Added interactive converter.

With interactive converter you can change any parameter of any frame and see the result in real time.

Converter: added motion_blur_power param.
Motion blur is applied by precomputed motion vectors.
So the moving face will look more realistic.

RecycleGAN model is removed.

Added experimental AVATAR model. Minimum required VRAM is 6GB (NVIDIA), 12GB (AMD)
Usage:
1) place data_src.mp4 10-20min square resolution video of news reporter sitting at the table with static background,
   other faces should not appear in frames.
2) process "extract images from video data_src.bat" with FULL fps
3) place data_dst.mp4 video of face who will control the src face
4) process "extract images from video data_dst FULL FPS.bat"
5) process "data_src mark faces S3FD best GPU.bat"
6) process "data_dst extract unaligned faces S3FD best GPU.bat"
7) train AVATAR.bat stage 1, tune batch size to maximum for your card (32 for 6GB), train to 50k+ iters.
8) train AVATAR.bat stage 2, tune batch size to maximum for your card (4 for 6GB), train to decent sharpness.
9) convert AVATAR.bat
10) converted to mp4.bat

updated versions of modules
This commit is contained in:
iperov 2019-08-24 12:57:29 +04:00
commit 407ce3b1ca
46 changed files with 2394 additions and 1659 deletions

View file

@ -0,0 +1,35 @@
import cv2
import numpy as np
import imagelib
from facelib import FaceType, LandmarksProcessor
from utils.cv2_utils import *
def process_frame_info(frame_info, inp_sh):
img_uint8 = cv2_imread (frame_info.filename)
img_uint8 = imagelib.normalize_channels (img_uint8, 3)
img = img_uint8.astype(np.float32) / 255.0
img_mat = LandmarksProcessor.get_transform_mat (frame_info.landmarks_list[0], inp_sh[0], face_type=FaceType.FULL_NO_ALIGN)
img = cv2.warpAffine( img, img_mat, inp_sh[0:2], flags=cv2.INTER_CUBIC )
return img
def ConvertFaceAvatar (cfg, prev_temporal_frame_infos, frame_info, next_temporal_frame_infos):
inp_sh = cfg.predictor_input_shape
prev_imgs=[]
next_imgs=[]
for i in range(cfg.temporal_face_count):
prev_imgs.append( process_frame_info(prev_temporal_frame_infos[i], inp_sh) )
next_imgs.append( process_frame_info(next_temporal_frame_infos[i], inp_sh) )
img = process_frame_info(frame_info, inp_sh)
prd_f = cfg.predictor_func ( prev_imgs, img, next_imgs )
out_img = np.clip(prd_f, 0.0, 1.0)
if cfg.add_source_image:
out_img = np.concatenate ( [cv2.resize ( img, (prd_f.shape[1], prd_f.shape[0]) ),
out_img], axis=1 )
return (out_img*255).astype(np.uint8)

392
converters/ConvertMasked.py Normal file
View file

@ -0,0 +1,392 @@
import traceback
import cv2
import numpy as np
import imagelib
from facelib import FaceType, LandmarksProcessor
from interact import interact as io
from utils.cv2_utils import *
def ConvertMaskedFace (cfg, frame_info, img_bgr_uint8, img_bgr, img_face_landmarks):
#if debug:
# debugs = [img_bgr.copy()]
img_size = img_bgr.shape[1], img_bgr.shape[0]
img_face_mask_a = LandmarksProcessor.get_image_hull_mask (img_bgr.shape, img_face_landmarks)
if cfg.mode == 'original':
if cfg.export_mask_alpha:
img_bgr = np.concatenate ( [img_bgr, img_face_mask_a], -1 )
return img_bgr, img_face_mask_a
out_img = img_bgr.copy()
out_merging_mask = None
output_size = cfg.predictor_input_shape[0]
if cfg.super_resolution:
output_size *= 2
face_mat = LandmarksProcessor.get_transform_mat (img_face_landmarks, output_size, face_type=cfg.face_type)
face_output_mat = LandmarksProcessor.get_transform_mat (img_face_landmarks, output_size, face_type=cfg.face_type, scale= 1.0 + 0.01*cfg.output_face_scale )
dst_face_bgr = cv2.warpAffine( img_bgr , face_mat, (output_size, output_size), flags=cv2.INTER_CUBIC )
dst_face_mask_a_0 = cv2.warpAffine( img_face_mask_a, face_mat, (output_size, output_size), flags=cv2.INTER_CUBIC )
predictor_input_bgr = cv2.resize (dst_face_bgr, cfg.predictor_input_shape[0:2] )
if cfg.predictor_masked:
prd_face_bgr, prd_face_mask_a_0 = cfg.predictor_func (predictor_input_bgr)
prd_face_bgr = np.clip (prd_face_bgr, 0, 1.0 )
prd_face_mask_a_0 = np.clip (prd_face_mask_a_0, 0.0, 1.0)
else:
predicted = cfg.predictor_func (predictor_input_bgr)
prd_face_bgr = np.clip (predicted, 0, 1.0 )
prd_face_mask_a_0 = cv2.resize (dst_face_mask_a_0, cfg.predictor_input_shape[0:2] )
if cfg.super_resolution:
#if debug:
# tmp = cv2.resize (prd_face_bgr, (output_size,output_size), cv2.INTER_CUBIC)
# debugs += [ np.clip( cv2.warpAffine( tmp, face_output_mat, img_size, img_bgr.copy(), cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC, cv2.BORDER_TRANSPARENT ), 0, 1.0) ]
prd_face_bgr = cfg.dcscn_upscale_func(prd_face_bgr)
#if debug:
# debugs += [ np.clip( cv2.warpAffine( prd_face_bgr, face_output_mat, img_size, img_bgr.copy(), cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC, cv2.BORDER_TRANSPARENT ), 0, 1.0) ]
if cfg.predictor_masked:
prd_face_mask_a_0 = cv2.resize (prd_face_mask_a_0, (output_size, output_size), cv2.INTER_CUBIC)
else:
prd_face_mask_a_0 = cv2.resize (dst_face_mask_a_0, (output_size, output_size), cv2.INTER_CUBIC)
if cfg.mask_mode == 2: #dst
prd_face_mask_a_0 = cv2.resize (dst_face_mask_a_0, (output_size,output_size), cv2.INTER_CUBIC)
elif cfg.mask_mode >= 3 and cfg.mask_mode <= 7:
if cfg.mask_mode == 3 or cfg.mask_mode == 5 or cfg.mask_mode == 6:
prd_face_fanseg_bgr = cv2.resize (prd_face_bgr, (cfg.fanseg_input_size,)*2 )
prd_face_fanseg_mask = cfg.fanseg_extract_func(FaceType.FULL, prd_face_fanseg_bgr)
FAN_prd_face_mask_a_0 = cv2.resize ( prd_face_fanseg_mask, (output_size, output_size), cv2.INTER_CUBIC)
if cfg.mask_mode >= 4 or cfg.mask_mode <= 7:
full_face_fanseg_mat = LandmarksProcessor.get_transform_mat (img_face_landmarks, cfg.fanseg_input_size, face_type=FaceType.FULL)
dst_face_fanseg_bgr = cv2.warpAffine(img_bgr, full_face_fanseg_mat, (cfg.fanseg_input_size,)*2, flags=cv2.INTER_CUBIC )
dst_face_fanseg_mask = cfg.fanseg_extract_func( FaceType.FULL, dst_face_fanseg_bgr )
if cfg.face_type == FaceType.FULL:
FAN_dst_face_mask_a_0 = cv2.resize (dst_face_fanseg_mask, (output_size,output_size), cv2.INTER_CUBIC)
elif cfg.face_type == FaceType.HALF:
half_face_fanseg_mat = LandmarksProcessor.get_transform_mat (img_face_landmarks, cfg.fanseg_input_size, face_type=FaceType.HALF)
fanseg_rect_corner_pts = np.array ( [ [0,0], [cfg.fanseg_input_size-1,0], [0,cfg.fanseg_input_size-1] ], dtype=np.float32 )
a = LandmarksProcessor.transform_points (fanseg_rect_corner_pts, half_face_fanseg_mat, invert=True )
b = LandmarksProcessor.transform_points (a, full_face_fanseg_mat )
m = cv2.getAffineTransform(b, fanseg_rect_corner_pts)
FAN_dst_face_mask_a_0 = cv2.warpAffine(dst_face_fanseg_mask, m, (cfg.fanseg_input_size,)*2, flags=cv2.INTER_CUBIC )
FAN_dst_face_mask_a_0 = cv2.resize (FAN_dst_face_mask_a_0, (output_size,output_size), cv2.INTER_CUBIC)
else:
raise ValueError ("cfg.face_type unsupported")
if cfg.mask_mode == 3: #FAN-prd
prd_face_mask_a_0 = FAN_prd_face_mask_a_0
elif cfg.mask_mode == 4: #FAN-dst
prd_face_mask_a_0 = FAN_dst_face_mask_a_0
elif cfg.mask_mode == 5:
prd_face_mask_a_0 = FAN_prd_face_mask_a_0 * FAN_dst_face_mask_a_0
elif cfg.mask_mode == 6:
prd_face_mask_a_0 = prd_face_mask_a_0 * FAN_prd_face_mask_a_0 * FAN_dst_face_mask_a_0
elif cfg.mask_mode == 7:
prd_face_mask_a_0 = prd_face_mask_a_0 * FAN_dst_face_mask_a_0
prd_face_mask_a_0[ prd_face_mask_a_0 < 0.001 ] = 0.0
prd_face_mask_a = prd_face_mask_a_0[...,np.newaxis]
prd_face_mask_aaa = np.repeat (prd_face_mask_a, (3,), axis=-1)
img_face_mask_aaa = cv2.warpAffine( prd_face_mask_aaa, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), flags=cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC )
img_face_mask_aaa = np.clip (img_face_mask_aaa, 0.0, 1.0)
img_face_mask_aaa [ img_face_mask_aaa <= 0.1 ] = 0.0 #get rid of noise
#if debug:
# debugs += [img_face_mask_aaa.copy()]
if 'raw' in cfg.mode:
face_corner_pts = np.array ([ [0,0], [output_size-1,0], [output_size-1,output_size-1], [0,output_size-1] ], dtype=np.float32)
square_mask = np.zeros(img_bgr.shape, dtype=np.float32)
cv2.fillConvexPoly(square_mask, \
LandmarksProcessor.transform_points (face_corner_pts, face_output_mat, invert=True ).astype(np.int), \
(1,1,1) )
if cfg.mode == 'raw-rgb':
out_merging_mask = square_mask
if cfg.mode == 'raw-rgb' or cfg.mode == 'raw-rgb-mask':
out_img = cv2.warpAffine( prd_face_bgr, face_output_mat, img_size, out_img, cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC, cv2.BORDER_TRANSPARENT )
if cfg.mode == 'raw-rgb-mask':
out_img = np.concatenate ( [out_img, np.expand_dims (img_face_mask_aaa[:,:,0],-1)], -1 )
out_merging_mask = square_mask
elif cfg.mode == 'raw-mask-only':
out_img = img_face_mask_aaa
out_merging_mask = img_face_mask_aaa
elif cfg.mode == 'raw-predicted-only':
out_img = cv2.warpAffine( prd_face_bgr, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC, cv2.BORDER_TRANSPARENT )
out_merging_mask = square_mask
out_img = np.clip (out_img, 0.0, 1.0 )
else:
#averaging [lenx, leny, maskx, masky] by grayscale gradients of upscaled mask
ar = []
for i in range(1, 10):
maxregion = np.argwhere( img_face_mask_aaa > i / 10.0 )
if maxregion.size != 0:
miny,minx = maxregion.min(axis=0)[:2]
maxy,maxx = maxregion.max(axis=0)[:2]
lenx = maxx - minx
leny = maxy - miny
if min(lenx,leny) >= 4:
ar += [ [ lenx, leny] ]
if len(ar) > 0:
lenx, leny = np.mean ( ar, axis=0 )
lowest_len = min (lenx, leny)
#if debug:
# io.log_info ("lenx/leny:(%d/%d) " % (lenx, leny ) )
# io.log_info ("lowest_len = %f" % (lowest_len) )
if cfg.erode_mask_modifier != 0:
ero = int( lowest_len * ( 0.126 - lowest_len * 0.00004551365 ) * 0.01*cfg.erode_mask_modifier )
#if debug:
# io.log_info ("erode_size = %d" % (ero) )
if ero > 0:
img_face_mask_aaa = cv2.erode(img_face_mask_aaa, cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(ero,ero)), iterations = 1 )
elif ero < 0:
img_face_mask_aaa = cv2.dilate(img_face_mask_aaa, cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(-ero,-ero)), iterations = 1 )
if cfg.clip_hborder_mask_per > 0: #clip hborder before blur
prd_hborder_rect_mask_a = np.ones ( prd_face_mask_a.shape, dtype=np.float32)
prd_border_size = int ( prd_hborder_rect_mask_a.shape[1] * cfg.clip_hborder_mask_per )
prd_hborder_rect_mask_a[:,0:prd_border_size,:] = 0
prd_hborder_rect_mask_a[:,-prd_border_size:,:] = 0
prd_hborder_rect_mask_a[-prd_border_size:,:,:] = 0
prd_hborder_rect_mask_a = np.expand_dims(cv2.blur(prd_hborder_rect_mask_a, (prd_border_size, prd_border_size) ),-1)
img_prd_hborder_rect_mask_a = cv2.warpAffine( prd_hborder_rect_mask_a, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC )
img_prd_hborder_rect_mask_a = np.expand_dims (img_prd_hborder_rect_mask_a, -1)
img_face_mask_aaa *= img_prd_hborder_rect_mask_a
img_face_mask_aaa = np.clip( img_face_mask_aaa, 0, 1.0 )
#if debug:
# debugs += [img_face_mask_aaa.copy()]
if cfg.blur_mask_modifier > 0:
blur = int( lowest_len * 0.10 * 0.01*cfg.blur_mask_modifier )
#if debug:
# io.log_info ("blur_size = %d" % (blur) )
if blur > 0:
img_face_mask_aaa = cv2.blur(img_face_mask_aaa, (blur, blur) )
img_face_mask_aaa = np.clip( img_face_mask_aaa, 0, 1.0 )
#if debug:
# debugs += [img_face_mask_aaa.copy()]
if 'seamless' not in cfg.mode and cfg.color_transfer_mode != 0:
if cfg.color_transfer_mode == 1:
#if debug:
# debugs += [ np.clip( cv2.warpAffine( prd_face_bgr, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC, cv2.BORDER_TRANSPARENT ), 0, 1.0) ]
prd_face_bgr = imagelib.reinhard_color_transfer ( np.clip( (prd_face_bgr*255).astype(np.uint8), 0, 255),
np.clip( (dst_face_bgr*255).astype(np.uint8), 0, 255),
source_mask=prd_face_mask_a, target_mask=prd_face_mask_a)
prd_face_bgr = np.clip( prd_face_bgr.astype(np.float32) / 255.0, 0.0, 1.0)
#if debug:
# debugs += [ np.clip( cv2.warpAffine( prd_face_bgr, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC, cv2.BORDER_TRANSPARENT ), 0, 1.0) ]
elif cfg.color_transfer_mode == 2:
#if debug:
# debugs += [ np.clip( cv2.warpAffine( prd_face_bgr, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC, cv2.BORDER_TRANSPARENT ), 0, 1.0) ]
prd_face_bgr = imagelib.linear_color_transfer (prd_face_bgr, dst_face_bgr)
prd_face_bgr = np.clip( prd_face_bgr, 0.0, 1.0)
#if debug:
# debugs += [ np.clip( cv2.warpAffine( prd_face_bgr, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC, cv2.BORDER_TRANSPARENT ), 0, 1.0) ]
if cfg.mode == 'hist-match-bw':
prd_face_bgr = cv2.cvtColor(prd_face_bgr, cv2.COLOR_BGR2GRAY)
prd_face_bgr = np.repeat( np.expand_dims (prd_face_bgr, -1), (3,), -1 )
if cfg.mode == 'hist-match' or cfg.mode == 'hist-match-bw':
#if debug:
# debugs += [ cv2.warpAffine( prd_face_bgr, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC, cv2.BORDER_TRANSPARENT ) ]
hist_mask_a = np.ones ( prd_face_bgr.shape[:2] + (1,) , dtype=np.float32)
if cfg.masked_hist_match:
hist_mask_a *= prd_face_mask_a
white = (1.0-hist_mask_a)* np.ones ( prd_face_bgr.shape[:2] + (1,) , dtype=np.float32)
hist_match_1 = prd_face_bgr*hist_mask_a + white
hist_match_1[ hist_match_1 > 1.0 ] = 1.0
hist_match_2 = dst_face_bgr*hist_mask_a + white
hist_match_2[ hist_match_1 > 1.0 ] = 1.0
prd_face_bgr = imagelib.color_hist_match(hist_match_1, hist_match_2, cfg.hist_match_threshold )
#if cfg.masked_hist_match:
# prd_face_bgr -= white
if cfg.mode == 'hist-match-bw':
prd_face_bgr = prd_face_bgr.astype(dtype=np.float32)
out_img = cv2.warpAffine( prd_face_bgr, face_output_mat, img_size, out_img, cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC, cv2.BORDER_TRANSPARENT )
out_img = np.clip(out_img, 0.0, 1.0)
#if debug:
# debugs += [out_img.copy()]
if cfg.mode == 'overlay':
pass
if 'seamless' in cfg.mode:
#mask used for cv2.seamlessClone
img_face_seamless_mask_a = None
img_face_mask_a = img_face_mask_aaa[...,0:1]
for i in range(1,10):
a = img_face_mask_a > i / 10.0
if len(np.argwhere(a)) == 0:
continue
img_face_seamless_mask_a = img_face_mask_aaa[...,0:1].copy()
img_face_seamless_mask_a[a] = 1.0
img_face_seamless_mask_a[img_face_seamless_mask_a <= i / 10.0] = 0.0
break
try:
#calc same bounding rect and center point as in cv2.seamlessClone to prevent jittering (not flickering)
l,t,w,h = cv2.boundingRect( (img_face_seamless_mask_a*255).astype(np.uint8) )
s_maskx, s_masky = int(l+w/2), int(t+h/2)
out_img = cv2.seamlessClone( (out_img*255).astype(np.uint8), img_bgr_uint8, (img_face_seamless_mask_a*255).astype(np.uint8), (s_maskx,s_masky) , cv2.NORMAL_CLONE )
out_img = out_img.astype(dtype=np.float32) / 255.0
except Exception as e:
#seamlessClone may fail in some cases
e_str = traceback.format_exc()
if 'MemoryError' in e_str:
raise Exception("Seamless fail: " + e_str) #reraise MemoryError in order to reprocess this data by other processes
else:
print ("Seamless fail: " + e_str)
#if debug:
# debugs += [out_img.copy()]
out_img = img_bgr*(1-img_face_mask_aaa) + (out_img*img_face_mask_aaa)
if 'seamless' in cfg.mode and cfg.color_transfer_mode != 0:
out_face_bgr = cv2.warpAffine( out_img, face_mat, (output_size, output_size) )
if cfg.color_transfer_mode == 1:
#if debug:
# debugs += [ np.clip( cv2.warpAffine( out_face_bgr, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC, cv2.BORDER_TRANSPARENT ), 0, 1.0) ]
face_mask_aaa = cv2.warpAffine( img_face_mask_aaa, face_mat, (output_size, output_size) )
new_out_face_bgr = imagelib.reinhard_color_transfer ( np.clip( (out_face_bgr*255).astype(np.uint8), 0, 255),
np.clip( (dst_face_bgr*255).astype(np.uint8), 0, 255),
source_mask=face_mask_aaa, target_mask=face_mask_aaa)
new_out_face_bgr = np.clip( new_out_face_bgr.astype(np.float32) / 255.0, 0.0, 1.0)
#if debug:
# debugs += [ np.clip( cv2.warpAffine( new_out_face_bgr, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC, cv2.BORDER_TRANSPARENT ), 0, 1.0) ]
elif cfg.color_transfer_mode == 2:
#if debug:
# debugs += [ np.clip( cv2.warpAffine( out_face_bgr, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC, cv2.BORDER_TRANSPARENT ), 0, 1.0) ]
new_out_face_bgr = imagelib.linear_color_transfer (out_face_bgr, dst_face_bgr)
new_out_face_bgr = np.clip( new_out_face_bgr, 0.0, 1.0)
#if debug:
# debugs += [ np.clip( cv2.warpAffine( new_out_face_bgr, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC, cv2.BORDER_TRANSPARENT ), 0, 1.0) ]
new_out = cv2.warpAffine( new_out_face_bgr, face_mat, img_size, img_bgr.copy(), cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC, cv2.BORDER_TRANSPARENT )
out_img = np.clip( img_bgr*(1-img_face_mask_aaa) + (new_out*img_face_mask_aaa) , 0, 1.0 )
if cfg.mode == 'seamless-hist-match':
out_face_bgr = cv2.warpAffine( out_img, face_mat, (output_size, output_size) )
new_out_face_bgr = imagelib.color_hist_match(out_face_bgr, dst_face_bgr, cfg.hist_match_threshold)
new_out = cv2.warpAffine( new_out_face_bgr, face_mat, img_size, img_bgr.copy(), cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC, cv2.BORDER_TRANSPARENT )
out_img = np.clip( img_bgr*(1-img_face_mask_aaa) + (new_out*img_face_mask_aaa) , 0, 1.0 )
cfg_mp = cfg.motion_blur_power / 100.0
if cfg_mp != 0:
k_size = int(frame_info.motion_power*cfg_mp)
if k_size >= 1:
k_size = np.clip (k_size+1, 2, 50)
if cfg.super_resolution:
k_size *= 2
out_face_bgr = cv2.warpAffine( out_img, face_mat, (output_size, output_size) )
new_out_face_bgr = imagelib.LinearMotionBlur (out_face_bgr, k_size , frame_info.motion_deg)
new_out = cv2.warpAffine( new_out_face_bgr, face_mat, img_size, img_bgr.copy(), cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC, cv2.BORDER_TRANSPARENT )
out_img = np.clip( img_bgr*(1-img_face_mask_aaa) + (new_out*img_face_mask_aaa) , 0, 1.0 )
if cfg.color_degrade_power != 0:
#if debug:
# debugs += [out_img.copy()]
out_img_reduced = imagelib.reduce_colors(out_img, 256)
if cfg.color_degrade_power == 100:
out_img = out_img_reduced
else:
alpha = cfg.color_degrade_power / 100.0
out_img = (out_img*(1.0-alpha) + out_img_reduced*alpha)
if cfg.export_mask_alpha:
out_img = np.concatenate ( [out_img, img_face_mask_aaa[:,:,0:1]], -1 )
out_merging_mask = img_face_mask_aaa
#if debug:
# debugs += [out_img.copy()]
return out_img, out_merging_mask
def ConvertMasked (cfg, frame_info):
img_bgr_uint8 = cv2_imread(frame_info.filename)
img_bgr_uint8 = imagelib.normalize_channels (img_bgr_uint8, 3)
img_bgr = img_bgr_uint8.astype(np.float32) / 255.0
outs = []
for face_num, img_landmarks in enumerate( frame_info.landmarks_list ):
out_img, out_img_merging_mask = ConvertMaskedFace (cfg, frame_info, img_bgr_uint8, img_bgr, img_landmarks)
outs += [ (out_img, out_img_merging_mask) ]
#Combining multiple face outputs
final_img = None
for img, merging_mask in outs:
h,w,c = img.shape
if final_img is None:
final_img = img
else:
merging_mask = merging_mask[...,0:1]
if c == 3:
final_img = final_img*(1-merging_mask) + img*merging_mask
elif c == 4:
final_img_bgr = final_img[...,0:3]*(1-merging_mask) + img[...,0:3]*merging_mask
final_img_mask = np.clip ( final_img[...,3:4] + img[...,3:4], 0, 1 )
final_img = np.concatenate ( [final_img_bgr, final_img_mask], -1 )
return (final_img*255).astype(np.uint8)

View file

@ -1,50 +0,0 @@
import copy
'''
You can implement your own Converter, check example ConverterMasked.py
'''
class Converter(object):
TYPE_FACE = 0 #calls convert_face
TYPE_FACE_AVATAR = 1 #calls convert_face with avatar_operator_face
TYPE_IMAGE = 2 #calls convert_image without landmarks
TYPE_IMAGE_WITH_LANDMARKS = 3 #calls convert_image with landmarks
#overridable
def __init__(self, predictor_func, type):
self.predictor_func = predictor_func
self.type = type
#overridable
def on_cli_initialize(self):
#cli initialization
pass
#overridable
def on_host_tick(self):
pass
#overridable
def cli_convert_face (self, img_bgr, img_face_landmarks, debug, avaperator_face_bgr=None, **kwargs):
#return float32 image
#if debug , return tuple ( images of any size and channels, ...)
return image
#overridable
def cli_convert_image (self, img_bgr, img_landmarks, debug):
#img_landmarks not None, if input image is png with embedded data
#return float32 image
#if debug , return tuple ( images of any size and channels, ...)
return image
#overridable
def dummy_predict(self):
#do dummy predict here
pass
def copy(self):
return copy.copy(self)
def copy_and_set_predictor(self, predictor_func):
result = self.copy()
result.predictor_func = predictor_func
return result

View file

@ -1,61 +0,0 @@
import time
import cv2
import numpy as np
from facelib import FaceType, LandmarksProcessor
from joblib import SubprocessFunctionCaller
from utils.pickle_utils import AntiPickler
from .Converter import Converter
class ConverterAvatar(Converter):
#override
def __init__(self, predictor_func,
predictor_input_size=0):
super().__init__(predictor_func, Converter.TYPE_FACE_AVATAR)
self.predictor_input_size = predictor_input_size
#dummy predict and sleep, tensorflow caching kernels. If remove it, conversion speed will be x2 slower
predictor_func ( np.zeros ( (predictor_input_size,predictor_input_size,3), dtype=np.float32 ),
np.zeros ( (predictor_input_size,predictor_input_size,3), dtype=np.float32 ),
np.zeros ( (predictor_input_size,predictor_input_size,3), dtype=np.float32 ) )
time.sleep(2)
predictor_func_host, predictor_func = SubprocessFunctionCaller.make_pair(predictor_func)
self.predictor_func_host = AntiPickler(predictor_func_host)
self.predictor_func = predictor_func
#overridable
def on_host_tick(self):
self.predictor_func_host.obj.process_messages()
#override
def cli_convert_face (self, f0, f0_lmrk, f1, f1_lmrk, f2, f2_lmrk, debug, **kwargs):
if debug:
debugs = []
inp_size = self.predictor_input_size
f0_mat = LandmarksProcessor.get_transform_mat (f0_lmrk, inp_size, face_type=FaceType.FULL_NO_ALIGN)
f1_mat = LandmarksProcessor.get_transform_mat (f1_lmrk, inp_size, face_type=FaceType.FULL_NO_ALIGN)
f2_mat = LandmarksProcessor.get_transform_mat (f2_lmrk, inp_size, face_type=FaceType.FULL_NO_ALIGN)
inp_f0 = cv2.warpAffine( f0, f0_mat, (inp_size, inp_size), flags=cv2.INTER_CUBIC )
inp_f1 = cv2.warpAffine( f1, f1_mat, (inp_size, inp_size), flags=cv2.INTER_CUBIC )
inp_f2 = cv2.warpAffine( f2, f2_mat, (inp_size, inp_size), flags=cv2.INTER_CUBIC )
prd_f = self.predictor_func ( inp_f0, inp_f1, inp_f2 )
out_img = np.clip(prd_f, 0.0, 1.0)
out_img = np.concatenate ( [cv2.resize ( inp_f1, (prd_f.shape[1], prd_f.shape[0]) ),
out_img], axis=1 )
if debug:
debugs += [out_img.copy()]
return debugs if debug else out_img

View file

@ -0,0 +1,317 @@
import numpy as np
import copy
from facelib import FaceType
from interact import interact as io
class ConverterConfig(object):
TYPE_NONE = 0
TYPE_MASKED = 1
TYPE_FACE_AVATAR = 2
####
TYPE_IMAGE = 3
TYPE_IMAGE_WITH_LANDMARKS = 4
def __init__(self, type=0, predictor_func=None,
predictor_input_shape=None):
self.type = type
self.predictor_func = predictor_func
self.predictor_input_shape = predictor_input_shape
self.dcscn_upscale_func = None
self.fanseg_input_size = None
self.fanseg_extract_func = None
def copy(self):
return copy.copy(self)
#overridable
def ask_settings(self):
pass
#overridable
def __eq__(self, other):
#check equality of changeable params
if isinstance(other, ConverterConfig):
return True
return False
#overridable
def __str__(self):
return "ConverterConfig: ."
class ConverterConfigMasked(ConverterConfig):
def __init__(self, predictor_func=None,
predictor_input_shape=None,
predictor_masked=True,
face_type=FaceType.FULL,
default_mode = 4,
base_erode_mask_modifier = 0,
base_blur_mask_modifier = 0,
default_erode_mask_modifier = 0,
default_blur_mask_modifier = 0,
clip_hborder_mask_per = 0,
):
super().__init__(type=ConverterConfig.TYPE_MASKED,
predictor_func=predictor_func,
predictor_input_shape=predictor_input_shape,
)
if len(predictor_input_shape) != 3:
raise ValueError("ConverterConfigMasked: predictor_input_shape must be rank 3.")
if predictor_input_shape[0] != predictor_input_shape[1]:
raise ValueError("ConverterConfigMasked: predictor_input_shape must be a square.")
self.predictor_masked = predictor_masked
self.face_type = face_type
if self.face_type not in [FaceType.FULL, FaceType.HALF]:
raise ValueError("ConverterConfigMasked supports only full or half face masks.")
self.default_mode = default_mode
self.base_erode_mask_modifier = base_erode_mask_modifier
self.base_blur_mask_modifier = base_blur_mask_modifier
self.default_erode_mask_modifier = default_erode_mask_modifier
self.default_blur_mask_modifier = default_blur_mask_modifier
self.clip_hborder_mask_per = clip_hborder_mask_per
#default changeable params
self.mode = 'overlay'
self.masked_hist_match = True
self.hist_match_threshold = 238
self.mask_mode = 1
self.erode_mask_modifier = 0
self.blur_mask_modifier = 0
self.motion_blur_power = 0
self.output_face_scale = 0
self.color_transfer_mode = 0
self.super_resolution = False
self.color_degrade_power = 0
self.export_mask_alpha = False
self.mode_dict = {0:'original',
1:'overlay',
2:'hist-match',
3:'hist-match-bw',
4:'seamless',
5:'seamless-hist-match',
6:'raw-rgb',
7:'raw-rgb-mask',
8:'raw-mask-only',
9:'raw-predicted-only'}
self.full_face_mask_mode_dict = {1:'learned',
2:'dst',
3:'FAN-prd',
4:'FAN-dst',
5:'FAN-prd*FAN-dst',
6:'learned*FAN-prd*FAN-dst'}
self.half_face_mask_mode_dict = {1:'learned',
2:'dst',
4:'FAN-dst',
7:'learned*FAN-dst'}
self.ctm_dict = { 0: "None", 1:"rct", 2:"lct" }
self.ctm_str_dict = {None:None, "rct":1, "lct": 2 }
def copy(self):
return copy.copy(self)
def set_mode (self, mode):
self.mode = self.mode_dict.get (mode, self.mode_dict[self.default_mode] )
def toggle_masked_hist_match(self):
if self.mode == 'hist-match' or self.mode == 'hist-match-bw':
self.masked_hist_match = not self.masked_hist_match
def add_hist_match_threshold(self, diff):
if self.mode == 'hist-match' or self.mode == 'hist-match-bw' or self.mode == 'seamless-hist-match':
self.hist_match_threshold = np.clip ( self.hist_match_threshold+diff , 0, 255)
def toggle_mask_mode(self):
if self.face_type == FaceType.FULL:
a = list( self.full_face_mask_mode_dict.keys() )
else:
a = list( self.half_face_mask_mode_dict.keys() )
self.mask_mode = a[ (a.index(self.mask_mode)+1) % len(a) ]
def add_erode_mask_modifier(self, diff):
self.erode_mask_modifier = np.clip ( self.erode_mask_modifier+diff , -200, 200)
def add_blur_mask_modifier(self, diff):
self.blur_mask_modifier = np.clip ( self.blur_mask_modifier+diff , -200, 200)
def add_motion_blur_power(self, diff):
self.motion_blur_power = np.clip ( self.motion_blur_power+diff, 0, 100)
def add_output_face_scale(self, diff):
self.output_face_scale = np.clip ( self.output_face_scale+diff , -50, 50)
def toggle_color_transfer_mode(self):
self.color_transfer_mode = (self.color_transfer_mode+1) % 3
def toggle_super_resolution(self):
self.super_resolution = not self.super_resolution
def add_color_degrade_power(self, diff):
self.color_degrade_power = np.clip ( self.color_degrade_power+diff , 0, 100)
def toggle_export_mask_alpha(self):
self.export_mask_alpha = not self.export_mask_alpha
def ask_settings(self):
s = """Choose mode: \n"""
for key in self.mode_dict.keys():
s += f"""({key}) {self.mode_dict[key]}\n"""
s += f"""Default: {self.default_mode} : """
mode = io.input_int (s, self.default_mode)
self.mode = self.mode_dict.get (mode, self.mode_dict[self.default_mode] )
if 'raw' not in self.mode:
if self.mode == 'hist-match' or self.mode == 'hist-match-bw':
self.masked_hist_match = io.input_bool("Masked hist match? (y/n skip:y) : ", True)
if self.mode == 'hist-match' or self.mode == 'hist-match-bw' or self.mode == 'seamless-hist-match':
self.hist_match_threshold = np.clip ( io.input_int("Hist match threshold [0..255] (skip:255) : ", 255), 0, 255)
if self.face_type == FaceType.FULL:
s = """Choose mask mode: \n"""
for key in self.full_face_mask_mode_dict.keys():
s += f"""({key}) {self.full_face_mask_mode_dict[key]}\n"""
s += f"""?:help Default: 1 : """
self.mask_mode = io.input_int (s, 1, valid_list=self.full_face_mask_mode_dict.keys(), help_message="If you learned the mask, then option 1 should be choosed. 'dst' mask is raw shaky mask from dst aligned images. 'FAN-prd' - using super smooth mask by pretrained FAN-model from predicted face. 'FAN-dst' - using super smooth mask by pretrained FAN-model from dst face. 'FAN-prd*FAN-dst' or 'learned*FAN-prd*FAN-dst' - using multiplied masks.")
else:
s = """Choose mask mode: \n"""
for key in self.half_face_mask_mode_dict.keys():
s += f"""({key}) {self.half_face_mask_mode_dict[key]}\n"""
s += f"""?:help , Default: 1 : """
self.mask_mode = io.input_int (s, 1, valid_list=self.half_face_mask_mode_dict.keys(), help_message="If you learned the mask, then option 1 should be choosed. 'dst' mask is raw shaky mask from dst aligned images.")
if 'raw' not in self.mode:
self.erode_mask_modifier = self.base_erode_mask_modifier + np.clip ( io.input_int ("Choose erode mask modifier [-200..200] (skip:%d) : " % (self.default_erode_mask_modifier), self.default_erode_mask_modifier), -200, 200)
self.blur_mask_modifier = self.base_blur_mask_modifier + np.clip ( io.input_int ("Choose blur mask modifier [-200..200] (skip:%d) : " % (self.default_blur_mask_modifier), self.default_blur_mask_modifier), -200, 200)
self.motion_blur_power = np.clip ( io.input_int ("Choose motion blur power [0..100] (skip:%d) : " % (0), 0), 0, 100)
self.output_face_scale = np.clip (io.input_int ("Choose output face scale modifier [-50..50] (skip:0) : ", 0), -50, 50)
if 'raw' not in self.mode:
self.color_transfer_mode = io.input_str ("Apply color transfer to predicted face? Choose mode ( rct/lct skip:None ) : ", None, ['rct','lct'])
self.color_transfer_mode = self.ctm_str_dict[self.color_transfer_mode]
self.super_resolution = io.input_bool("Apply super resolution? (y/n ?:help skip:n) : ", False, help_message="Enhance details by applying DCSCN network.")
if 'raw' not in self.mode:
self.color_degrade_power = np.clip ( io.input_int ("Degrade color power of final image [0..100] (skip:0) : ", 0), 0, 100)
self.export_mask_alpha = io.input_bool("Export png with alpha channel of the mask? (y/n skip:n) : ", False)
io.log_info ("")
def __eq__(self, other):
#check equality of changeable params
if isinstance(other, ConverterConfigMasked):
return self.mode == other.mode and \
self.masked_hist_match == other.masked_hist_match and \
self.hist_match_threshold == other.hist_match_threshold and \
self.mask_mode == other.mask_mode and \
self.erode_mask_modifier == other.erode_mask_modifier and \
self.blur_mask_modifier == other.blur_mask_modifier and \
self.motion_blur_power == other.motion_blur_power and \
self.output_face_scale == other.output_face_scale and \
self.color_transfer_mode == other.color_transfer_mode and \
self.super_resolution == other.super_resolution and \
self.color_degrade_power == other.color_degrade_power and \
self.export_mask_alpha == other.export_mask_alpha
return False
def __str__(self):
r = (
"""ConverterConfig:\n"""
f"""Mode: {self.mode}\n"""
)
if self.mode == 'hist-match' or self.mode == 'hist-match-bw':
r += f"""masked_hist_match: {self.masked_hist_match}\n"""
if self.mode == 'hist-match' or self.mode == 'hist-match-bw' or self.mode == 'seamless-hist-match':
r += f"""hist_match_threshold: {self.hist_match_threshold}\n"""
if self.face_type == FaceType.FULL:
r += f"""mask_mode: { self.full_face_mask_mode_dict[self.mask_mode] }\n"""
else:
r += f"""mask_mode: { self.half_face_mask_mode_dict[self.mask_mode] }\n"""
if 'raw' not in self.mode:
r += (f"""erode_mask_modifier: {self.erode_mask_modifier}\n"""
f"""blur_mask_modifier: {self.blur_mask_modifier}\n"""
f"""motion_blur_power: {self.motion_blur_power}\n""")
r += f"""output_face_scale: {self.output_face_scale}\n"""
if 'raw' not in self.mode:
r += f"""color_transfer_mode: { self.ctm_dict[self.color_transfer_mode]}\n"""
r += f"""super_resolution: {self.super_resolution}\n"""
if 'raw' not in self.mode:
r += (f"""color_degrade_power: {self.color_degrade_power}\n"""
f"""export_mask_alpha: {self.export_mask_alpha}\n""")
r += "================"
return r
class ConverterConfigFaceAvatar(ConverterConfig):
def __init__(self, predictor_func=None,
predictor_input_shape=None,
temporal_face_count=0
):
super().__init__(type=ConverterConfig.TYPE_FACE_AVATAR,
predictor_func=predictor_func,
predictor_input_shape=predictor_input_shape
)
self.temporal_face_count = temporal_face_count
#changeable params
self.add_source_image = False
def copy(self):
return copy.copy(self)
#override
def ask_settings(self):
self.add_source_image = io.input_bool("Add source image? (y/n ?:help skip:n) : ", False, help_message="Add source image for comparison.")
def toggle_add_source_image(self):
self.add_source_image = not self.add_source_image
#override
def __eq__(self, other):
#check equality of changeable params
if isinstance(other, ConverterConfigFaceAvatar):
return self.add_source_image == other.add_source_image
return False
#override
def __str__(self):
return ("ConverterConfig: \n"
f"add_source_image : {self.add_source_image}\n"
"================"
)

View file

@ -1,50 +0,0 @@
import time
import cv2
import numpy as np
from facelib import FaceType, LandmarksProcessor
from joblib import SubprocessFunctionCaller
from utils.pickle_utils import AntiPickler
from .Converter import Converter
class ConverterImage(Converter):
#override
def __init__(self, predictor_func,
predictor_input_size=0):
super().__init__(predictor_func, Converter.TYPE_IMAGE)
self.predictor_input_size = predictor_input_size
#dummy predict and sleep, tensorflow caching kernels. If remove it, conversion speed will be x2 slower
predictor_func ( np.zeros ( (predictor_input_size,predictor_input_size,3), dtype=np.float32 ) )
time.sleep(2)
predictor_func_host, predictor_func = SubprocessFunctionCaller.make_pair(predictor_func)
self.predictor_func_host = AntiPickler(predictor_func_host)
self.predictor_func = predictor_func
#overridable
def on_host_tick(self):
self.predictor_func_host.obj.process_messages()
#override
def cli_convert_image (self, img_bgr, img_landmarks, debug):
img_size = img_bgr.shape[1], img_bgr.shape[0]
predictor_input_bgr = cv2.resize ( img_bgr, (self.predictor_input_size, self.predictor_input_size), cv2.INTER_LANCZOS4 )
if debug:
debugs = [predictor_input_bgr]
output = self.predictor_func ( predictor_input_bgr )
if debug:
return (predictor_input_bgr,output,)
if debug:
debugs += [out_img.copy()]
return debugs if debug else output

View file

@ -1,436 +0,0 @@
import time
import traceback
import cv2
import numpy as np
import imagelib
from facelib import FaceType, FANSegmentator, LandmarksProcessor
from interact import interact as io
from joblib import SubprocessFunctionCaller
from utils.pickle_utils import AntiPickler
from .Converter import Converter
'''
default_mode = {1:'overlay',
2:'hist-match',
3:'hist-match-bw',
4:'seamless',
5:'seamless-hist-match',
6:'raw'}
'''
class ConverterMasked(Converter):
#override
def __init__(self, predictor_func,
predictor_input_size=0,
predictor_masked=True,
face_type=FaceType.FULL,
default_mode = 4,
base_erode_mask_modifier = 0,
base_blur_mask_modifier = 0,
default_erode_mask_modifier = 0,
default_blur_mask_modifier = 0,
clip_hborder_mask_per = 0,
force_mask_mode=-1):
super().__init__(predictor_func, Converter.TYPE_FACE)
#dummy predict and sleep, tensorflow caching kernels. If remove it, conversion speed will be x2 slower
predictor_func ( np.zeros ( (predictor_input_size,predictor_input_size,3), dtype=np.float32 ) )
time.sleep(2)
predictor_func_host, predictor_func = SubprocessFunctionCaller.make_pair(predictor_func)
self.predictor_func_host = AntiPickler(predictor_func_host)
self.predictor_func = predictor_func
self.predictor_masked = predictor_masked
self.predictor_input_size = predictor_input_size
self.face_type = face_type
self.clip_hborder_mask_per = clip_hborder_mask_per
mode = io.input_int ("Choose mode: (1) overlay, (2) hist match, (3) hist match bw, (4) seamless, (5) raw. Default - %d : " % (default_mode) , default_mode)
mode_dict = {1:'overlay',
2:'hist-match',
3:'hist-match-bw',
4:'seamless',
5:'raw'}
self.mode = mode_dict.get (mode, mode_dict[default_mode] )
if self.mode == 'raw':
mode = io.input_int ("Choose raw mode: (1) rgb, (2) rgb+mask (default), (3) mask only, (4) predicted only : ", 2)
self.raw_mode = {1:'rgb',
2:'rgb-mask',
3:'mask-only',
4:'predicted-only'}.get (mode, 'rgb-mask')
if self.mode != 'raw':
if self.mode == 'seamless':
if io.input_bool("Seamless hist match? (y/n skip:n) : ", False):
self.mode = 'seamless-hist-match'
if self.mode == 'hist-match' or self.mode == 'hist-match-bw':
self.masked_hist_match = io.input_bool("Masked hist match? (y/n skip:y) : ", True)
if self.mode == 'hist-match' or self.mode == 'hist-match-bw' or self.mode == 'seamless-hist-match':
self.hist_match_threshold = np.clip ( io.input_int("Hist match threshold [0..255] (skip:255) : ", 255), 0, 255)
if force_mask_mode != -1:
self.mask_mode = force_mask_mode
else:
if face_type == FaceType.FULL:
self.mask_mode = np.clip ( io.input_int ("Mask mode: (1) learned, (2) dst, (3) FAN-prd, (4) FAN-dst , (5) FAN-prd*FAN-dst (6) learned*FAN-prd*FAN-dst (?) help. Default - %d : " % (1) , 1, help_message="If you learned mask, then option 1 should be choosed. 'dst' mask is raw shaky mask from dst aligned images. 'FAN-prd' - using super smooth mask by pretrained FAN-model from predicted face. 'FAN-dst' - using super smooth mask by pretrained FAN-model from dst face. 'FAN-prd*FAN-dst' or 'learned*FAN-prd*FAN-dst' - using multiplied masks."), 1, 6 )
else:
self.mask_mode = np.clip ( io.input_int ("Mask mode: (1) learned, (2) dst . Default - %d : " % (1) , 1), 1, 2 )
if self.mask_mode >= 3 and self.mask_mode <= 6:
self.fan_seg = None
if self.mode != 'raw':
self.erode_mask_modifier = base_erode_mask_modifier + np.clip ( io.input_int ("Choose erode mask modifier [-200..200] (skip:%d) : " % (default_erode_mask_modifier), default_erode_mask_modifier), -200, 200)
self.blur_mask_modifier = base_blur_mask_modifier + np.clip ( io.input_int ("Choose blur mask modifier [-200..200] (skip:%d) : " % (default_blur_mask_modifier), default_blur_mask_modifier), -200, 200)
self.output_face_scale = np.clip ( 1.0 + io.input_int ("Choose output face scale modifier [-50..50] (skip:0) : ", 0)*0.01, 0.5, 1.5)
if self.mode != 'raw':
self.color_transfer_mode = io.input_str ("Apply color transfer to predicted face? Choose mode ( rct/lct skip:None ) : ", None, ['rct','lct'])
self.super_resolution = io.input_bool("Apply super resolution? (y/n ?:help skip:n) : ", False, help_message="Enhance details by applying DCSCN network.")
if self.mode != 'raw':
self.final_image_color_degrade_power = np.clip ( io.input_int ("Degrade color power of final image [0..100] (skip:0) : ", 0), 0, 100)
self.alpha = io.input_bool("Export png with alpha channel? (y/n skip:n) : ", False)
io.log_info ("")
if self.super_resolution:
host_proc, dc_upscale = SubprocessFunctionCaller.make_pair( imagelib.DCSCN().upscale )
self.dc_host = AntiPickler(host_proc)
self.dc_upscale = dc_upscale
else:
self.dc_host = None
#overridable
def on_host_tick(self):
self.predictor_func_host.obj.process_messages()
if self.dc_host is not None:
self.dc_host.obj.process_messages()
#overridable
def on_cli_initialize(self):
if (self.mask_mode >= 3 and self.mask_mode <= 6) and self.fan_seg == None:
self.fan_seg = FANSegmentator(256, FaceType.toString( self.face_type ) )
#override
def cli_convert_face (self, img_bgr, img_face_landmarks, debug, **kwargs):
if debug:
debugs = [img_bgr.copy()]
img_size = img_bgr.shape[1], img_bgr.shape[0]
img_face_mask_a = LandmarksProcessor.get_image_hull_mask (img_bgr.shape, img_face_landmarks)
output_size = self.predictor_input_size
if self.super_resolution:
output_size *= 2
face_mat = LandmarksProcessor.get_transform_mat (img_face_landmarks, output_size, face_type=self.face_type)
face_output_mat = LandmarksProcessor.get_transform_mat (img_face_landmarks, output_size, face_type=self.face_type, scale=self.output_face_scale)
dst_face_bgr = cv2.warpAffine( img_bgr , face_mat, (output_size, output_size), flags=cv2.INTER_LANCZOS4 )
dst_face_mask_a_0 = cv2.warpAffine( img_face_mask_a, face_mat, (output_size, output_size), flags=cv2.INTER_LANCZOS4 )
predictor_input_bgr = cv2.resize (dst_face_bgr, (self.predictor_input_size,self.predictor_input_size))
if self.predictor_masked:
prd_face_bgr, prd_face_mask_a_0 = self.predictor_func (predictor_input_bgr)
prd_face_bgr = np.clip (prd_face_bgr, 0, 1.0 )
prd_face_mask_a_0 = np.clip (prd_face_mask_a_0, 0.0, 1.0)
else:
predicted = self.predictor_func (predictor_input_bgr)
prd_face_bgr = np.clip (predicted, 0, 1.0 )
prd_face_mask_a_0 = cv2.resize (dst_face_mask_a_0, (self.predictor_input_size,self.predictor_input_size))
if self.super_resolution:
if debug:
tmp = cv2.resize (prd_face_bgr, (output_size,output_size), cv2.INTER_CUBIC)
debugs += [ np.clip( cv2.warpAffine( tmp, face_output_mat, img_size, img_bgr.copy(), cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4, cv2.BORDER_TRANSPARENT ), 0, 1.0) ]
prd_face_bgr = self.dc_upscale(prd_face_bgr)
if debug:
debugs += [ np.clip( cv2.warpAffine( prd_face_bgr, face_output_mat, img_size, img_bgr.copy(), cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4, cv2.BORDER_TRANSPARENT ), 0, 1.0) ]
if self.predictor_masked:
prd_face_mask_a_0 = cv2.resize (prd_face_mask_a_0, (output_size, output_size), cv2.INTER_CUBIC)
else:
prd_face_mask_a_0 = cv2.resize (dst_face_mask_a_0, (output_size, output_size), cv2.INTER_CUBIC)
if self.mask_mode == 2: #dst
prd_face_mask_a_0 = cv2.resize (dst_face_mask_a_0, (output_size,output_size), cv2.INTER_CUBIC)
elif self.mask_mode >= 3 and self.mask_mode <= 6:
if self.mask_mode == 3 or self.mask_mode == 5 or self.mask_mode == 6:
prd_face_bgr_256 = cv2.resize (prd_face_bgr, (256,256) )
prd_face_bgr_256_mask = self.fan_seg.extract( prd_face_bgr_256 )
FAN_prd_face_mask_a_0 = cv2.resize (prd_face_bgr_256_mask, (output_size,output_size), cv2.INTER_CUBIC)
if self.mask_mode == 4 or self.mask_mode == 5 or self.mask_mode == 6:
face_256_mat = LandmarksProcessor.get_transform_mat (img_face_landmarks, 256, face_type=FaceType.FULL)
dst_face_256_bgr = cv2.warpAffine(img_bgr, face_256_mat, (256, 256), flags=cv2.INTER_LANCZOS4 )
dst_face_256_mask = self.fan_seg.extract( dst_face_256_bgr )
FAN_dst_face_mask_a_0 = cv2.resize (dst_face_256_mask, (output_size,output_size), cv2.INTER_CUBIC)
if self.mask_mode == 3: #FAN-prd
prd_face_mask_a_0 = FAN_prd_face_mask_a_0
elif self.mask_mode == 4: #FAN-dst
prd_face_mask_a_0 = FAN_dst_face_mask_a_0
elif self.mask_mode == 5:
prd_face_mask_a_0 = FAN_prd_face_mask_a_0 * FAN_dst_face_mask_a_0
elif self.mask_mode == 6:
prd_face_mask_a_0 = prd_face_mask_a_0 * FAN_prd_face_mask_a_0 * FAN_dst_face_mask_a_0
prd_face_mask_a_0[ prd_face_mask_a_0 < 0.001 ] = 0.0
prd_face_mask_a = prd_face_mask_a_0[...,np.newaxis]
prd_face_mask_aaa = np.repeat (prd_face_mask_a, (3,), axis=-1)
img_face_mask_aaa = cv2.warpAffine( prd_face_mask_aaa, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), flags=cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4 )
img_face_mask_aaa = np.clip (img_face_mask_aaa, 0.0, 1.0)
img_face_mask_aaa [ img_face_mask_aaa <= 0.1 ] = 0.0 #get rid of noise
if debug:
debugs += [img_face_mask_aaa.copy()]
out_img = img_bgr.copy()
if self.mode == 'raw':
if self.raw_mode == 'rgb' or self.raw_mode == 'rgb-mask':
out_img = cv2.warpAffine( prd_face_bgr, face_output_mat, img_size, out_img, cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4, cv2.BORDER_TRANSPARENT )
if self.raw_mode == 'rgb-mask':
out_img = np.concatenate ( [out_img, np.expand_dims (img_face_mask_aaa[:,:,0],-1)], -1 )
if self.raw_mode == 'mask-only':
out_img = img_face_mask_aaa
if self.raw_mode == 'predicted-only':
out_img = cv2.warpAffine( prd_face_bgr, face_output_mat, img_size, np.zeros(out_img.shape, dtype=np.float32), cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4, cv2.BORDER_TRANSPARENT )
else:
#averaging [lenx, leny, maskx, masky] by grayscale gradients of upscaled mask
ar = []
for i in range(1, 10):
maxregion = np.argwhere( img_face_mask_aaa > i / 10.0 )
if maxregion.size != 0:
miny,minx = maxregion.min(axis=0)[:2]
maxy,maxx = maxregion.max(axis=0)[:2]
lenx = maxx - minx
leny = maxy - miny
if min(lenx,leny) >= 4:
ar += [ [ lenx, leny] ]
if len(ar) > 0:
lenx, leny = np.mean ( ar, axis=0 )
lowest_len = min (lenx, leny)
if debug:
io.log_info ("lenx/leny:(%d/%d) " % (lenx, leny ) )
io.log_info ("lowest_len = %f" % (lowest_len) )
if self.erode_mask_modifier != 0:
ero = int( lowest_len * ( 0.126 - lowest_len * 0.00004551365 ) * 0.01*self.erode_mask_modifier )
if debug:
io.log_info ("erode_size = %d" % (ero) )
if ero > 0:
img_face_mask_aaa = cv2.erode(img_face_mask_aaa, cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(ero,ero)), iterations = 1 )
elif ero < 0:
img_face_mask_aaa = cv2.dilate(img_face_mask_aaa, cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(-ero,-ero)), iterations = 1 )
img_mask_blurry_aaa = img_face_mask_aaa
if self.clip_hborder_mask_per > 0: #clip hborder before blur
prd_hborder_rect_mask_a = np.ones ( prd_face_mask_a.shape, dtype=np.float32)
prd_border_size = int ( prd_hborder_rect_mask_a.shape[1] * self.clip_hborder_mask_per )
prd_hborder_rect_mask_a[:,0:prd_border_size,:] = 0
prd_hborder_rect_mask_a[:,-prd_border_size:,:] = 0
prd_hborder_rect_mask_a[-prd_border_size:,:,:] = 0
prd_hborder_rect_mask_a = np.expand_dims(cv2.blur(prd_hborder_rect_mask_a, (prd_border_size, prd_border_size) ),-1)
img_prd_hborder_rect_mask_a = cv2.warpAffine( prd_hborder_rect_mask_a, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4 )
img_prd_hborder_rect_mask_a = np.expand_dims (img_prd_hborder_rect_mask_a, -1)
img_mask_blurry_aaa *= img_prd_hborder_rect_mask_a
img_mask_blurry_aaa = np.clip( img_mask_blurry_aaa, 0, 1.0 )
if debug:
debugs += [img_mask_blurry_aaa.copy()]
if self.blur_mask_modifier > 0:
blur = int( lowest_len * 0.10 * 0.01*self.blur_mask_modifier )
if debug:
io.log_info ("blur_size = %d" % (blur) )
if blur > 0:
img_mask_blurry_aaa = cv2.blur(img_mask_blurry_aaa, (blur, blur) )
img_mask_blurry_aaa = np.clip( img_mask_blurry_aaa, 0, 1.0 )
face_mask_blurry_aaa = cv2.warpAffine( img_mask_blurry_aaa, face_mat, (output_size, output_size) )
if debug:
debugs += [img_mask_blurry_aaa.copy()]
if 'seamless' not in self.mode and self.color_transfer_mode is not None:
if self.color_transfer_mode == 'rct':
if debug:
debugs += [ np.clip( cv2.warpAffine( prd_face_bgr, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4, cv2.BORDER_TRANSPARENT ), 0, 1.0) ]
prd_face_bgr = imagelib.reinhard_color_transfer ( np.clip( (prd_face_bgr*255).astype(np.uint8), 0, 255),
np.clip( (dst_face_bgr*255).astype(np.uint8), 0, 255),
source_mask=prd_face_mask_a, target_mask=prd_face_mask_a)
prd_face_bgr = np.clip( prd_face_bgr.astype(np.float32) / 255.0, 0.0, 1.0)
if debug:
debugs += [ np.clip( cv2.warpAffine( prd_face_bgr, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4, cv2.BORDER_TRANSPARENT ), 0, 1.0) ]
elif self.color_transfer_mode == 'lct':
if debug:
debugs += [ np.clip( cv2.warpAffine( prd_face_bgr, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4, cv2.BORDER_TRANSPARENT ), 0, 1.0) ]
prd_face_bgr = imagelib.linear_color_transfer (prd_face_bgr, dst_face_bgr)
prd_face_bgr = np.clip( prd_face_bgr, 0.0, 1.0)
if debug:
debugs += [ np.clip( cv2.warpAffine( prd_face_bgr, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4, cv2.BORDER_TRANSPARENT ), 0, 1.0) ]
if self.mode == 'hist-match-bw':
prd_face_bgr = cv2.cvtColor(prd_face_bgr, cv2.COLOR_BGR2GRAY)
prd_face_bgr = np.repeat( np.expand_dims (prd_face_bgr, -1), (3,), -1 )
if self.mode == 'hist-match' or self.mode == 'hist-match-bw':
if debug:
debugs += [ cv2.warpAffine( prd_face_bgr, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4, cv2.BORDER_TRANSPARENT ) ]
hist_mask_a = np.ones ( prd_face_bgr.shape[:2] + (1,) , dtype=np.float32)
if self.masked_hist_match:
hist_mask_a *= prd_face_mask_a
white = (1.0-hist_mask_a)* np.ones ( prd_face_bgr.shape[:2] + (1,) , dtype=np.float32)
hist_match_1 = prd_face_bgr*hist_mask_a + white
hist_match_1[ hist_match_1 > 1.0 ] = 1.0
hist_match_2 = dst_face_bgr*hist_mask_a + white
hist_match_2[ hist_match_1 > 1.0 ] = 1.0
prd_face_bgr = imagelib.color_hist_match(hist_match_1, hist_match_2, self.hist_match_threshold )
#if self.masked_hist_match:
# prd_face_bgr -= white
if self.mode == 'hist-match-bw':
prd_face_bgr = prd_face_bgr.astype(dtype=np.float32)
out_img = cv2.warpAffine( prd_face_bgr, face_output_mat, img_size, out_img, cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4, cv2.BORDER_TRANSPARENT )
out_img = np.clip(out_img, 0.0, 1.0)
if debug:
debugs += [out_img.copy()]
if self.mode == 'overlay':
pass
if 'seamless' in self.mode:
#mask used for cv2.seamlessClone
img_face_seamless_mask_a = None
img_face_mask_a = img_mask_blurry_aaa[...,0:1]
for i in range(1,10):
a = img_face_mask_a > i / 10.0
if len(np.argwhere(a)) == 0:
continue
img_face_seamless_mask_a = img_mask_blurry_aaa[...,0:1].copy()
img_face_seamless_mask_a[a] = 1.0
img_face_seamless_mask_a[img_face_seamless_mask_a <= i / 10.0] = 0.0
break
try:
#calc same bounding rect and center point as in cv2.seamlessClone to prevent jittering
l,t,w,h = cv2.boundingRect( (img_face_seamless_mask_a*255).astype(np.uint8) )
s_maskx, s_masky = int(l+w/2), int(t+h/2)
out_img = cv2.seamlessClone( (out_img*255).astype(np.uint8), (img_bgr*255).astype(np.uint8), (img_face_seamless_mask_a*255).astype(np.uint8), (s_maskx,s_masky) , cv2.NORMAL_CLONE )
out_img = out_img.astype(dtype=np.float32) / 255.0
except Exception as e:
#seamlessClone may fail in some cases
e_str = traceback.format_exc()
if 'MemoryError' in e_str:
raise Exception("Seamless fail: " + e_str) #reraise MemoryError in order to reprocess this data by other processes
else:
print ("Seamless fail: " + e_str)
if debug:
debugs += [out_img.copy()]
out_img = np.clip( img_bgr*(1-img_mask_blurry_aaa) + (out_img*img_mask_blurry_aaa) , 0, 1.0 )
if 'seamless' in self.mode and self.color_transfer_mode is not None:
out_face_bgr = cv2.warpAffine( out_img, face_mat, (output_size, output_size) )
if self.color_transfer_mode == 'rct':
if debug:
debugs += [ np.clip( cv2.warpAffine( out_face_bgr, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4, cv2.BORDER_TRANSPARENT ), 0, 1.0) ]
new_out_face_bgr = imagelib.reinhard_color_transfer ( np.clip( (out_face_bgr*255).astype(np.uint8), 0, 255),
np.clip( (dst_face_bgr*255).astype(np.uint8), 0, 255),
source_mask=face_mask_blurry_aaa, target_mask=face_mask_blurry_aaa)
new_out_face_bgr = np.clip( new_out_face_bgr.astype(np.float32) / 255.0, 0.0, 1.0)
if debug:
debugs += [ np.clip( cv2.warpAffine( new_out_face_bgr, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4, cv2.BORDER_TRANSPARENT ), 0, 1.0) ]
elif self.color_transfer_mode == 'lct':
if debug:
debugs += [ np.clip( cv2.warpAffine( out_face_bgr, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4, cv2.BORDER_TRANSPARENT ), 0, 1.0) ]
new_out_face_bgr = imagelib.linear_color_transfer (out_face_bgr, dst_face_bgr)
new_out_face_bgr = np.clip( new_out_face_bgr, 0.0, 1.0)
if debug:
debugs += [ np.clip( cv2.warpAffine( new_out_face_bgr, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4, cv2.BORDER_TRANSPARENT ), 0, 1.0) ]
new_out = cv2.warpAffine( new_out_face_bgr, face_mat, img_size, img_bgr.copy(), cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4, cv2.BORDER_TRANSPARENT )
out_img = np.clip( img_bgr*(1-img_mask_blurry_aaa) + (new_out*img_mask_blurry_aaa) , 0, 1.0 )
if self.mode == 'seamless-hist-match':
out_face_bgr = cv2.warpAffine( out_img, face_mat, (output_size, output_size) )
new_out_face_bgr = imagelib.color_hist_match(out_face_bgr, dst_face_bgr, self.hist_match_threshold)
new_out = cv2.warpAffine( new_out_face_bgr, face_mat, img_size, img_bgr.copy(), cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4, cv2.BORDER_TRANSPARENT )
out_img = np.clip( img_bgr*(1-img_mask_blurry_aaa) + (new_out*img_mask_blurry_aaa) , 0, 1.0 )
if self.final_image_color_degrade_power != 0:
if debug:
debugs += [out_img.copy()]
out_img_reduced = imagelib.reduce_colors(out_img, 256)
if self.final_image_color_degrade_power == 100:
out_img = out_img_reduced
else:
alpha = self.final_image_color_degrade_power / 100.0
out_img = (out_img*(1.0-alpha) + out_img_reduced*alpha)
if self.alpha:
out_img = np.concatenate ( [out_img, np.expand_dims (img_mask_blurry_aaa[:,:,0],-1)], -1 )
out_img = np.clip (out_img, 0.0, 1.0 )
if debug:
debugs += [out_img.copy()]
return debugs if debug else out_img

6
converters/FrameInfo.py Normal file
View file

@ -0,0 +1,6 @@
class FrameInfo(object):
def __init__(self, filename=None, landmarks_list=None):
self.filename = filename
self.landmarks_list = landmarks_list or []
self.motion_deg = 0
self.motion_power = 0

View file

@ -1,4 +1,4 @@
from .Converter import Converter
from .ConverterMasked import ConverterMasked
from .ConverterImage import ConverterImage
from .ConverterAvatar import ConverterAvatar
from .FrameInfo import FrameInfo
from .ConverterConfig import ConverterConfig, ConverterConfigMasked, ConverterConfigFaceAvatar
from .ConvertMasked import ConvertMasked
from .ConvertAvatar import ConvertFaceAvatar