num, filename_path, str(e)) )
traceback.print_exc()
faces_processed = len(faces)
if not self.debug:
cv2_imwrite (str(output_filename_path), (image*255).astype(np.uint8) )
return (files_processed, faces_processed)
#override
def onHostResult (self, host_dict, data, result):
self.files_processed += result[0]
self.faces_processed += result[1]
return 1
#override
def onFinalizeAndGetResult(self):
def get_result(self):
return self.files_processed, self.faces_processed
def main (input_dir, output_dir, model_dir, model_name, aligned_dir=None, **in_options):
print ("Running converter.\r\n")
def main (args, device_args):
io.log_info ("Running converter.\r\n")
debug = in_options['debug']
aligned_dir = args.get('aligned_dir', None)
try:
input_path = Path(input_dir)
output_path = Path(output_dir)
model_path = Path(model_dir)
input_path = Path(args['input_dir'])
output_path = Path(args['output_dir'])
model_path = Path(args['model_dir'])
if not input_path.exists():
print('Input directory not found. Please ensure it exists.')
io.log_err('Input directory not found. Please ensure it exists.')
return
if output_path.exists():
@ -233,126 +209,116 @@ def main (input_dir, output_dir, model_dir, model_name, aligned_dir=None, **in_o
Path(filename).unlink()
else:
output_path.mkdir(parents=True, exist_ok=True)
if not model_path.exists():
print('Model directory not found. Please ensure it exists.')
io.log_err('Model directory not found. Please ensure it exists.')
return
model_sq = multiprocessing.Queue()
model_cq = multiprocessing.Queue()
model_lock = multiprocessing.Lock()
model_p = multiprocessing.Process(target=model_process, args=( sys.stdin.fileno(), model_name, model_dir, in_options, model_sq, model_cq))
model_p.start()
while True:
if not model_cq.empty():
obj = model_cq.get()
obj_op = obj['op']
if obj_op == 'init':
converter = obj['converter']
break
import models
model = models.import_model( args['model_name'] )(model_path, device_args=device_args)
converter = model.get_converter()
converter.dummy_predict()
alignments = None
if converter.get_mode() == ConverterBase.MODE_FACE:
if converter.type == Converter.TYPE_FACE:
if aligned_dir is None:
print('Aligned directory not found. Please ensure it exists.')
io.log_err('Aligned directory not found. Please ensure it exists.')
return
aligned_path = Path(aligned_dir)
if not aligned_path.exists():
print('Aligned directory not found. Please ensure it exists.')
io.log_err('Aligned directory not found. Please ensure it exists.')
return
alignments = {}
aligned_path_image_paths = Path_utils.get_image_paths(aligned_path)
for filepath in tqdm(aligned_path_image_paths, desc="Collecting alignments", ascii=True ):
for filepath in io.progress_bar_generator(aligned_path_image_paths, "Collecting alignments"):
filepath = Path(filepath)
if filepath.suffix == '.png':
dflimg = DFLPNG.load( str(filepath), print_on_no_embedded_data=True )
dflimg = DFLPNG.load( str(filepath) )
elif filepath.suffix == '.jpg':
dflimg = DFLJPG.load ( str(filepath), print_on_no_embedded_data=True )
dflimg = DFLJPG.load ( str(filepath) )
else:
print ("%s is not a dfl image file" % (filepath.name) )
dflimg = None
if dflimg is None:
io.log_err ("%s is not a dfl image file" % (filepath.name) )
continue
source_filename_stem = Path( dflimg.get_source_filename() ).stem
if source_filename_stem not in alignments.keys():
alignments[ source_filename_stem ] = []
alignments[ source_filename_stem ].append (dflimg.get_source_landmarks())
#interpolate landmarks
#from facelib import LandmarksProcessor
#from facelib import FaceType
#a = sorted(alignments.keys())
#a_len = len(a)
#
#box_pts = 3
#box = np.ones(box_pts)/box_pts
#for i in range( a_len ):
# if i >= box_pts and i <= a_len-box_pts-1:
# af0 = alignments[ a[i] ][0] ##first face
# m0 = LandmarksProcessor.get_transform_mat (af0, 256, face_type=FaceType.FULL)
#
# points = []
#
# for j in range(-box_pts, box_pts+1):
# af = alignments[ a[i+j] ][0] ##first face
# m = LandmarksProcessor.get_transform_mat (af, 256, face_type=FaceType.FULL)
# p = LandmarksProcessor.transform_points (af, m)
# points.append (p)
#
# points = np.array(points)
# points_len = len(points)
# t_points = np.transpose(points, [1,0,2])
#
# p1 = np.array ( [ int(np.convolve(x[:,0], box, mode='same')[points_len//2]) for x in t_points ] )
# p2 = np.array ( [ int(np.convolve(x[:,1], box, mode='same')[points_len//2]) for x in t_points ] )
#
# new_points = np.concatenate( [np.expand_dims(p1,-1),np.expand_dims(p2,-1)], -1 )
#
# alignments[ a[i] ][0] = LandmarksProcessor.transform_points (new_points, m0, True).astype(np.int32)
files_processed, faces_processed = ConvertSubprocessor (
converter = converter.copy_and_set_predictor( model_process_predictor(model_sq,model_cq,model_lock) ),
converter = converter,
input_path_image_paths = Path_utils.get_image_paths(input_path),
output_path = output_path,
alignments = alignments,
**in_options ).process()
alignments = alignments,
debug = args.get('debug',False)
).run()
model_p.terminate()
'''
if model_name == 'AVATAR':
output_path_image_paths = Path_utils.get_image_paths(output_path)
last_ok_frame = -1
for filename in output_path_image_paths:
filename_path = Path(filename)
stem = Path(filename).stem
try:
frame = int(stem)
except:
raise Exception ('Aligned avatars must be created from indexed sequence files.')
if frame-last_ok_frame > 1:
start = last_ok_frame + 1
end = frame - 1
print ("Filling gaps: [%d...%d]" % (start, end) )
for i in range (start, end+1):
shutil.copy ( str(filename), str( output_path / ('%.5d%s' % (i, filename_path.suffix )) ) )
last_ok_frame = frame
'''
model.finalize()
except Exception as e:
print ( 'Error: %s' % (str(e)))
traceback.print_exc()
'''
if model_name == 'AVATAR':
output_path_image_paths = Path_utils.get_image_paths(output_path)
last_ok_frame = -1
for filename in output_path_image_paths:
filename_path = Path(filename)
stem = Path(filename).stem
try:
frame = int(stem)
except:
raise Exception ('Aligned avatars must be created from indexed sequence files.')
if frame-last_ok_frame > 1:
start = last_ok_frame + 1
end = frame - 1
print ("Filling gaps: [%d...%d]" % (start, end) )
for i in range (start, end+1):
shutil.copy ( str(filename), str( output_path / ('%.5d%s' % (i, filename_path.suffix )) ) )
last_ok_frame = frame
'''
#interpolate landmarks
#from facelib import LandmarksProcessor
#from facelib import FaceType
#a = sorted(alignments.keys())
#a_len = len(a)
#
#box_pts = 3
#box = np.ones(box_pts)/box_pts
#for i in range( a_len ):
# if i >= box_pts and i <= a_len-box_pts-1:
# af0 = alignments[ a[i] ][0] ##first face
# m0 = LandmarksProcessor.get_transform_mat (af0, 256, face_type=FaceType.FULL)
#
# points = []
#
# for j in range(-box_pts, box_pts+1):
# af = alignments[ a[i+j] ][0] ##first face
# m = LandmarksProcessor.get_transform_mat (af, 256, face_type=FaceType.FULL)
# p = LandmarksProcessor.transform_points (af, m)
# points.append (p)
#
# points = np.array(points)
# points_len = len(points)
# t_points = np.transpose(points, [1,0,2])
#
# p1 = np.array ( [ int(np.convolve(x[:,0], box, mode='same')[points_len//2]) for x in t_points ] )
# p2 = np.array ( [ int(np.convolve(x[:,1], box, mode='same')[points_len//2]) for x in t_points ] )
#
# new_points = np.concatenate( [np.expand_dims(p1,-1),np.expand_dims(p2,-1)], -1 )
#
# alignments[ a[i] ][0] = LandmarksProcessor.transform_points (new_points, m0, True).astype(np.int32)

View file

@ -15,10 +15,137 @@ import facelib
from facelib import FaceType
from facelib import LandmarksProcessor
from nnlib import nnlib
from joblib import Subprocessor
from interact import interact as io
class ExtractSubprocessor(Subprocessor):
class Cli(Subprocessor.Cli):
from utils.SubprocessorBase import SubprocessorBase
class ExtractSubprocessor(SubprocessorBase):
#override
def on_initialize(self, client_dict):
self.log_info ('Running on %s.' % (client_dict['device_name']) )
self.type = client_dict['type']
self.image_size = client_dict['image_size']
self.face_type = client_dict['face_type']
self.device_idx = client_dict['device_idx']
self.cpu_only = client_dict['device_type'] == 'CPU'
self.output_path = Path(client_dict['output_dir']) if 'output_dir' in client_dict.keys() else None
self.debug = client_dict['debug']
self.detector = client_dict['detector']
self.cached_image = (None, None)
self.e = None
device_config = nnlib.DeviceConfig ( cpu_only=self.cpu_only, force_gpu_idx=self.device_idx, allow_growth=True)
if self.type == 'rects':
if self.detector is not None:
if self.detector == 'mt':
nnlib.import_all (device_config)
self.e = facelib.MTCExtractor()
elif self.detector == 'dlib':
nnlib.import_dlib (device_config)
self.e = facelib.DLIBExtractor(nnlib.dlib)
else:
raise ValueError ("Wrond detector type.")
if self.e is not None:
self.e.__enter__()
elif self.type == 'landmarks':
nnlib.import_all (device_config)
self.e = facelib.LandmarksExtractor(nnlib.keras)
self.e.__enter__()
elif self.type == 'final':
pass
#override
def on_finalize(self):
if self.e is not None:
self.e.__exit__()
#override
def process_data(self, data):
filename_path = Path( data[0] )
filename_path_str = str(filename_path)
if self.cached_image[0] == filename_path_str:
image = self.cached_image[1]
else:
image = cv2_imread( filename_path_str )
self.cached_image = ( filename_path_str, image )
if image is None:
self.log_err ( 'Failed to extract %s, reason: cv2_imread() fail.' % ( str(filename_path) ) )
else:
if self.type == 'rects':
rects = self.e.extract_from_bgr (image)
return [str(filename_path), rects]
elif self.type == 'landmarks':
rects = data[1]
landmarks = self.e.extract_from_bgr (image, rects)
return [str(filename_path), landmarks]
elif self.type == 'final':
src_dflimg = None
(h,w,c) = image.shape
if h == w:
#extracting from already extracted jpg image?
if filename_path.suffix == '.jpg':
src_dflimg = DFLJPG.load ( str(filename_path) )
result = []
faces = data[1]
if self.debug:
debug_output_file = '{}{}'.format( str(Path(str(self.output_path) + '_debug') / filename_path.stem), '.jpg')
debug_image = image.copy()
for (face_idx, face) in enumerate(faces):
output_file = '{}_{}{}'.format(str(self.output_path / filename_path.stem), str(face_idx), '.jpg')
rect = face[0]
image_landmarks = np.array(face[1])
if self.debug:
LandmarksProcessor.draw_rect_landmarks (debug_image, rect, image_landmarks, self.image_size, self.face_type)
if self.face_type == FaceType.MARK_ONLY:
face_image = image
face_image_landmarks = image_landmarks
else:
image_to_face_mat = LandmarksProcessor.get_transform_mat (image_landmarks, self.image_size, self.face_type)
face_image = cv2.warpAffine(image, image_to_face_mat, (self.image_size, self.image_size), cv2.INTER_LANCZOS4)
face_image_landmarks = LandmarksProcessor.transform_points (image_landmarks, image_to_face_mat)
if src_dflimg is not None:
#if extracting from dflimg just copy it in order not to lose quality
shutil.copy ( str(filename_path), str(output_file) )
else:
cv2_imwrite(output_file, face_image, [int(cv2.IMWRITE_JPEG_QUALITY), 85] )
DFLJPG.embed_data(output_file, face_type = FaceType.toString(self.face_type),
landmarks = face_image_landmarks.tolist(),
source_filename = filename_path.name,
source_rect= rect,
source_landmarks = image_landmarks.tolist()
)
result.append (output_file)
if self.debug:
cv2_imwrite(debug_output_file, debug_image, [int(cv2.IMWRITE_JPEG_QUALITY), 50] )
return result
return None
#overridable
def get_data_name (self, data):
#return string identificator of your data
return data[0]
#override
def __init__(self, input_data, type, image_size, face_type, debug, multi_gpu=False, cpu_only=False, manual=False, manual_window_size=0, detector=None, output_path=None ):
self.input_data = input_data
@ -35,34 +162,36 @@ class ExtractSubprocessor(SubprocessorBase):
self.result = []
no_response_time_sec = 60 if not self.manual else 999999
super().__init__('Extractor', no_response_time_sec)
super().__init__('Extractor', ExtractSubprocessor.Cli, no_response_time_sec)
#override
def onHostClientsInitialized(self):
def on_clients_initialized(self):
if self.manual == True:
self.wnd_name = 'Manual pass'
cv2.namedWindow(self.wnd_name)
self.landmarks = None
self.param_x = -1
self.param_y = -1
self.param_rect_size = -1
self.param = {'x': 0, 'y': 0, 'rect_size' : 100, 'rect_locked' : False, 'redraw_needed' : False }
io.named_window(self.wnd_name)
io.capture_mouse(self.wnd_name)
io.capture_keys(self.wnd_name)
def onMouse(event, x, y, flags, param):
if event == cv2.EVENT_MOUSEWHEEL:
mod = 1 if flags > 0 else -1
diff = 1 if param['rect_size'] <= 40 else np.clip(param['rect_size'] / 10, 1, 10)
param['rect_size'] = max (5, param['rect_size'] + diff*mod)
elif event == cv2.EVENT_LBUTTONDOWN:
param['rect_locked'] = not param['rect_locked']
param['redraw_needed'] = True
elif not param['rect_locked']:
param['x'] = x
param['y'] = y
cv2.setMouseCallback(self.wnd_name, onMouse, self.param)
self.cache_original_image = (None, None)
self.cache_image = (None, None)
self.cache_text_lines_img = (None, None)
self.landmarks = None
self.x = 0
self.y = 0
self.rect_size = 100
self.rect_locked = False
self.redraw_needed = True
io.progress_bar (None, len (self.input_data))
#override
def on_clients_finalized(self):
if self.manual == True:
io.destroy_all_windows()
io.progress_bar_close()
def get_devices_for_type (self, type, multi_gpu, cpu_only):
if not cpu_only and (type == 'rects' or type == 'landmarks'):
if type == 'rects' and self.detector == 'mt' and nnlib.device.backend == "plaidML":
@ -86,8 +215,11 @@ class ExtractSubprocessor(SubprocessorBase):
yield (idx, 'GPU', dev_name, dev_vram)
if cpu_only and (type == 'rects' or type == 'landmarks'):
for i in range( min(8, multiprocessing.cpu_count() // 2) ):
yield (i, 'CPU', 'CPU%d' % (i), 0 )
if self.manual:
yield (0, 'CPU', 'CPU', 0 )
else:
for i in range( min(8, multiprocessing.cpu_count() // 2) ):
yield (i, 'CPU', 'CPU%d' % (i), 0 )
if type == 'final':
for i in range( min(8, multiprocessing.cpu_count()) ):
@ -108,25 +240,9 @@ class ExtractSubprocessor(SubprocessorBase):
client_dict['device_name'] = device_name
client_dict['device_type'] = device_type
yield client_dict['device_name'], {}, client_dict
#override
def get_no_process_started_message(self):
if (self.type == 'rects' or self.type == 'landmarks'):
print ( 'You have no capable GPUs. Try to close programs which can consume VRAM, and run again.')
elif self.type == 'final':
print ( 'Unable to start CPU processes.')
#override
def onHostGetProgressBarDesc(self):
return None
#override
def onHostGetProgressBarLen(self):
return len (self.input_data)
#override
def onHostGetData(self, host_dict):
def get_data(self, host_dict):
if not self.manual:
if len (self.input_data) > 0:
return self.input_data.pop(0)
@ -146,33 +262,68 @@ class ExtractSubprocessor(SubprocessorBase):
if len(faces) > 0:
self.rect, self.landmarks = faces.pop()
self.param['rect_locked'] = True
self.rect_locked = True
self.redraw_needed = True
faces.clear()
self.param['rect_size'] = ( self.rect[2] - self.rect[0] ) / 2
self.param['x'] = ( ( self.rect[0] + self.rect[2] ) / 2 ) * self.view_scale
self.param['y'] = ( ( self.rect[1] + self.rect[3] ) / 2 ) * self.view_scale
self.rect_size = ( self.rect[2] - self.rect[0] ) / 2
self.x = ( self.rect[0] + self.rect[2] ) / 2
self.y = ( self.rect[1] + self.rect[3] ) / 2
if len(faces) == 0:
self.original_image = cv2_imread(filename)
if self.cache_original_image[0] == filename:
self.original_image = self.cache_original_image[1]
else:
self.original_image = cv2_imread( filename )
self.cache_original_image = (filename, self.original_image )
(h,w,c) = self.original_image.shape
self.view_scale = 1.0 if self.manual_window_size == 0 else self.manual_window_size / ( h * (16.0/9.0) )
self.original_image = cv2.resize (self.original_image, ( int(w*self.view_scale), int(h*self.view_scale) ), interpolation=cv2.INTER_LINEAR)
(h,w,c) = self.original_image.shape
self.view_scale = 1.0 if self.manual_window_size == 0 else self.manual_window_size / ( h * (16.0/9.0) )
self.text_lines_img = (image_utils.get_draw_text_lines ( self.original_image, (0,0, self.original_image.shape[1], min(100, self.original_image.shape[0]) ),
[ 'Match landmarks with face exactly. Click to confirm/unconfirm selection',
'[Enter] - confirm face landmarks and continue',
'[Space] - confirm as unmarked frame and continue',
'[Mouse wheel] - change rect',
'[,] [.]- prev frame, next frame',
'[Q] - skip remaining frames'
], (1, 1, 1) )*255).astype(np.uint8)
if self.cache_image[0] == (h,w,c) + (self.view_scale,filename):
self.image = self.cache_image[1]
else:
self.image = cv2.resize (self.original_image, ( int(w*self.view_scale), int(h*self.view_scale) ), interpolation=cv2.INTER_LINEAR)
self.cache_image = ( (h,w,c) + (self.view_scale,filename), self.image )
(h,w,c) = self.image.shape
sh = (0,0, w, min(100, h) )
if self.cache_text_lines_img[0] == sh:
self.text_lines_img = self.cache_text_lines_img[1]
else:
self.text_lines_img = (image_utils.get_draw_text_lines ( self.image, sh,
[ 'Match landmarks with face exactly. Click to confirm/unconfirm selection',
'[Enter] - confirm face landmarks and continue',
'[Space] - confirm as unmarked frame and continue',
'[Mouse wheel] - change rect',
'[,] [.]- prev frame, next frame',
'[Q] - skip remaining frames'
], (1, 1, 1) )*255).astype(np.uint8)
self.cache_text_lines_img = (sh, self.text_lines_img)
while True:
key = cv2.waitKey(1) & 0xFF
new_x = self.x
new_y = self.y
new_rect_size = self.rect_size
mouse_events = io.get_mouse_events(self.wnd_name)
for ev in mouse_events:
(x, y, ev, flags) = ev
if ev == io.EVENT_MOUSEWHEEL and not self.rect_locked:
mod = 1 if flags > 0 else -1
diff = 1 if new_rect_size <= 40 else np.clip(new_rect_size / 10, 1, 10)
new_rect_size = max (5, new_rect_size + diff*mod)
elif ev == io.EVENT_LBUTTONDOWN:
self.rect_locked = not self.rect_locked
self.redraw_needed = True
elif not self.rect_locked:
new_x = np.clip (x, 0, w-1) / self.view_scale
new_y = np.clip (y, 0, h-1) / self.view_scale
key_events = io.get_key_events(self.wnd_name)
key, = key_events[-1] if len(key_events) > 0 else (0,)
if key == ord('\r') or key == ord('\n'):
faces.append ( [(self.rect), self.landmarks] )
is_frame_done = True
@ -183,200 +334,81 @@ class ExtractSubprocessor(SubprocessorBase):
elif key == ord('.'):
allow_remark_faces = True
# Only save the face if the rect is still locked
if self.param['rect_locked']:
if self.rect_locked:
faces.append ( [(self.rect), self.landmarks] )
is_frame_done = True
break
elif key == ord(',') and len(self.result) > 0:
# Only save the face if the rect is still locked
if self.param['rect_locked']:
if self.rect_locked:
faces.append ( [(self.rect), self.landmarks] )
go_to_prev_frame = True
break
elif key == ord('q'):
skip_remaining = True
break
new_param_x = np.clip (self.param['x'], 0, w-1) / self.view_scale
new_param_y = np.clip (self.param['y'], 0, h-1) / self.view_scale
new_param_rect_size = self.param['rect_size']
if self.param_x != new_param_x or \
self.param_y != new_param_y or \
self.param_rect_size != new_param_rect_size or \
self.param['redraw_needed']:
self.param_x = new_param_x
self.param_y = new_param_y
self.param_rect_size = new_param_rect_size
if self.x != new_x or \
self.y != new_y or \
self.rect_size != new_rect_size or \
self.redraw_needed:
self.x = new_x
self.y = new_y
self.rect_size = new_rect_size
self.rect = ( int(self.param_x-self.param_rect_size),
int(self.param_y-self.param_rect_size),
int(self.param_x+self.param_rect_size),
int(self.param_y+self.param_rect_size) )
self.rect = ( int(self.x-self.rect_size),
int(self.y-self.rect_size),
int(self.x+self.rect_size),
int(self.y+self.rect_size) )
return [filename, [self.rect]]
io.process_messages(0.0001)
else:
is_frame_done = True
if is_frame_done:
self.result.append ( data )
self.input_data.pop(0)
self.inc_progress_bar(1)
self.param['redraw_needed'] = True
self.param['rect_locked'] = False
io.progress_bar_inc(1)
self.redraw_needed = True
self.rect_locked = False
elif go_to_prev_frame:
self.input_data.insert(0, self.result.pop() )
self.inc_progress_bar(-1)
io.progress_bar_inc(-1)
allow_remark_faces = True
self.param['redraw_needed'] = True
self.param['rect_locked'] = False
self.redraw_needed = True
self.rect_locked = False
elif skip_remaining:
if self.param['rect_locked']:
if self.rect_locked:
faces.append ( [(self.rect), self.landmarks] )
while len(self.input_data) > 0:
self.result.append( self.input_data.pop(0) )
self.inc_progress_bar(1)
io.progress_bar_inc(1)
return None
#override
def onHostDataReturn (self, host_dict, data):
def on_data_return (self, host_dict, data):
if not self.manual:
self.input_data.insert(0, data)
#override
def onClientInitialize(self, client_dict):
self.safe_print ('Running on %s.' % (client_dict['device_name']) )
self.type = client_dict['type']
self.image_size = client_dict['image_size']
self.face_type = client_dict['face_type']
self.device_idx = client_dict['device_idx']
self.cpu_only = client_dict['device_type'] == 'CPU'
self.output_path = Path(client_dict['output_dir']) if 'output_dir' in client_dict.keys() else None
self.debug = client_dict['debug']
self.detector = client_dict['detector']
self.e = None
device_config = nnlib.DeviceConfig ( cpu_only=self.cpu_only, force_gpu_idx=self.device_idx, allow_growth=True)
if self.type == 'rects':
if self.detector is not None:
if self.detector == 'mt':
nnlib.import_all (device_config)
self.e = facelib.MTCExtractor()
elif self.detector == 'dlib':
nnlib.import_dlib (device_config)
self.e = facelib.DLIBExtractor(nnlib.dlib)
self.e.__enter__()
elif self.type == 'landmarks':
nnlib.import_all (device_config)
self.e = facelib.LandmarksExtractor(nnlib.keras)
self.e.__enter__()
elif self.type == 'final':
pass
return None
#override
def onClientFinalize(self):
if self.e is not None:
self.e.__exit__()
#override
def onClientProcessData(self, data):
filename_path = Path( data[0] )
image = cv2_imread( str(filename_path) )
if image is None:
print ( 'Failed to extract %s, reason: cv2_imread() fail.' % ( str(filename_path) ) )
else:
if self.type == 'rects':
rects = self.e.extract_from_bgr (image)
return [str(filename_path), rects]
elif self.type == 'landmarks':
rects = data[1]
landmarks = self.e.extract_from_bgr (image, rects)
return [str(filename_path), landmarks]
elif self.type == 'final':
src_dflimg = None
(h,w,c) = image.shape
if h == w:
#extracting from already extracted jpg image?
if filename_path.suffix == '.jpg':
src_dflimg = DFLJPG.load ( str(filename_path) )
result = []
faces = data[1]
if self.debug:
debug_output_file = '{}{}'.format( str(Path(str(self.output_path) + '_debug') / filename_path.stem), '.jpg')
debug_image = image.copy()
for (face_idx, face) in enumerate(faces):
output_file = '{}_{}{}'.format(str(self.output_path / filename_path.stem), str(face_idx), '.jpg')
rect = face[0]
image_landmarks = np.array(face[1])
if self.debug:
LandmarksProcessor.draw_rect_landmarks (debug_image, rect, image_landmarks, self.image_size, self.face_type)
if self.face_type == FaceType.MARK_ONLY:
face_image = image
face_image_landmarks = image_landmarks
else:
image_to_face_mat = LandmarksProcessor.get_transform_mat (image_landmarks, self.image_size, self.face_type)
face_image = cv2.warpAffine(image, image_to_face_mat, (self.image_size, self.image_size), cv2.INTER_LANCZOS4)
face_image_landmarks = LandmarksProcessor.transform_points (image_landmarks, image_to_face_mat)
if src_dflimg is not None:
#if extracting from dflimg just copy it in order not to lose quality
shutil.copy ( str(filename_path), str(output_file) )
else:
cv2_imwrite(output_file, face_image, [int(cv2.IMWRITE_JPEG_QUALITY), 85] )
DFLJPG.embed_data(output_file, face_type = FaceType.toString(self.face_type),
landmarks = face_image_landmarks.tolist(),
source_filename = filename_path.name,
source_rect= rect,
source_landmarks = image_landmarks.tolist()
)
result.append (output_file)
if self.debug:
cv2_imwrite(debug_output_file, debug_image, [int(cv2.IMWRITE_JPEG_QUALITY), 50] )
return result
return None
#overridable
def onClientGetDataName (self, data):
#return string identificator of your data
return data[0]
#override
def onHostResult (self, host_dict, data, result):
def on_result (self, host_dict, data, result):
if self.manual == True:
self.landmarks = result[1][0][1]
(h,w,c) = self.original_image.shape
image = cv2.addWeighted (self.original_image,1.0,self.text_lines_img,1.0,0)
(h,w,c) = self.image.shape
image = cv2.addWeighted (self.image,1.0,self.text_lines_img,1.0,0)
view_rect = (np.array(self.rect) * self.view_scale).astype(np.int).tolist()
view_landmarks = (np.array(self.landmarks) * self.view_scale).astype(np.int).tolist()
if self.param_rect_size <= 40:
if self.rect_size <= 40:
scaled_rect_size = h // 3 if w > h else w // 3
p1 = (self.param_x - self.param_rect_size, self.param_y - self.param_rect_size)
p2 = (self.param_x + self.param_rect_size, self.param_y - self.param_rect_size)
p3 = (self.param_x - self.param_rect_size, self.param_y + self.param_rect_size)
p1 = (self.x - self.rect_size, self.y - self.rect_size)
p2 = (self.x + self.rect_size, self.y - self.rect_size)
p3 = (self.x - self.rect_size, self.y + self.rect_size)
wh = h if h < w else w
np1 = (w / 2 - wh / 4, h / 2 - wh / 4)
@ -389,12 +421,11 @@ class ExtractSubprocessor(SubprocessorBase):
LandmarksProcessor.draw_rect_landmarks (image, view_rect, view_landmarks, self.image_size, self.face_type)
if self.param['rect_locked']:
if self.rect_locked:
LandmarksProcessor.draw_landmarks(image, view_landmarks, (255,255,0) )
self.param['redraw_needed'] = False
self.redraw_needed = False
cv2.imshow (self.wnd_name, image)
return 0
io.show_image (self.wnd_name, image)
else:
if self.type == 'rects':
self.result.append ( result )
@ -403,98 +434,91 @@ class ExtractSubprocessor(SubprocessorBase):
elif self.type == 'final':
self.result += result
return 1
io.progress_bar_inc(1)
#override
def onFinalizeAndGetResult(self):
if self.manual == True:
cv2.destroyAllWindows()
def get_result(self):
return self.result
class DeletedFilesSearcherSubprocessor(SubprocessorBase):
class DeletedFilesSearcherSubprocessor(Subprocessor):
class Cli(Subprocessor.Cli):
#override
def on_initialize(self, client_dict):
self.debug_paths_stems = client_dict['debug_paths_stems']
return None
#override
def process_data(self, data):
input_path_stem = Path(data[0]).stem
return any ( [ input_path_stem == d_stem for d_stem in self.debug_paths_stems] )
#override
def get_data_name (self, data):
#return string identificator of your data
return data[0]
#override
def __init__(self, input_paths, debug_paths ):
self.input_paths = input_paths
self.debug_paths_stems = [ Path(d).stem for d in debug_paths]
self.result = []
super().__init__('DeletedFilesSearcherSubprocessor', 60)
super().__init__('DeletedFilesSearcherSubprocessor', DeletedFilesSearcherSubprocessor.Cli, 60)
#override
def process_info_generator(self):
for i in range(0, min(multiprocessing.cpu_count(), 8) ):
yield 'CPU%d' % (i), {}, {'device_idx': i,
'device_name': 'CPU%d' % (i),
'debug_paths_stems' : self.debug_paths_stems
}
for i in range(min(multiprocessing.cpu_count(), 8)):
yield 'CPU%d' % (i), {}, {'debug_paths_stems' : self.debug_paths_stems}
#override
def get_no_process_started_message(self):
print ( 'Unable to start CPU processes.')
def on_clients_initialized(self):
io.progress_bar ("Searching deleted files", len (self.input_paths))
#override
def onHostGetProgressBarDesc(self):
return "Searching deleted files"
def on_clients_finalized(self):
io.progress_bar_close()
#override
def onHostGetProgressBarLen(self):
return len (self.input_paths)
#override
def onHostGetData(self, host_dict):
def get_data(self, host_dict):
if len (self.input_paths) > 0:
return [self.input_paths.pop(0)]
return None
#override
def onHostDataReturn (self, host_dict, data):
def on_data_return (self, host_dict, data):
self.input_paths.insert(0, data[0])
#override
def onClientInitialize(self, client_dict):
self.debug_paths_stems = client_dict['debug_paths_stems']
return None
#override
def onClientProcessData(self, data):
input_path_stem = Path(data[0]).stem
return any ( [ input_path_stem == d_stem for d_stem in self.debug_paths_stems] )
#override
def onClientGetDataName (self, data):
#return string identificator of your data
return data[0]
#override
def onHostResult (self, host_dict, data, result):
def on_result (self, host_dict, data, result):
if result == False:
self.result.append( data[0] )
return 1
io.progress_bar_inc(1)
#override
def onFinalizeAndGetResult(self):
def get_result(self):
return self.result
'''
detector
'dlib'
'mt'
'manual'
face_type
'full_face'
'avatar'
'''
def main (input_dir, output_dir, debug, detector='mt', multi_gpu=True, cpu_only=False, manual_fix=False, manual_output_debug_fix=False, manual_window_size=1368, image_size=256, face_type='full_face'):
print ("Running extractor.\r\n")
def main(input_dir,
output_dir,
debug=False,
detector='mt',
manual_fix=False,
manual_output_debug_fix=False,
manual_window_size=1368,
image_size=256,
face_type='full_face',
device_args={}):
input_path = Path(input_dir)
output_path = Path(output_dir)
face_type = FaceType.fromString(face_type)
multi_gpu = device_args.get('multi_gpu', False)
cpu_only = device_args.get('cpu_only', False)
if not input_path.exists():
print('Input directory not found. Please ensure it exists.')
return
raise ValueError('Input directory not found. Please ensure it exists.')
if output_path.exists():
if not manual_output_debug_fix:
for filename in Path_utils.get_image_paths(output_path):
@ -505,19 +529,17 @@ def main (input_dir, output_dir, debug, detector='mt', multi_gpu=True, cpu_only=
if manual_output_debug_fix:
debug = True
detector = 'manual'
print('Performing re-extract frames which were deleted from _debug directory.')
io.log_info('Performing re-extract frames which were deleted from _debug directory.')
input_path_image_paths = Path_utils.get_image_unique_filestem_paths(input_path, verbose=True)
input_path_image_paths = Path_utils.get_image_unique_filestem_paths(input_path, verbose_print_func=io.log_info)
if debug:
debug_output_path = Path(str(output_path) + '_debug')
if manual_output_debug_fix:
if not debug_output_path.exists():
print ("%s not found " % ( str(debug_output_path) ))
return
input_path_image_paths = DeletedFilesSearcherSubprocessor ( input_path_image_paths, Path_utils.get_image_paths(debug_output_path) ).process()
raise ValueError("%s not found " % ( str(debug_output_path) ))
input_path_image_paths = DeletedFilesSearcherSubprocessor (input_path_image_paths, Path_utils.get_image_paths(debug_output_path) ).run()
input_path_image_paths = sorted (input_path_image_paths)
else:
if debug_output_path.exists():
@ -530,29 +552,29 @@ def main (input_dir, output_dir, debug, detector='mt', multi_gpu=True, cpu_only=
faces_detected = 0
if images_found != 0:
if detector == 'manual':
print ('Performing manual extract...')
extracted_faces = ExtractSubprocessor ([ (filename,[]) for filename in input_path_image_paths ], 'landmarks', image_size, face_type, debug, cpu_only=cpu_only, manual=True, manual_window_size=manual_window_size).process()
io.log_info ('Performing manual extract...')
extracted_faces = ExtractSubprocessor ([ (filename,[]) for filename in input_path_image_paths ], 'landmarks', image_size, face_type, debug, cpu_only=cpu_only, manual=True, manual_window_size=manual_window_size).run()
else:
print ('Performing 1st pass...')
extracted_rects = ExtractSubprocessor ([ (x,) for x in input_path_image_paths ], 'rects', image_size, face_type, debug, multi_gpu=multi_gpu, cpu_only=cpu_only, manual=False, detector=detector).process()
io.log_info ('Performing 1st pass...')
extracted_rects = ExtractSubprocessor ([ (x,) for x in input_path_image_paths ], 'rects', image_size, face_type, debug, multi_gpu=multi_gpu, cpu_only=cpu_only, manual=False, detector=detector).run()
print ('Performing 2nd pass...')
extracted_faces = ExtractSubprocessor (extracted_rects, 'landmarks', image_size, face_type, debug, multi_gpu=multi_gpu, cpu_only=cpu_only, manual=False).process()
io.log_info ('Performing 2nd pass...')
extracted_faces = ExtractSubprocessor (extracted_rects, 'landmarks', image_size, face_type, debug, multi_gpu=multi_gpu, cpu_only=cpu_only, manual=False).run()
if manual_fix:
print ('Performing manual fix...')
io.log_info ('Performing manual fix...')
if all ( np.array ( [ len(data[1]) > 0 for data in extracted_faces] ) == True ):
print ('All faces are detected, manual fix not needed.')
io.log_info ('All faces are detected, manual fix not needed.')
else:
extracted_faces = ExtractSubprocessor (extracted_faces, 'landmarks', image_size, face_type, debug, manual=True, manual_window_size=manual_window_size).process()
extracted_faces = ExtractSubprocessor (extracted_faces, 'landmarks', image_size, face_type, debug, manual=True, manual_window_size=manual_window_size).run()
if len(extracted_faces) > 0:
print ('Performing 3rd pass...')
final_imgs_paths = ExtractSubprocessor (extracted_faces, 'final', image_size, face_type, debug, multi_gpu=multi_gpu, cpu_only=cpu_only, manual=False, output_path=output_path).process()
io.log_info ('Performing 3rd pass...')
final_imgs_paths = ExtractSubprocessor (extracted_faces, 'final', image_size, face_type, debug, multi_gpu=multi_gpu, cpu_only=cpu_only, manual=False, output_path=output_path).run()
faces_detected = len(final_imgs_paths)
print('-------------------------')
print('Images found: %d' % (images_found) )
print('Faces detected: %d' % (faces_detected) )
print('-------------------------')
io.log_info ('-------------------------')
io.log_info ('Images found: %d' % (images_found) )
io.log_info ('Faces detected: %d' % (faces_detected) )
io.log_info ('-------------------------')

File diff suppressed because it is too large Load diff

View file

@ -1,32 +1,34 @@
import sys
import traceback
import queue
import colorsys
import threading
import time
import numpy as np
import itertools
from pathlib import Path
from utils import Path_utils
from utils import image_utils
import cv2
import models
from interact import interact as io
def trainerThread (input_queue, output_queue, training_data_src_dir, training_data_dst_dir, model_path, model_name, save_interval_min=15, debug=False, **in_options):
def trainerThread (s2c, c2s, args, device_args):
while True:
try:
training_data_src_path = Path(training_data_src_dir)
training_data_dst_path = Path(training_data_dst_dir)
model_path = Path(model_path)
training_data_src_path = Path( args.get('training_data_src_dir', '') )
training_data_dst_path = Path( args.get('training_data_dst_dir', '') )
model_path = Path( args.get('model_path', '') )
model_name = args.get('model_name', '')
save_interval_min = 15
debug = args.get('debug', '')
if not training_data_src_path.exists():
print( 'Training data src directory does not exist.')
return
io.log_err('Training data src directory does not exist.')
break
if not training_data_dst_path.exists():
print( 'Training data dst directory does not exist.')
return
io.log_err('Training data dst directory does not exist.')
break
if not model_path.exists():
model_path.mkdir(exist_ok=True)
@ -36,7 +38,7 @@ def trainerThread (input_queue, output_queue, training_data_src_dir, training_da
training_data_src_path=training_data_src_path,
training_data_dst_path=training_data_dst_path,
debug=debug,
**in_options)
device_args=device_args)
is_reached_goal = model.is_reached_epoch_goal()
is_upd_save_time_after_train = False
@ -48,10 +50,10 @@ def trainerThread (input_queue, output_queue, training_data_src_dir, training_da
def send_preview():
if not debug:
previews = model.get_previews()
output_queue.put ( {'op':'show', 'previews': previews, 'epoch':model.get_epoch(), 'loss_history': model.get_loss_history().copy() } )
c2s.put ( {'op':'show', 'previews': previews, 'epoch':model.get_epoch(), 'loss_history': model.get_loss_history().copy() } )
else:
previews = [( 'debug, press update for new', model.debug_one_epoch())]
output_queue.put ( {'op':'show', 'previews': previews} )
c2s.put ( {'op':'show', 'previews': previews} )
if model.is_first_run():
@ -59,11 +61,11 @@ def trainerThread (input_queue, output_queue, training_data_src_dir, training_da
if model.get_target_epoch() != 0:
if is_reached_goal:
print ('Model already trained to target epoch. You can use preview.')
io.log_info('Model already trained to target epoch. You can use preview.')
else:
print('Starting. Target epoch: %d. Press "Enter" to stop training and save model.' % ( model.get_target_epoch() ) )
io.log_info('Starting. Target epoch: %d. Press "Enter" to stop training and save model.' % ( model.get_target_epoch() ) )
else:
print('Starting. Press "Enter" to stop training and save model.')
io.log_info('Starting. Press "Enter" to stop training and save model.')
last_save_time = time.time()
@ -75,12 +77,12 @@ def trainerThread (input_queue, output_queue, training_data_src_dir, training_da
#save resets plaidML programs, so upd last_save_time only after plaidML rebuild them
last_save_time = time.time()
print (loss_string, end='\r')
io.log_info (loss_string, end='\r')
if model.get_target_epoch() != 0 and model.is_reached_epoch_goal():
print ('Reached target epoch.')
io.log_info ('Reached target epoch.')
model_save()
is_reached_goal = True
print ('You can use preview now.')
io.log_info ('You can use preview now.')
if not is_reached_goal and (time.time() - last_save_time) >= save_interval_min*60:
last_save_time = time.time()
@ -95,8 +97,8 @@ def trainerThread (input_queue, output_queue, training_data_src_dir, training_da
if debug:
time.sleep(0.005)
while not input_queue.empty():
input = input_queue.get()
while not s2c.empty():
input = s2c.get()
op = input['op']
if op == 'save':
model_save()
@ -120,131 +122,142 @@ def trainerThread (input_queue, output_queue, training_data_src_dir, training_da
print ('Error: %s' % (str(e)))
traceback.print_exc()
break
output_queue.put ( {'op':'close'} )
c2s.put ( {'op':'close'} )
def previewThread (input_queue, output_queue):
previews = None
loss_history = None
selected_preview = 0
update_preview = False
is_showing = False
is_waiting_preview = False
show_last_history_epochs_count = 0
epoch = 0
while True:
if not input_queue.empty():
input = input_queue.get()
op = input['op']
if op == 'show':
is_waiting_preview = False
loss_history = input['loss_history'] if 'loss_history' in input.keys() else None
previews = input['previews'] if 'previews' in input.keys() else None
epoch = input['epoch'] if 'epoch' in input.keys() else 0
if previews is not None:
max_w = 0
max_h = 0
for (preview_name, preview_rgb) in previews:
(h, w, c) = preview_rgb.shape
max_h = max (max_h, h)
max_w = max (max_w, w)
max_size = 800
if max_h > max_size:
max_w = int( max_w / (max_h / max_size) )
max_h = max_size
#make all previews size equal
for preview in previews[:]:
(preview_name, preview_rgb) = preview
(h, w, c) = preview_rgb.shape
if h != max_h or w != max_w:
previews.remove(preview)
previews.append ( (preview_name, cv2.resize(preview_rgb, (max_w, max_h))) )
selected_preview = selected_preview % len(previews)
update_preview = True
elif op == 'close':
break
if update_preview:
update_preview = False
selected_preview_name = previews[selected_preview][0]
selected_preview_rgb = previews[selected_preview][1]
(h,w,c) = selected_preview_rgb.shape
# HEAD
head_lines = [
'[s]:save [enter]:exit',
'[p]:update [space]:next preview [l]:change history range',
'Preview: "%s" [%d/%d]' % (selected_preview_name,selected_preview+1, len(previews) )
]
head_line_height = 15
head_height = len(head_lines) * head_line_height
head = np.ones ( (head_height,w,c) ) * 0.1
for i in range(0, len(head_lines)):
t = i*head_line_height
b = (i+1)*head_line_height
head[t:b, 0:w] += image_utils.get_text_image ( (w,head_line_height,c) , head_lines[i], color=[0.8]*c )
final = head
if loss_history is not None:
if show_last_history_epochs_count == 0:
loss_history_to_show = loss_history
else:
loss_history_to_show = loss_history[-show_last_history_epochs_count:]
lh_img = models.ModelBase.get_loss_history_preview(loss_history_to_show, epoch, w, c)
final = np.concatenate ( [final, lh_img], axis=0 )
final = np.concatenate ( [final, selected_preview_rgb], axis=0 )
final = np.clip(final, 0, 1)
cv2.imshow ( 'Training preview', (final*255).astype(np.uint8) )
is_showing = True
if is_showing:
key = cv2.waitKey(100)
else:
time.sleep(0.1)
key = 0
if key == ord('\n') or key == ord('\r'):
output_queue.put ( {'op': 'close'} )
elif key == ord('s'):
output_queue.put ( {'op': 'save'} )
elif key == ord('p'):
if not is_waiting_preview:
is_waiting_preview = True
output_queue.put ( {'op': 'preview'} )
elif key == ord('l'):
if show_last_history_epochs_count == 0:
show_last_history_epochs_count = 5000
elif show_last_history_epochs_count == 5000:
show_last_history_epochs_count = 10000
elif show_last_history_epochs_count == 10000:
show_last_history_epochs_count = 50000
elif show_last_history_epochs_count == 50000:
show_last_history_epochs_count = 100000
elif show_last_history_epochs_count == 100000:
show_last_history_epochs_count = 0
update_preview = True
elif key == ord(' '):
selected_preview = (selected_preview + 1) % len(previews)
update_preview = True
cv2.destroyAllWindows()
def main(args, device_args):
io.log_info ("Running trainer.\r\n")
def main (training_data_src_dir, training_data_dst_dir, model_path, model_name, **in_options):
print ("Running trainer.\r\n")
no_preview = args.get('no_preview', False)
output_queue = queue.Queue()
input_queue = queue.Queue()
import threading
thread = threading.Thread(target=trainerThread, args=(output_queue, input_queue, training_data_src_dir, training_data_dst_dir, model_path, model_name), kwargs=in_options )
s2c = queue.Queue()
c2s = queue.Queue()
thread = threading.Thread(target=trainerThread, args=(s2c, c2s, args, device_args) )
thread.start()
previewThread (input_queue, output_queue)
if no_preview:
while True:
if not c2s.empty():
input = c2s.get()
op = input.get('op','')
if op == 'close':
break
io.process_messages(0.1)
else:
wnd_name = "Training preview"
io.named_window(wnd_name)
io.capture_keys(wnd_name)
previews = None
loss_history = None
selected_preview = 0
update_preview = False
is_showing = False
is_waiting_preview = False
show_last_history_epochs_count = 0
epoch = 0
while True:
if not c2s.empty():
input = c2s.get()
op = input['op']
if op == 'show':
is_waiting_preview = False
loss_history = input['loss_history'] if 'loss_history' in input.keys() else None
previews = input['previews'] if 'previews' in input.keys() else None
epoch = input['epoch'] if 'epoch' in input.keys() else 0
if previews is not None:
max_w = 0
max_h = 0
for (preview_name, preview_rgb) in previews:
(h, w, c) = preview_rgb.shape
max_h = max (max_h, h)
max_w = max (max_w, w)
max_size = 800
if max_h > max_size:
max_w = int( max_w / (max_h / max_size) )
max_h = max_size
#make all previews size equal
for preview in previews[:]:
(preview_name, preview_rgb) = preview
(h, w, c) = preview_rgb.shape
if h != max_h or w != max_w:
previews.remove(preview)
previews.append ( (preview_name, cv2.resize(preview_rgb, (max_w, max_h))) )
selected_preview = selected_preview % len(previews)
update_preview = True
elif op == 'close':
break
if update_preview:
update_preview = False
selected_preview_name = previews[selected_preview][0]
selected_preview_rgb = previews[selected_preview][1]
(h,w,c) = selected_preview_rgb.shape
# HEAD
head_lines = [
'[s]:save [enter]:exit',
'[p]:update [space]:next preview [l]:change history range',
'Preview: "%s" [%d/%d]' % (selected_preview_name,selected_preview+1, len(previews) )
]
head_line_height = 15
head_height = len(head_lines) * head_line_height
head = np.ones ( (head_height,w,c) ) * 0.1
for i in range(0, len(head_lines)):
t = i*head_line_height
b = (i+1)*head_line_height
head[t:b, 0:w] += image_utils.get_text_image ( (w,head_line_height,c) , head_lines[i], color=[0.8]*c )
final = head
if loss_history is not None:
if show_last_history_epochs_count == 0:
loss_history_to_show = loss_history
else:
loss_history_to_show = loss_history[-show_last_history_epochs_count:]
lh_img = models.ModelBase.get_loss_history_preview(loss_history_to_show, epoch, w, c)
final = np.concatenate ( [final, lh_img], axis=0 )
final = np.concatenate ( [final, selected_preview_rgb], axis=0 )
final = np.clip(final, 0, 1)
io.show_image( wnd_name, (final*255).astype(np.uint8) )
is_showing = True
key_events = io.get_key_events(wnd_name)
key, = key_events[-1] if len(key_events) > 0 else (0,)
if key == ord('\n') or key == ord('\r'):
s2c.put ( {'op': 'close'} )
elif key == ord('s'):
s2c.put ( {'op': 'save'} )
elif key == ord('p'):
if not is_waiting_preview:
is_waiting_preview = True
s2c.put ( {'op': 'preview'} )
elif key == ord('l'):
if show_last_history_epochs_count == 0:
show_last_history_epochs_count = 5000
elif show_last_history_epochs_count == 5000:
show_last_history_epochs_count = 10000
elif show_last_history_epochs_count == 10000:
show_last_history_epochs_count = 50000
elif show_last_history_epochs_count == 50000:
show_last_history_epochs_count = 100000
elif show_last_history_epochs_count == 100000:
show_last_history_epochs_count = 0
update_preview = True
elif key == ord(' '):
selected_preview = (selected_preview + 1) % len(previews)
update_preview = True
io.process_messages(0.1)
io.destroy_all_windows()

View file

@ -1,28 +1,21 @@
import os
import sys
import operator
import numpy as np
import cv2
from tqdm import tqdm
from shutil import copyfile
import cv2
from pathlib import Path
from utils import Path_utils
from utils import image_utils
from utils.DFLPNG import DFLPNG
from utils.DFLJPG import DFLJPG
from utils.cv2_utils import *
from facelib import LandmarksProcessor
from utils.SubprocessorBase import SubprocessorBase
import multiprocessing
from interact import interact as io
def convert_png_to_jpg_file (filepath):
filepath = Path(filepath)
if filepath.suffix != '.png':
return
dflpng = DFLPNG.load (str(filepath), print_on_no_embedded_data=True)
if dflpng is None:
return
dflpng = DFLPNG.load (str(filepath) )
if dflpng is None:
print ("%s is not a dfl image file" % (filepath.name) )
return
dfl_dict = dflpng.getDFLDictData()
@ -45,27 +38,30 @@ def convert_png_to_jpg_folder (input_path):
print ("Converting PNG to JPG...\r\n")
for filepath in tqdm( Path_utils.get_image_paths(input_path), desc="Converting", ascii=True):
for filepath in io.progress_bar_generator( Path_utils.get_image_paths(input_path), "Converting"):
filepath = Path(filepath)
convert_png_to_jpg_file(filepath)
def add_landmarks_debug_images(input_path):
print ("Adding landmarks debug images...")
for filepath in tqdm( Path_utils.get_image_paths(input_path), desc="Processing", ascii=True):
for filepath in io.progress_bar_generator( Path_utils.get_image_paths(input_path), "Processing"):
filepath = Path(filepath)
img = cv2_imread(str(filepath))
if filepath.suffix == '.png':
dflimg = DFLPNG.load( str(filepath), print_on_no_embedded_data=True )
dflimg = DFLPNG.load( str(filepath) )
elif filepath.suffix == '.jpg':
dflimg = DFLJPG.load ( str(filepath), print_on_no_embedded_data=True )
dflimg = DFLJPG.load ( str(filepath) )
else:
dflimg = None
if dflimg is None:
print ("%s is not a dfl image file" % (filepath.name) )
continue
if not (dflimg is None or img is None):
if img is not None:
face_landmarks = dflimg.get_landmarks()
LandmarksProcessor.draw_landmarks(img, face_landmarks)