mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-07-06 04:52:13 -07:00
sort by final : now you can specify target number of images, converter: fix seamless mask and exception, huge refactoring
70 lines
2.4 KiB
Python
70 lines
2.4 KiB
Python
import cv2
|
|
from pathlib import Path
|
|
from utils import Path_utils
|
|
from utils.DFLPNG import DFLPNG
|
|
from utils.DFLJPG import DFLJPG
|
|
from utils.cv2_utils import *
|
|
from facelib import LandmarksProcessor
|
|
from interact import interact as io
|
|
|
|
def convert_png_to_jpg_file (filepath):
|
|
filepath = Path(filepath)
|
|
|
|
if filepath.suffix != '.png':
|
|
return
|
|
|
|
dflpng = DFLPNG.load (str(filepath) )
|
|
if dflpng is None:
|
|
print ("%s is not a dfl image file" % (filepath.name) )
|
|
return
|
|
|
|
dfl_dict = dflpng.getDFLDictData()
|
|
|
|
img = cv2_imread (str(filepath))
|
|
new_filepath = str(filepath.parent / (filepath.stem + '.jpg'))
|
|
cv2_imwrite ( new_filepath, img, [int(cv2.IMWRITE_JPEG_QUALITY), 85])
|
|
|
|
DFLJPG.embed_data( new_filepath,
|
|
face_type=dfl_dict.get('face_type', None),
|
|
landmarks=dfl_dict.get('landmarks', None),
|
|
source_filename=dfl_dict.get('source_filename', None),
|
|
source_rect=dfl_dict.get('source_rect', None),
|
|
source_landmarks=dfl_dict.get('source_landmarks', None) )
|
|
|
|
filepath.unlink()
|
|
|
|
def convert_png_to_jpg_folder (input_path):
|
|
input_path = Path(input_path)
|
|
|
|
print ("Converting PNG to JPG...\r\n")
|
|
|
|
for filepath in io.progress_bar_generator( Path_utils.get_image_paths(input_path), "Converting"):
|
|
filepath = Path(filepath)
|
|
convert_png_to_jpg_file(filepath)
|
|
|
|
def add_landmarks_debug_images(input_path):
|
|
print ("Adding landmarks debug images...")
|
|
|
|
for filepath in io.progress_bar_generator( Path_utils.get_image_paths(input_path), "Processing"):
|
|
filepath = Path(filepath)
|
|
|
|
img = cv2_imread(str(filepath))
|
|
|
|
if filepath.suffix == '.png':
|
|
dflimg = DFLPNG.load( str(filepath) )
|
|
elif filepath.suffix == '.jpg':
|
|
dflimg = DFLJPG.load ( str(filepath) )
|
|
else:
|
|
dflimg = None
|
|
|
|
if dflimg is None:
|
|
print ("%s is not a dfl image file" % (filepath.name) )
|
|
continue
|
|
|
|
if img is not None:
|
|
face_landmarks = dflimg.get_landmarks()
|
|
LandmarksProcessor.draw_landmarks(img, face_landmarks)
|
|
|
|
output_file = '{}{}'.format( str(Path(str(input_path)) / filepath.stem), '_debug.jpg')
|
|
cv2_imwrite(output_file, img, [int(cv2.IMWRITE_JPEG_QUALITY), 50] )
|
|
|