mirror of
https://github.com/iperov/DeepFaceLab.git
synced 2025-08-20 13:33:24 -07:00
Added interactive converter.
With interactive converter you can change any parameter of any frame and see the result in real time. Converter: added motion_blur_power param. Motion blur is applied by precomputed motion vectors. So the moving face will look more realistic. RecycleGAN model is removed. Added experimental AVATAR model. Minimum required VRAM is 6GB (NVIDIA), 12GB (AMD) Usage: 1) place data_src.mp4 10-20min square resolution video of news reporter sitting at the table with static background, other faces should not appear in frames. 2) process "extract images from video data_src.bat" with FULL fps 3) place data_dst.mp4 video of face who will control the src face 4) process "extract images from video data_dst FULL FPS.bat" 5) process "data_src mark faces S3FD best GPU.bat" 6) process "data_dst extract unaligned faces S3FD best GPU.bat" 7) train AVATAR.bat stage 1, tune batch size to maximum for your card (32 for 6GB), train to 50k+ iters. 8) train AVATAR.bat stage 2, tune batch size to maximum for your card (4 for 6GB), train to decent sharpness. 9) convert AVATAR.bat 10) converted to mp4.bat updated versions of modules
This commit is contained in:
parent
3f0bf2e994
commit
407ce3b1ca
46 changed files with 2394 additions and 1659 deletions
35
converters/ConvertAvatar.py
Normal file
35
converters/ConvertAvatar.py
Normal file
|
@ -0,0 +1,35 @@
|
|||
import cv2
|
||||
import numpy as np
|
||||
|
||||
import imagelib
|
||||
from facelib import FaceType, LandmarksProcessor
|
||||
from utils.cv2_utils import *
|
||||
|
||||
def process_frame_info(frame_info, inp_sh):
|
||||
img_uint8 = cv2_imread (frame_info.filename)
|
||||
img_uint8 = imagelib.normalize_channels (img_uint8, 3)
|
||||
img = img_uint8.astype(np.float32) / 255.0
|
||||
|
||||
img_mat = LandmarksProcessor.get_transform_mat (frame_info.landmarks_list[0], inp_sh[0], face_type=FaceType.FULL_NO_ALIGN)
|
||||
img = cv2.warpAffine( img, img_mat, inp_sh[0:2], flags=cv2.INTER_CUBIC )
|
||||
return img
|
||||
|
||||
def ConvertFaceAvatar (cfg, prev_temporal_frame_infos, frame_info, next_temporal_frame_infos):
|
||||
inp_sh = cfg.predictor_input_shape
|
||||
|
||||
prev_imgs=[]
|
||||
next_imgs=[]
|
||||
for i in range(cfg.temporal_face_count):
|
||||
prev_imgs.append( process_frame_info(prev_temporal_frame_infos[i], inp_sh) )
|
||||
next_imgs.append( process_frame_info(next_temporal_frame_infos[i], inp_sh) )
|
||||
img = process_frame_info(frame_info, inp_sh)
|
||||
|
||||
prd_f = cfg.predictor_func ( prev_imgs, img, next_imgs )
|
||||
|
||||
out_img = np.clip(prd_f, 0.0, 1.0)
|
||||
|
||||
if cfg.add_source_image:
|
||||
out_img = np.concatenate ( [cv2.resize ( img, (prd_f.shape[1], prd_f.shape[0]) ),
|
||||
out_img], axis=1 )
|
||||
|
||||
return (out_img*255).astype(np.uint8)
|
392
converters/ConvertMasked.py
Normal file
392
converters/ConvertMasked.py
Normal file
|
@ -0,0 +1,392 @@
|
|||
import traceback
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
|
||||
import imagelib
|
||||
from facelib import FaceType, LandmarksProcessor
|
||||
from interact import interact as io
|
||||
from utils.cv2_utils import *
|
||||
|
||||
|
||||
def ConvertMaskedFace (cfg, frame_info, img_bgr_uint8, img_bgr, img_face_landmarks):
|
||||
|
||||
#if debug:
|
||||
# debugs = [img_bgr.copy()]
|
||||
|
||||
img_size = img_bgr.shape[1], img_bgr.shape[0]
|
||||
|
||||
img_face_mask_a = LandmarksProcessor.get_image_hull_mask (img_bgr.shape, img_face_landmarks)
|
||||
|
||||
if cfg.mode == 'original':
|
||||
if cfg.export_mask_alpha:
|
||||
img_bgr = np.concatenate ( [img_bgr, img_face_mask_a], -1 )
|
||||
return img_bgr, img_face_mask_a
|
||||
|
||||
out_img = img_bgr.copy()
|
||||
out_merging_mask = None
|
||||
|
||||
output_size = cfg.predictor_input_shape[0]
|
||||
if cfg.super_resolution:
|
||||
output_size *= 2
|
||||
|
||||
face_mat = LandmarksProcessor.get_transform_mat (img_face_landmarks, output_size, face_type=cfg.face_type)
|
||||
face_output_mat = LandmarksProcessor.get_transform_mat (img_face_landmarks, output_size, face_type=cfg.face_type, scale= 1.0 + 0.01*cfg.output_face_scale )
|
||||
|
||||
dst_face_bgr = cv2.warpAffine( img_bgr , face_mat, (output_size, output_size), flags=cv2.INTER_CUBIC )
|
||||
dst_face_mask_a_0 = cv2.warpAffine( img_face_mask_a, face_mat, (output_size, output_size), flags=cv2.INTER_CUBIC )
|
||||
|
||||
predictor_input_bgr = cv2.resize (dst_face_bgr, cfg.predictor_input_shape[0:2] )
|
||||
|
||||
if cfg.predictor_masked:
|
||||
prd_face_bgr, prd_face_mask_a_0 = cfg.predictor_func (predictor_input_bgr)
|
||||
|
||||
prd_face_bgr = np.clip (prd_face_bgr, 0, 1.0 )
|
||||
prd_face_mask_a_0 = np.clip (prd_face_mask_a_0, 0.0, 1.0)
|
||||
else:
|
||||
predicted = cfg.predictor_func (predictor_input_bgr)
|
||||
prd_face_bgr = np.clip (predicted, 0, 1.0 )
|
||||
prd_face_mask_a_0 = cv2.resize (dst_face_mask_a_0, cfg.predictor_input_shape[0:2] )
|
||||
|
||||
if cfg.super_resolution:
|
||||
#if debug:
|
||||
# tmp = cv2.resize (prd_face_bgr, (output_size,output_size), cv2.INTER_CUBIC)
|
||||
# debugs += [ np.clip( cv2.warpAffine( tmp, face_output_mat, img_size, img_bgr.copy(), cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC, cv2.BORDER_TRANSPARENT ), 0, 1.0) ]
|
||||
|
||||
prd_face_bgr = cfg.dcscn_upscale_func(prd_face_bgr)
|
||||
#if debug:
|
||||
# debugs += [ np.clip( cv2.warpAffine( prd_face_bgr, face_output_mat, img_size, img_bgr.copy(), cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC, cv2.BORDER_TRANSPARENT ), 0, 1.0) ]
|
||||
|
||||
if cfg.predictor_masked:
|
||||
prd_face_mask_a_0 = cv2.resize (prd_face_mask_a_0, (output_size, output_size), cv2.INTER_CUBIC)
|
||||
else:
|
||||
prd_face_mask_a_0 = cv2.resize (dst_face_mask_a_0, (output_size, output_size), cv2.INTER_CUBIC)
|
||||
|
||||
if cfg.mask_mode == 2: #dst
|
||||
prd_face_mask_a_0 = cv2.resize (dst_face_mask_a_0, (output_size,output_size), cv2.INTER_CUBIC)
|
||||
elif cfg.mask_mode >= 3 and cfg.mask_mode <= 7:
|
||||
|
||||
if cfg.mask_mode == 3 or cfg.mask_mode == 5 or cfg.mask_mode == 6:
|
||||
prd_face_fanseg_bgr = cv2.resize (prd_face_bgr, (cfg.fanseg_input_size,)*2 )
|
||||
prd_face_fanseg_mask = cfg.fanseg_extract_func(FaceType.FULL, prd_face_fanseg_bgr)
|
||||
FAN_prd_face_mask_a_0 = cv2.resize ( prd_face_fanseg_mask, (output_size, output_size), cv2.INTER_CUBIC)
|
||||
|
||||
if cfg.mask_mode >= 4 or cfg.mask_mode <= 7:
|
||||
|
||||
full_face_fanseg_mat = LandmarksProcessor.get_transform_mat (img_face_landmarks, cfg.fanseg_input_size, face_type=FaceType.FULL)
|
||||
dst_face_fanseg_bgr = cv2.warpAffine(img_bgr, full_face_fanseg_mat, (cfg.fanseg_input_size,)*2, flags=cv2.INTER_CUBIC )
|
||||
dst_face_fanseg_mask = cfg.fanseg_extract_func( FaceType.FULL, dst_face_fanseg_bgr )
|
||||
|
||||
if cfg.face_type == FaceType.FULL:
|
||||
FAN_dst_face_mask_a_0 = cv2.resize (dst_face_fanseg_mask, (output_size,output_size), cv2.INTER_CUBIC)
|
||||
elif cfg.face_type == FaceType.HALF:
|
||||
half_face_fanseg_mat = LandmarksProcessor.get_transform_mat (img_face_landmarks, cfg.fanseg_input_size, face_type=FaceType.HALF)
|
||||
|
||||
fanseg_rect_corner_pts = np.array ( [ [0,0], [cfg.fanseg_input_size-1,0], [0,cfg.fanseg_input_size-1] ], dtype=np.float32 )
|
||||
a = LandmarksProcessor.transform_points (fanseg_rect_corner_pts, half_face_fanseg_mat, invert=True )
|
||||
b = LandmarksProcessor.transform_points (a, full_face_fanseg_mat )
|
||||
m = cv2.getAffineTransform(b, fanseg_rect_corner_pts)
|
||||
FAN_dst_face_mask_a_0 = cv2.warpAffine(dst_face_fanseg_mask, m, (cfg.fanseg_input_size,)*2, flags=cv2.INTER_CUBIC )
|
||||
FAN_dst_face_mask_a_0 = cv2.resize (FAN_dst_face_mask_a_0, (output_size,output_size), cv2.INTER_CUBIC)
|
||||
else:
|
||||
raise ValueError ("cfg.face_type unsupported")
|
||||
|
||||
if cfg.mask_mode == 3: #FAN-prd
|
||||
prd_face_mask_a_0 = FAN_prd_face_mask_a_0
|
||||
elif cfg.mask_mode == 4: #FAN-dst
|
||||
prd_face_mask_a_0 = FAN_dst_face_mask_a_0
|
||||
elif cfg.mask_mode == 5:
|
||||
prd_face_mask_a_0 = FAN_prd_face_mask_a_0 * FAN_dst_face_mask_a_0
|
||||
elif cfg.mask_mode == 6:
|
||||
prd_face_mask_a_0 = prd_face_mask_a_0 * FAN_prd_face_mask_a_0 * FAN_dst_face_mask_a_0
|
||||
elif cfg.mask_mode == 7:
|
||||
prd_face_mask_a_0 = prd_face_mask_a_0 * FAN_dst_face_mask_a_0
|
||||
|
||||
prd_face_mask_a_0[ prd_face_mask_a_0 < 0.001 ] = 0.0
|
||||
|
||||
prd_face_mask_a = prd_face_mask_a_0[...,np.newaxis]
|
||||
prd_face_mask_aaa = np.repeat (prd_face_mask_a, (3,), axis=-1)
|
||||
|
||||
img_face_mask_aaa = cv2.warpAffine( prd_face_mask_aaa, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), flags=cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC )
|
||||
img_face_mask_aaa = np.clip (img_face_mask_aaa, 0.0, 1.0)
|
||||
img_face_mask_aaa [ img_face_mask_aaa <= 0.1 ] = 0.0 #get rid of noise
|
||||
|
||||
#if debug:
|
||||
# debugs += [img_face_mask_aaa.copy()]
|
||||
|
||||
if 'raw' in cfg.mode:
|
||||
face_corner_pts = np.array ([ [0,0], [output_size-1,0], [output_size-1,output_size-1], [0,output_size-1] ], dtype=np.float32)
|
||||
square_mask = np.zeros(img_bgr.shape, dtype=np.float32)
|
||||
cv2.fillConvexPoly(square_mask, \
|
||||
LandmarksProcessor.transform_points (face_corner_pts, face_output_mat, invert=True ).astype(np.int), \
|
||||
(1,1,1) )
|
||||
|
||||
if cfg.mode == 'raw-rgb':
|
||||
out_merging_mask = square_mask
|
||||
|
||||
if cfg.mode == 'raw-rgb' or cfg.mode == 'raw-rgb-mask':
|
||||
out_img = cv2.warpAffine( prd_face_bgr, face_output_mat, img_size, out_img, cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC, cv2.BORDER_TRANSPARENT )
|
||||
|
||||
if cfg.mode == 'raw-rgb-mask':
|
||||
out_img = np.concatenate ( [out_img, np.expand_dims (img_face_mask_aaa[:,:,0],-1)], -1 )
|
||||
out_merging_mask = square_mask
|
||||
|
||||
elif cfg.mode == 'raw-mask-only':
|
||||
out_img = img_face_mask_aaa
|
||||
out_merging_mask = img_face_mask_aaa
|
||||
elif cfg.mode == 'raw-predicted-only':
|
||||
out_img = cv2.warpAffine( prd_face_bgr, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC, cv2.BORDER_TRANSPARENT )
|
||||
out_merging_mask = square_mask
|
||||
|
||||
out_img = np.clip (out_img, 0.0, 1.0 )
|
||||
else:
|
||||
#averaging [lenx, leny, maskx, masky] by grayscale gradients of upscaled mask
|
||||
ar = []
|
||||
for i in range(1, 10):
|
||||
maxregion = np.argwhere( img_face_mask_aaa > i / 10.0 )
|
||||
if maxregion.size != 0:
|
||||
miny,minx = maxregion.min(axis=0)[:2]
|
||||
maxy,maxx = maxregion.max(axis=0)[:2]
|
||||
lenx = maxx - minx
|
||||
leny = maxy - miny
|
||||
if min(lenx,leny) >= 4:
|
||||
ar += [ [ lenx, leny] ]
|
||||
|
||||
if len(ar) > 0:
|
||||
lenx, leny = np.mean ( ar, axis=0 )
|
||||
lowest_len = min (lenx, leny)
|
||||
#if debug:
|
||||
# io.log_info ("lenx/leny:(%d/%d) " % (lenx, leny ) )
|
||||
# io.log_info ("lowest_len = %f" % (lowest_len) )
|
||||
|
||||
if cfg.erode_mask_modifier != 0:
|
||||
ero = int( lowest_len * ( 0.126 - lowest_len * 0.00004551365 ) * 0.01*cfg.erode_mask_modifier )
|
||||
#if debug:
|
||||
# io.log_info ("erode_size = %d" % (ero) )
|
||||
if ero > 0:
|
||||
img_face_mask_aaa = cv2.erode(img_face_mask_aaa, cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(ero,ero)), iterations = 1 )
|
||||
elif ero < 0:
|
||||
img_face_mask_aaa = cv2.dilate(img_face_mask_aaa, cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(-ero,-ero)), iterations = 1 )
|
||||
|
||||
if cfg.clip_hborder_mask_per > 0: #clip hborder before blur
|
||||
prd_hborder_rect_mask_a = np.ones ( prd_face_mask_a.shape, dtype=np.float32)
|
||||
prd_border_size = int ( prd_hborder_rect_mask_a.shape[1] * cfg.clip_hborder_mask_per )
|
||||
prd_hborder_rect_mask_a[:,0:prd_border_size,:] = 0
|
||||
prd_hborder_rect_mask_a[:,-prd_border_size:,:] = 0
|
||||
prd_hborder_rect_mask_a[-prd_border_size:,:,:] = 0
|
||||
prd_hborder_rect_mask_a = np.expand_dims(cv2.blur(prd_hborder_rect_mask_a, (prd_border_size, prd_border_size) ),-1)
|
||||
|
||||
img_prd_hborder_rect_mask_a = cv2.warpAffine( prd_hborder_rect_mask_a, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC )
|
||||
img_prd_hborder_rect_mask_a = np.expand_dims (img_prd_hborder_rect_mask_a, -1)
|
||||
img_face_mask_aaa *= img_prd_hborder_rect_mask_a
|
||||
img_face_mask_aaa = np.clip( img_face_mask_aaa, 0, 1.0 )
|
||||
|
||||
#if debug:
|
||||
# debugs += [img_face_mask_aaa.copy()]
|
||||
|
||||
if cfg.blur_mask_modifier > 0:
|
||||
blur = int( lowest_len * 0.10 * 0.01*cfg.blur_mask_modifier )
|
||||
#if debug:
|
||||
# io.log_info ("blur_size = %d" % (blur) )
|
||||
if blur > 0:
|
||||
img_face_mask_aaa = cv2.blur(img_face_mask_aaa, (blur, blur) )
|
||||
|
||||
img_face_mask_aaa = np.clip( img_face_mask_aaa, 0, 1.0 )
|
||||
|
||||
|
||||
#if debug:
|
||||
# debugs += [img_face_mask_aaa.copy()]
|
||||
|
||||
if 'seamless' not in cfg.mode and cfg.color_transfer_mode != 0:
|
||||
if cfg.color_transfer_mode == 1:
|
||||
#if debug:
|
||||
# debugs += [ np.clip( cv2.warpAffine( prd_face_bgr, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC, cv2.BORDER_TRANSPARENT ), 0, 1.0) ]
|
||||
|
||||
prd_face_bgr = imagelib.reinhard_color_transfer ( np.clip( (prd_face_bgr*255).astype(np.uint8), 0, 255),
|
||||
np.clip( (dst_face_bgr*255).astype(np.uint8), 0, 255),
|
||||
source_mask=prd_face_mask_a, target_mask=prd_face_mask_a)
|
||||
prd_face_bgr = np.clip( prd_face_bgr.astype(np.float32) / 255.0, 0.0, 1.0)
|
||||
|
||||
#if debug:
|
||||
# debugs += [ np.clip( cv2.warpAffine( prd_face_bgr, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC, cv2.BORDER_TRANSPARENT ), 0, 1.0) ]
|
||||
|
||||
|
||||
elif cfg.color_transfer_mode == 2:
|
||||
#if debug:
|
||||
# debugs += [ np.clip( cv2.warpAffine( prd_face_bgr, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC, cv2.BORDER_TRANSPARENT ), 0, 1.0) ]
|
||||
|
||||
prd_face_bgr = imagelib.linear_color_transfer (prd_face_bgr, dst_face_bgr)
|
||||
prd_face_bgr = np.clip( prd_face_bgr, 0.0, 1.0)
|
||||
|
||||
#if debug:
|
||||
# debugs += [ np.clip( cv2.warpAffine( prd_face_bgr, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC, cv2.BORDER_TRANSPARENT ), 0, 1.0) ]
|
||||
|
||||
if cfg.mode == 'hist-match-bw':
|
||||
prd_face_bgr = cv2.cvtColor(prd_face_bgr, cv2.COLOR_BGR2GRAY)
|
||||
prd_face_bgr = np.repeat( np.expand_dims (prd_face_bgr, -1), (3,), -1 )
|
||||
|
||||
if cfg.mode == 'hist-match' or cfg.mode == 'hist-match-bw':
|
||||
#if debug:
|
||||
# debugs += [ cv2.warpAffine( prd_face_bgr, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC, cv2.BORDER_TRANSPARENT ) ]
|
||||
|
||||
hist_mask_a = np.ones ( prd_face_bgr.shape[:2] + (1,) , dtype=np.float32)
|
||||
|
||||
if cfg.masked_hist_match:
|
||||
hist_mask_a *= prd_face_mask_a
|
||||
|
||||
white = (1.0-hist_mask_a)* np.ones ( prd_face_bgr.shape[:2] + (1,) , dtype=np.float32)
|
||||
|
||||
hist_match_1 = prd_face_bgr*hist_mask_a + white
|
||||
hist_match_1[ hist_match_1 > 1.0 ] = 1.0
|
||||
|
||||
hist_match_2 = dst_face_bgr*hist_mask_a + white
|
||||
hist_match_2[ hist_match_1 > 1.0 ] = 1.0
|
||||
|
||||
prd_face_bgr = imagelib.color_hist_match(hist_match_1, hist_match_2, cfg.hist_match_threshold )
|
||||
|
||||
#if cfg.masked_hist_match:
|
||||
# prd_face_bgr -= white
|
||||
|
||||
if cfg.mode == 'hist-match-bw':
|
||||
prd_face_bgr = prd_face_bgr.astype(dtype=np.float32)
|
||||
|
||||
out_img = cv2.warpAffine( prd_face_bgr, face_output_mat, img_size, out_img, cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC, cv2.BORDER_TRANSPARENT )
|
||||
out_img = np.clip(out_img, 0.0, 1.0)
|
||||
|
||||
#if debug:
|
||||
# debugs += [out_img.copy()]
|
||||
|
||||
if cfg.mode == 'overlay':
|
||||
pass
|
||||
|
||||
if 'seamless' in cfg.mode:
|
||||
#mask used for cv2.seamlessClone
|
||||
img_face_seamless_mask_a = None
|
||||
img_face_mask_a = img_face_mask_aaa[...,0:1]
|
||||
for i in range(1,10):
|
||||
a = img_face_mask_a > i / 10.0
|
||||
if len(np.argwhere(a)) == 0:
|
||||
continue
|
||||
img_face_seamless_mask_a = img_face_mask_aaa[...,0:1].copy()
|
||||
img_face_seamless_mask_a[a] = 1.0
|
||||
img_face_seamless_mask_a[img_face_seamless_mask_a <= i / 10.0] = 0.0
|
||||
break
|
||||
|
||||
try:
|
||||
#calc same bounding rect and center point as in cv2.seamlessClone to prevent jittering (not flickering)
|
||||
l,t,w,h = cv2.boundingRect( (img_face_seamless_mask_a*255).astype(np.uint8) )
|
||||
s_maskx, s_masky = int(l+w/2), int(t+h/2)
|
||||
|
||||
out_img = cv2.seamlessClone( (out_img*255).astype(np.uint8), img_bgr_uint8, (img_face_seamless_mask_a*255).astype(np.uint8), (s_maskx,s_masky) , cv2.NORMAL_CLONE )
|
||||
out_img = out_img.astype(dtype=np.float32) / 255.0
|
||||
except Exception as e:
|
||||
#seamlessClone may fail in some cases
|
||||
e_str = traceback.format_exc()
|
||||
|
||||
if 'MemoryError' in e_str:
|
||||
raise Exception("Seamless fail: " + e_str) #reraise MemoryError in order to reprocess this data by other processes
|
||||
else:
|
||||
print ("Seamless fail: " + e_str)
|
||||
|
||||
#if debug:
|
||||
# debugs += [out_img.copy()]
|
||||
|
||||
out_img = img_bgr*(1-img_face_mask_aaa) + (out_img*img_face_mask_aaa)
|
||||
|
||||
if 'seamless' in cfg.mode and cfg.color_transfer_mode != 0:
|
||||
out_face_bgr = cv2.warpAffine( out_img, face_mat, (output_size, output_size) )
|
||||
|
||||
if cfg.color_transfer_mode == 1:
|
||||
#if debug:
|
||||
# debugs += [ np.clip( cv2.warpAffine( out_face_bgr, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC, cv2.BORDER_TRANSPARENT ), 0, 1.0) ]
|
||||
face_mask_aaa = cv2.warpAffine( img_face_mask_aaa, face_mat, (output_size, output_size) )
|
||||
|
||||
new_out_face_bgr = imagelib.reinhard_color_transfer ( np.clip( (out_face_bgr*255).astype(np.uint8), 0, 255),
|
||||
np.clip( (dst_face_bgr*255).astype(np.uint8), 0, 255),
|
||||
source_mask=face_mask_aaa, target_mask=face_mask_aaa)
|
||||
new_out_face_bgr = np.clip( new_out_face_bgr.astype(np.float32) / 255.0, 0.0, 1.0)
|
||||
|
||||
#if debug:
|
||||
# debugs += [ np.clip( cv2.warpAffine( new_out_face_bgr, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC, cv2.BORDER_TRANSPARENT ), 0, 1.0) ]
|
||||
|
||||
|
||||
elif cfg.color_transfer_mode == 2:
|
||||
#if debug:
|
||||
# debugs += [ np.clip( cv2.warpAffine( out_face_bgr, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC, cv2.BORDER_TRANSPARENT ), 0, 1.0) ]
|
||||
|
||||
new_out_face_bgr = imagelib.linear_color_transfer (out_face_bgr, dst_face_bgr)
|
||||
new_out_face_bgr = np.clip( new_out_face_bgr, 0.0, 1.0)
|
||||
|
||||
#if debug:
|
||||
# debugs += [ np.clip( cv2.warpAffine( new_out_face_bgr, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC, cv2.BORDER_TRANSPARENT ), 0, 1.0) ]
|
||||
|
||||
new_out = cv2.warpAffine( new_out_face_bgr, face_mat, img_size, img_bgr.copy(), cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC, cv2.BORDER_TRANSPARENT )
|
||||
out_img = np.clip( img_bgr*(1-img_face_mask_aaa) + (new_out*img_face_mask_aaa) , 0, 1.0 )
|
||||
|
||||
if cfg.mode == 'seamless-hist-match':
|
||||
out_face_bgr = cv2.warpAffine( out_img, face_mat, (output_size, output_size) )
|
||||
new_out_face_bgr = imagelib.color_hist_match(out_face_bgr, dst_face_bgr, cfg.hist_match_threshold)
|
||||
new_out = cv2.warpAffine( new_out_face_bgr, face_mat, img_size, img_bgr.copy(), cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC, cv2.BORDER_TRANSPARENT )
|
||||
out_img = np.clip( img_bgr*(1-img_face_mask_aaa) + (new_out*img_face_mask_aaa) , 0, 1.0 )
|
||||
|
||||
|
||||
cfg_mp = cfg.motion_blur_power / 100.0
|
||||
if cfg_mp != 0:
|
||||
k_size = int(frame_info.motion_power*cfg_mp)
|
||||
if k_size >= 1:
|
||||
k_size = np.clip (k_size+1, 2, 50)
|
||||
if cfg.super_resolution:
|
||||
k_size *= 2
|
||||
out_face_bgr = cv2.warpAffine( out_img, face_mat, (output_size, output_size) )
|
||||
new_out_face_bgr = imagelib.LinearMotionBlur (out_face_bgr, k_size , frame_info.motion_deg)
|
||||
new_out = cv2.warpAffine( new_out_face_bgr, face_mat, img_size, img_bgr.copy(), cv2.WARP_INVERSE_MAP | cv2.INTER_CUBIC, cv2.BORDER_TRANSPARENT )
|
||||
out_img = np.clip( img_bgr*(1-img_face_mask_aaa) + (new_out*img_face_mask_aaa) , 0, 1.0 )
|
||||
|
||||
if cfg.color_degrade_power != 0:
|
||||
#if debug:
|
||||
# debugs += [out_img.copy()]
|
||||
out_img_reduced = imagelib.reduce_colors(out_img, 256)
|
||||
if cfg.color_degrade_power == 100:
|
||||
out_img = out_img_reduced
|
||||
else:
|
||||
alpha = cfg.color_degrade_power / 100.0
|
||||
out_img = (out_img*(1.0-alpha) + out_img_reduced*alpha)
|
||||
|
||||
if cfg.export_mask_alpha:
|
||||
out_img = np.concatenate ( [out_img, img_face_mask_aaa[:,:,0:1]], -1 )
|
||||
out_merging_mask = img_face_mask_aaa
|
||||
|
||||
|
||||
#if debug:
|
||||
# debugs += [out_img.copy()]
|
||||
|
||||
return out_img, out_merging_mask
|
||||
|
||||
|
||||
def ConvertMasked (cfg, frame_info):
|
||||
img_bgr_uint8 = cv2_imread(frame_info.filename)
|
||||
img_bgr_uint8 = imagelib.normalize_channels (img_bgr_uint8, 3)
|
||||
img_bgr = img_bgr_uint8.astype(np.float32) / 255.0
|
||||
|
||||
outs = []
|
||||
for face_num, img_landmarks in enumerate( frame_info.landmarks_list ):
|
||||
out_img, out_img_merging_mask = ConvertMaskedFace (cfg, frame_info, img_bgr_uint8, img_bgr, img_landmarks)
|
||||
outs += [ (out_img, out_img_merging_mask) ]
|
||||
|
||||
#Combining multiple face outputs
|
||||
final_img = None
|
||||
for img, merging_mask in outs:
|
||||
h,w,c = img.shape
|
||||
|
||||
if final_img is None:
|
||||
final_img = img
|
||||
else:
|
||||
merging_mask = merging_mask[...,0:1]
|
||||
if c == 3:
|
||||
final_img = final_img*(1-merging_mask) + img*merging_mask
|
||||
elif c == 4:
|
||||
final_img_bgr = final_img[...,0:3]*(1-merging_mask) + img[...,0:3]*merging_mask
|
||||
final_img_mask = np.clip ( final_img[...,3:4] + img[...,3:4], 0, 1 )
|
||||
final_img = np.concatenate ( [final_img_bgr, final_img_mask], -1 )
|
||||
|
||||
return (final_img*255).astype(np.uint8)
|
|
@ -1,50 +0,0 @@
|
|||
import copy
|
||||
'''
|
||||
You can implement your own Converter, check example ConverterMasked.py
|
||||
'''
|
||||
|
||||
class Converter(object):
|
||||
TYPE_FACE = 0 #calls convert_face
|
||||
TYPE_FACE_AVATAR = 1 #calls convert_face with avatar_operator_face
|
||||
TYPE_IMAGE = 2 #calls convert_image without landmarks
|
||||
TYPE_IMAGE_WITH_LANDMARKS = 3 #calls convert_image with landmarks
|
||||
|
||||
#overridable
|
||||
def __init__(self, predictor_func, type):
|
||||
self.predictor_func = predictor_func
|
||||
self.type = type
|
||||
|
||||
#overridable
|
||||
def on_cli_initialize(self):
|
||||
#cli initialization
|
||||
pass
|
||||
|
||||
#overridable
|
||||
def on_host_tick(self):
|
||||
pass
|
||||
|
||||
#overridable
|
||||
def cli_convert_face (self, img_bgr, img_face_landmarks, debug, avaperator_face_bgr=None, **kwargs):
|
||||
#return float32 image
|
||||
#if debug , return tuple ( images of any size and channels, ...)
|
||||
return image
|
||||
|
||||
#overridable
|
||||
def cli_convert_image (self, img_bgr, img_landmarks, debug):
|
||||
#img_landmarks not None, if input image is png with embedded data
|
||||
#return float32 image
|
||||
#if debug , return tuple ( images of any size and channels, ...)
|
||||
return image
|
||||
|
||||
#overridable
|
||||
def dummy_predict(self):
|
||||
#do dummy predict here
|
||||
pass
|
||||
|
||||
def copy(self):
|
||||
return copy.copy(self)
|
||||
|
||||
def copy_and_set_predictor(self, predictor_func):
|
||||
result = self.copy()
|
||||
result.predictor_func = predictor_func
|
||||
return result
|
|
@ -1,61 +0,0 @@
|
|||
import time
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
|
||||
from facelib import FaceType, LandmarksProcessor
|
||||
from joblib import SubprocessFunctionCaller
|
||||
from utils.pickle_utils import AntiPickler
|
||||
|
||||
from .Converter import Converter
|
||||
|
||||
class ConverterAvatar(Converter):
|
||||
|
||||
#override
|
||||
def __init__(self, predictor_func,
|
||||
predictor_input_size=0):
|
||||
|
||||
super().__init__(predictor_func, Converter.TYPE_FACE_AVATAR)
|
||||
|
||||
self.predictor_input_size = predictor_input_size
|
||||
|
||||
#dummy predict and sleep, tensorflow caching kernels. If remove it, conversion speed will be x2 slower
|
||||
predictor_func ( np.zeros ( (predictor_input_size,predictor_input_size,3), dtype=np.float32 ),
|
||||
np.zeros ( (predictor_input_size,predictor_input_size,3), dtype=np.float32 ),
|
||||
np.zeros ( (predictor_input_size,predictor_input_size,3), dtype=np.float32 ) )
|
||||
time.sleep(2)
|
||||
|
||||
predictor_func_host, predictor_func = SubprocessFunctionCaller.make_pair(predictor_func)
|
||||
self.predictor_func_host = AntiPickler(predictor_func_host)
|
||||
self.predictor_func = predictor_func
|
||||
|
||||
#overridable
|
||||
def on_host_tick(self):
|
||||
self.predictor_func_host.obj.process_messages()
|
||||
|
||||
#override
|
||||
def cli_convert_face (self, f0, f0_lmrk, f1, f1_lmrk, f2, f2_lmrk, debug, **kwargs):
|
||||
if debug:
|
||||
debugs = []
|
||||
|
||||
inp_size = self.predictor_input_size
|
||||
|
||||
f0_mat = LandmarksProcessor.get_transform_mat (f0_lmrk, inp_size, face_type=FaceType.FULL_NO_ALIGN)
|
||||
f1_mat = LandmarksProcessor.get_transform_mat (f1_lmrk, inp_size, face_type=FaceType.FULL_NO_ALIGN)
|
||||
f2_mat = LandmarksProcessor.get_transform_mat (f2_lmrk, inp_size, face_type=FaceType.FULL_NO_ALIGN)
|
||||
|
||||
inp_f0 = cv2.warpAffine( f0, f0_mat, (inp_size, inp_size), flags=cv2.INTER_CUBIC )
|
||||
inp_f1 = cv2.warpAffine( f1, f1_mat, (inp_size, inp_size), flags=cv2.INTER_CUBIC )
|
||||
inp_f2 = cv2.warpAffine( f2, f2_mat, (inp_size, inp_size), flags=cv2.INTER_CUBIC )
|
||||
|
||||
prd_f = self.predictor_func ( inp_f0, inp_f1, inp_f2 )
|
||||
|
||||
out_img = np.clip(prd_f, 0.0, 1.0)
|
||||
|
||||
out_img = np.concatenate ( [cv2.resize ( inp_f1, (prd_f.shape[1], prd_f.shape[0]) ),
|
||||
out_img], axis=1 )
|
||||
|
||||
if debug:
|
||||
debugs += [out_img.copy()]
|
||||
|
||||
return debugs if debug else out_img
|
317
converters/ConverterConfig.py
Normal file
317
converters/ConverterConfig.py
Normal file
|
@ -0,0 +1,317 @@
|
|||
import numpy as np
|
||||
import copy
|
||||
|
||||
from facelib import FaceType
|
||||
from interact import interact as io
|
||||
|
||||
|
||||
class ConverterConfig(object):
|
||||
TYPE_NONE = 0
|
||||
TYPE_MASKED = 1
|
||||
TYPE_FACE_AVATAR = 2
|
||||
####
|
||||
|
||||
TYPE_IMAGE = 3
|
||||
TYPE_IMAGE_WITH_LANDMARKS = 4
|
||||
|
||||
def __init__(self, type=0, predictor_func=None,
|
||||
predictor_input_shape=None):
|
||||
self.type = type
|
||||
self.predictor_func = predictor_func
|
||||
self.predictor_input_shape = predictor_input_shape
|
||||
|
||||
self.dcscn_upscale_func = None
|
||||
self.fanseg_input_size = None
|
||||
self.fanseg_extract_func = None
|
||||
|
||||
def copy(self):
|
||||
return copy.copy(self)
|
||||
|
||||
#overridable
|
||||
def ask_settings(self):
|
||||
pass
|
||||
|
||||
#overridable
|
||||
def __eq__(self, other):
|
||||
#check equality of changeable params
|
||||
|
||||
if isinstance(other, ConverterConfig):
|
||||
return True
|
||||
|
||||
return False
|
||||
|
||||
#overridable
|
||||
def __str__(self):
|
||||
return "ConverterConfig: ."
|
||||
|
||||
class ConverterConfigMasked(ConverterConfig):
|
||||
|
||||
def __init__(self, predictor_func=None,
|
||||
predictor_input_shape=None,
|
||||
predictor_masked=True,
|
||||
face_type=FaceType.FULL,
|
||||
default_mode = 4,
|
||||
base_erode_mask_modifier = 0,
|
||||
base_blur_mask_modifier = 0,
|
||||
default_erode_mask_modifier = 0,
|
||||
default_blur_mask_modifier = 0,
|
||||
clip_hborder_mask_per = 0,
|
||||
):
|
||||
|
||||
super().__init__(type=ConverterConfig.TYPE_MASKED,
|
||||
predictor_func=predictor_func,
|
||||
predictor_input_shape=predictor_input_shape,
|
||||
)
|
||||
if len(predictor_input_shape) != 3:
|
||||
raise ValueError("ConverterConfigMasked: predictor_input_shape must be rank 3.")
|
||||
|
||||
if predictor_input_shape[0] != predictor_input_shape[1]:
|
||||
raise ValueError("ConverterConfigMasked: predictor_input_shape must be a square.")
|
||||
|
||||
self.predictor_masked = predictor_masked
|
||||
self.face_type = face_type
|
||||
if self.face_type not in [FaceType.FULL, FaceType.HALF]:
|
||||
raise ValueError("ConverterConfigMasked supports only full or half face masks.")
|
||||
|
||||
self.default_mode = default_mode
|
||||
self.base_erode_mask_modifier = base_erode_mask_modifier
|
||||
self.base_blur_mask_modifier = base_blur_mask_modifier
|
||||
self.default_erode_mask_modifier = default_erode_mask_modifier
|
||||
self.default_blur_mask_modifier = default_blur_mask_modifier
|
||||
self.clip_hborder_mask_per = clip_hborder_mask_per
|
||||
|
||||
#default changeable params
|
||||
|
||||
|
||||
self.mode = 'overlay'
|
||||
self.masked_hist_match = True
|
||||
self.hist_match_threshold = 238
|
||||
self.mask_mode = 1
|
||||
self.erode_mask_modifier = 0
|
||||
self.blur_mask_modifier = 0
|
||||
self.motion_blur_power = 0
|
||||
self.output_face_scale = 0
|
||||
self.color_transfer_mode = 0
|
||||
self.super_resolution = False
|
||||
self.color_degrade_power = 0
|
||||
self.export_mask_alpha = False
|
||||
|
||||
self.mode_dict = {0:'original',
|
||||
1:'overlay',
|
||||
2:'hist-match',
|
||||
3:'hist-match-bw',
|
||||
4:'seamless',
|
||||
5:'seamless-hist-match',
|
||||
6:'raw-rgb',
|
||||
7:'raw-rgb-mask',
|
||||
8:'raw-mask-only',
|
||||
9:'raw-predicted-only'}
|
||||
|
||||
self.full_face_mask_mode_dict = {1:'learned',
|
||||
2:'dst',
|
||||
3:'FAN-prd',
|
||||
4:'FAN-dst',
|
||||
5:'FAN-prd*FAN-dst',
|
||||
6:'learned*FAN-prd*FAN-dst'}
|
||||
|
||||
self.half_face_mask_mode_dict = {1:'learned',
|
||||
2:'dst',
|
||||
4:'FAN-dst',
|
||||
7:'learned*FAN-dst'}
|
||||
|
||||
self.ctm_dict = { 0: "None", 1:"rct", 2:"lct" }
|
||||
self.ctm_str_dict = {None:None, "rct":1, "lct": 2 }
|
||||
|
||||
def copy(self):
|
||||
return copy.copy(self)
|
||||
|
||||
def set_mode (self, mode):
|
||||
self.mode = self.mode_dict.get (mode, self.mode_dict[self.default_mode] )
|
||||
|
||||
def toggle_masked_hist_match(self):
|
||||
if self.mode == 'hist-match' or self.mode == 'hist-match-bw':
|
||||
self.masked_hist_match = not self.masked_hist_match
|
||||
|
||||
def add_hist_match_threshold(self, diff):
|
||||
if self.mode == 'hist-match' or self.mode == 'hist-match-bw' or self.mode == 'seamless-hist-match':
|
||||
self.hist_match_threshold = np.clip ( self.hist_match_threshold+diff , 0, 255)
|
||||
|
||||
def toggle_mask_mode(self):
|
||||
if self.face_type == FaceType.FULL:
|
||||
a = list( self.full_face_mask_mode_dict.keys() )
|
||||
else:
|
||||
a = list( self.half_face_mask_mode_dict.keys() )
|
||||
self.mask_mode = a[ (a.index(self.mask_mode)+1) % len(a) ]
|
||||
|
||||
def add_erode_mask_modifier(self, diff):
|
||||
self.erode_mask_modifier = np.clip ( self.erode_mask_modifier+diff , -200, 200)
|
||||
|
||||
def add_blur_mask_modifier(self, diff):
|
||||
self.blur_mask_modifier = np.clip ( self.blur_mask_modifier+diff , -200, 200)
|
||||
|
||||
def add_motion_blur_power(self, diff):
|
||||
self.motion_blur_power = np.clip ( self.motion_blur_power+diff, 0, 100)
|
||||
|
||||
def add_output_face_scale(self, diff):
|
||||
self.output_face_scale = np.clip ( self.output_face_scale+diff , -50, 50)
|
||||
|
||||
def toggle_color_transfer_mode(self):
|
||||
self.color_transfer_mode = (self.color_transfer_mode+1) % 3
|
||||
|
||||
def toggle_super_resolution(self):
|
||||
self.super_resolution = not self.super_resolution
|
||||
|
||||
def add_color_degrade_power(self, diff):
|
||||
self.color_degrade_power = np.clip ( self.color_degrade_power+diff , 0, 100)
|
||||
|
||||
def toggle_export_mask_alpha(self):
|
||||
self.export_mask_alpha = not self.export_mask_alpha
|
||||
|
||||
def ask_settings(self):
|
||||
|
||||
s = """Choose mode: \n"""
|
||||
for key in self.mode_dict.keys():
|
||||
s += f"""({key}) {self.mode_dict[key]}\n"""
|
||||
s += f"""Default: {self.default_mode} : """
|
||||
|
||||
mode = io.input_int (s, self.default_mode)
|
||||
|
||||
self.mode = self.mode_dict.get (mode, self.mode_dict[self.default_mode] )
|
||||
|
||||
if 'raw' not in self.mode:
|
||||
if self.mode == 'hist-match' or self.mode == 'hist-match-bw':
|
||||
self.masked_hist_match = io.input_bool("Masked hist match? (y/n skip:y) : ", True)
|
||||
|
||||
if self.mode == 'hist-match' or self.mode == 'hist-match-bw' or self.mode == 'seamless-hist-match':
|
||||
self.hist_match_threshold = np.clip ( io.input_int("Hist match threshold [0..255] (skip:255) : ", 255), 0, 255)
|
||||
|
||||
if self.face_type == FaceType.FULL:
|
||||
s = """Choose mask mode: \n"""
|
||||
for key in self.full_face_mask_mode_dict.keys():
|
||||
s += f"""({key}) {self.full_face_mask_mode_dict[key]}\n"""
|
||||
s += f"""?:help Default: 1 : """
|
||||
|
||||
self.mask_mode = io.input_int (s, 1, valid_list=self.full_face_mask_mode_dict.keys(), help_message="If you learned the mask, then option 1 should be choosed. 'dst' mask is raw shaky mask from dst aligned images. 'FAN-prd' - using super smooth mask by pretrained FAN-model from predicted face. 'FAN-dst' - using super smooth mask by pretrained FAN-model from dst face. 'FAN-prd*FAN-dst' or 'learned*FAN-prd*FAN-dst' - using multiplied masks.")
|
||||
else:
|
||||
s = """Choose mask mode: \n"""
|
||||
for key in self.half_face_mask_mode_dict.keys():
|
||||
s += f"""({key}) {self.half_face_mask_mode_dict[key]}\n"""
|
||||
s += f"""?:help , Default: 1 : """
|
||||
self.mask_mode = io.input_int (s, 1, valid_list=self.half_face_mask_mode_dict.keys(), help_message="If you learned the mask, then option 1 should be choosed. 'dst' mask is raw shaky mask from dst aligned images.")
|
||||
|
||||
if 'raw' not in self.mode:
|
||||
self.erode_mask_modifier = self.base_erode_mask_modifier + np.clip ( io.input_int ("Choose erode mask modifier [-200..200] (skip:%d) : " % (self.default_erode_mask_modifier), self.default_erode_mask_modifier), -200, 200)
|
||||
self.blur_mask_modifier = self.base_blur_mask_modifier + np.clip ( io.input_int ("Choose blur mask modifier [-200..200] (skip:%d) : " % (self.default_blur_mask_modifier), self.default_blur_mask_modifier), -200, 200)
|
||||
self.motion_blur_power = np.clip ( io.input_int ("Choose motion blur power [0..100] (skip:%d) : " % (0), 0), 0, 100)
|
||||
|
||||
self.output_face_scale = np.clip (io.input_int ("Choose output face scale modifier [-50..50] (skip:0) : ", 0), -50, 50)
|
||||
|
||||
if 'raw' not in self.mode:
|
||||
self.color_transfer_mode = io.input_str ("Apply color transfer to predicted face? Choose mode ( rct/lct skip:None ) : ", None, ['rct','lct'])
|
||||
self.color_transfer_mode = self.ctm_str_dict[self.color_transfer_mode]
|
||||
|
||||
self.super_resolution = io.input_bool("Apply super resolution? (y/n ?:help skip:n) : ", False, help_message="Enhance details by applying DCSCN network.")
|
||||
|
||||
if 'raw' not in self.mode:
|
||||
self.color_degrade_power = np.clip ( io.input_int ("Degrade color power of final image [0..100] (skip:0) : ", 0), 0, 100)
|
||||
self.export_mask_alpha = io.input_bool("Export png with alpha channel of the mask? (y/n skip:n) : ", False)
|
||||
|
||||
io.log_info ("")
|
||||
|
||||
def __eq__(self, other):
|
||||
#check equality of changeable params
|
||||
|
||||
if isinstance(other, ConverterConfigMasked):
|
||||
return self.mode == other.mode and \
|
||||
self.masked_hist_match == other.masked_hist_match and \
|
||||
self.hist_match_threshold == other.hist_match_threshold and \
|
||||
self.mask_mode == other.mask_mode and \
|
||||
self.erode_mask_modifier == other.erode_mask_modifier and \
|
||||
self.blur_mask_modifier == other.blur_mask_modifier and \
|
||||
self.motion_blur_power == other.motion_blur_power and \
|
||||
self.output_face_scale == other.output_face_scale and \
|
||||
self.color_transfer_mode == other.color_transfer_mode and \
|
||||
self.super_resolution == other.super_resolution and \
|
||||
self.color_degrade_power == other.color_degrade_power and \
|
||||
self.export_mask_alpha == other.export_mask_alpha
|
||||
|
||||
return False
|
||||
|
||||
def __str__(self):
|
||||
r = (
|
||||
"""ConverterConfig:\n"""
|
||||
f"""Mode: {self.mode}\n"""
|
||||
)
|
||||
|
||||
if self.mode == 'hist-match' or self.mode == 'hist-match-bw':
|
||||
r += f"""masked_hist_match: {self.masked_hist_match}\n"""
|
||||
|
||||
if self.mode == 'hist-match' or self.mode == 'hist-match-bw' or self.mode == 'seamless-hist-match':
|
||||
r += f"""hist_match_threshold: {self.hist_match_threshold}\n"""
|
||||
|
||||
if self.face_type == FaceType.FULL:
|
||||
r += f"""mask_mode: { self.full_face_mask_mode_dict[self.mask_mode] }\n"""
|
||||
else:
|
||||
r += f"""mask_mode: { self.half_face_mask_mode_dict[self.mask_mode] }\n"""
|
||||
|
||||
if 'raw' not in self.mode:
|
||||
r += (f"""erode_mask_modifier: {self.erode_mask_modifier}\n"""
|
||||
f"""blur_mask_modifier: {self.blur_mask_modifier}\n"""
|
||||
f"""motion_blur_power: {self.motion_blur_power}\n""")
|
||||
|
||||
r += f"""output_face_scale: {self.output_face_scale}\n"""
|
||||
|
||||
if 'raw' not in self.mode:
|
||||
r += f"""color_transfer_mode: { self.ctm_dict[self.color_transfer_mode]}\n"""
|
||||
|
||||
r += f"""super_resolution: {self.super_resolution}\n"""
|
||||
|
||||
if 'raw' not in self.mode:
|
||||
r += (f"""color_degrade_power: {self.color_degrade_power}\n"""
|
||||
f"""export_mask_alpha: {self.export_mask_alpha}\n""")
|
||||
|
||||
r += "================"
|
||||
|
||||
return r
|
||||
|
||||
|
||||
class ConverterConfigFaceAvatar(ConverterConfig):
|
||||
|
||||
def __init__(self, predictor_func=None,
|
||||
predictor_input_shape=None,
|
||||
temporal_face_count=0
|
||||
):
|
||||
super().__init__(type=ConverterConfig.TYPE_FACE_AVATAR,
|
||||
predictor_func=predictor_func,
|
||||
predictor_input_shape=predictor_input_shape
|
||||
)
|
||||
self.temporal_face_count = temporal_face_count
|
||||
|
||||
#changeable params
|
||||
self.add_source_image = False
|
||||
|
||||
def copy(self):
|
||||
return copy.copy(self)
|
||||
|
||||
#override
|
||||
def ask_settings(self):
|
||||
self.add_source_image = io.input_bool("Add source image? (y/n ?:help skip:n) : ", False, help_message="Add source image for comparison.")
|
||||
|
||||
def toggle_add_source_image(self):
|
||||
self.add_source_image = not self.add_source_image
|
||||
|
||||
#override
|
||||
def __eq__(self, other):
|
||||
#check equality of changeable params
|
||||
|
||||
if isinstance(other, ConverterConfigFaceAvatar):
|
||||
return self.add_source_image == other.add_source_image
|
||||
|
||||
return False
|
||||
|
||||
#override
|
||||
def __str__(self):
|
||||
return ("ConverterConfig: \n"
|
||||
f"add_source_image : {self.add_source_image}\n"
|
||||
"================"
|
||||
)
|
|
@ -1,50 +0,0 @@
|
|||
import time
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
|
||||
from facelib import FaceType, LandmarksProcessor
|
||||
from joblib import SubprocessFunctionCaller
|
||||
from utils.pickle_utils import AntiPickler
|
||||
|
||||
from .Converter import Converter
|
||||
|
||||
class ConverterImage(Converter):
|
||||
|
||||
#override
|
||||
def __init__(self, predictor_func,
|
||||
predictor_input_size=0):
|
||||
|
||||
super().__init__(predictor_func, Converter.TYPE_IMAGE)
|
||||
|
||||
self.predictor_input_size = predictor_input_size
|
||||
|
||||
#dummy predict and sleep, tensorflow caching kernels. If remove it, conversion speed will be x2 slower
|
||||
predictor_func ( np.zeros ( (predictor_input_size,predictor_input_size,3), dtype=np.float32 ) )
|
||||
time.sleep(2)
|
||||
|
||||
predictor_func_host, predictor_func = SubprocessFunctionCaller.make_pair(predictor_func)
|
||||
self.predictor_func_host = AntiPickler(predictor_func_host)
|
||||
self.predictor_func = predictor_func
|
||||
|
||||
#overridable
|
||||
def on_host_tick(self):
|
||||
self.predictor_func_host.obj.process_messages()
|
||||
|
||||
#override
|
||||
def cli_convert_image (self, img_bgr, img_landmarks, debug):
|
||||
img_size = img_bgr.shape[1], img_bgr.shape[0]
|
||||
|
||||
predictor_input_bgr = cv2.resize ( img_bgr, (self.predictor_input_size, self.predictor_input_size), cv2.INTER_LANCZOS4 )
|
||||
|
||||
if debug:
|
||||
debugs = [predictor_input_bgr]
|
||||
|
||||
output = self.predictor_func ( predictor_input_bgr )
|
||||
|
||||
if debug:
|
||||
return (predictor_input_bgr,output,)
|
||||
if debug:
|
||||
debugs += [out_img.copy()]
|
||||
|
||||
return debugs if debug else output
|
|
@ -1,436 +0,0 @@
|
|||
import time
|
||||
import traceback
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
|
||||
import imagelib
|
||||
from facelib import FaceType, FANSegmentator, LandmarksProcessor
|
||||
from interact import interact as io
|
||||
from joblib import SubprocessFunctionCaller
|
||||
from utils.pickle_utils import AntiPickler
|
||||
|
||||
from .Converter import Converter
|
||||
|
||||
|
||||
'''
|
||||
default_mode = {1:'overlay',
|
||||
2:'hist-match',
|
||||
3:'hist-match-bw',
|
||||
4:'seamless',
|
||||
5:'seamless-hist-match',
|
||||
6:'raw'}
|
||||
'''
|
||||
class ConverterMasked(Converter):
|
||||
|
||||
#override
|
||||
def __init__(self, predictor_func,
|
||||
predictor_input_size=0,
|
||||
predictor_masked=True,
|
||||
face_type=FaceType.FULL,
|
||||
default_mode = 4,
|
||||
base_erode_mask_modifier = 0,
|
||||
base_blur_mask_modifier = 0,
|
||||
default_erode_mask_modifier = 0,
|
||||
default_blur_mask_modifier = 0,
|
||||
clip_hborder_mask_per = 0,
|
||||
force_mask_mode=-1):
|
||||
|
||||
super().__init__(predictor_func, Converter.TYPE_FACE)
|
||||
|
||||
#dummy predict and sleep, tensorflow caching kernels. If remove it, conversion speed will be x2 slower
|
||||
predictor_func ( np.zeros ( (predictor_input_size,predictor_input_size,3), dtype=np.float32 ) )
|
||||
time.sleep(2)
|
||||
|
||||
predictor_func_host, predictor_func = SubprocessFunctionCaller.make_pair(predictor_func)
|
||||
self.predictor_func_host = AntiPickler(predictor_func_host)
|
||||
self.predictor_func = predictor_func
|
||||
|
||||
self.predictor_masked = predictor_masked
|
||||
self.predictor_input_size = predictor_input_size
|
||||
self.face_type = face_type
|
||||
self.clip_hborder_mask_per = clip_hborder_mask_per
|
||||
|
||||
mode = io.input_int ("Choose mode: (1) overlay, (2) hist match, (3) hist match bw, (4) seamless, (5) raw. Default - %d : " % (default_mode) , default_mode)
|
||||
|
||||
mode_dict = {1:'overlay',
|
||||
2:'hist-match',
|
||||
3:'hist-match-bw',
|
||||
4:'seamless',
|
||||
5:'raw'}
|
||||
|
||||
self.mode = mode_dict.get (mode, mode_dict[default_mode] )
|
||||
|
||||
if self.mode == 'raw':
|
||||
mode = io.input_int ("Choose raw mode: (1) rgb, (2) rgb+mask (default), (3) mask only, (4) predicted only : ", 2)
|
||||
self.raw_mode = {1:'rgb',
|
||||
2:'rgb-mask',
|
||||
3:'mask-only',
|
||||
4:'predicted-only'}.get (mode, 'rgb-mask')
|
||||
|
||||
if self.mode != 'raw':
|
||||
|
||||
if self.mode == 'seamless':
|
||||
if io.input_bool("Seamless hist match? (y/n skip:n) : ", False):
|
||||
self.mode = 'seamless-hist-match'
|
||||
|
||||
if self.mode == 'hist-match' or self.mode == 'hist-match-bw':
|
||||
self.masked_hist_match = io.input_bool("Masked hist match? (y/n skip:y) : ", True)
|
||||
|
||||
if self.mode == 'hist-match' or self.mode == 'hist-match-bw' or self.mode == 'seamless-hist-match':
|
||||
self.hist_match_threshold = np.clip ( io.input_int("Hist match threshold [0..255] (skip:255) : ", 255), 0, 255)
|
||||
|
||||
if force_mask_mode != -1:
|
||||
self.mask_mode = force_mask_mode
|
||||
else:
|
||||
if face_type == FaceType.FULL:
|
||||
self.mask_mode = np.clip ( io.input_int ("Mask mode: (1) learned, (2) dst, (3) FAN-prd, (4) FAN-dst , (5) FAN-prd*FAN-dst (6) learned*FAN-prd*FAN-dst (?) help. Default - %d : " % (1) , 1, help_message="If you learned mask, then option 1 should be choosed. 'dst' mask is raw shaky mask from dst aligned images. 'FAN-prd' - using super smooth mask by pretrained FAN-model from predicted face. 'FAN-dst' - using super smooth mask by pretrained FAN-model from dst face. 'FAN-prd*FAN-dst' or 'learned*FAN-prd*FAN-dst' - using multiplied masks."), 1, 6 )
|
||||
else:
|
||||
self.mask_mode = np.clip ( io.input_int ("Mask mode: (1) learned, (2) dst . Default - %d : " % (1) , 1), 1, 2 )
|
||||
|
||||
if self.mask_mode >= 3 and self.mask_mode <= 6:
|
||||
self.fan_seg = None
|
||||
|
||||
if self.mode != 'raw':
|
||||
self.erode_mask_modifier = base_erode_mask_modifier + np.clip ( io.input_int ("Choose erode mask modifier [-200..200] (skip:%d) : " % (default_erode_mask_modifier), default_erode_mask_modifier), -200, 200)
|
||||
self.blur_mask_modifier = base_blur_mask_modifier + np.clip ( io.input_int ("Choose blur mask modifier [-200..200] (skip:%d) : " % (default_blur_mask_modifier), default_blur_mask_modifier), -200, 200)
|
||||
|
||||
self.output_face_scale = np.clip ( 1.0 + io.input_int ("Choose output face scale modifier [-50..50] (skip:0) : ", 0)*0.01, 0.5, 1.5)
|
||||
|
||||
if self.mode != 'raw':
|
||||
self.color_transfer_mode = io.input_str ("Apply color transfer to predicted face? Choose mode ( rct/lct skip:None ) : ", None, ['rct','lct'])
|
||||
|
||||
self.super_resolution = io.input_bool("Apply super resolution? (y/n ?:help skip:n) : ", False, help_message="Enhance details by applying DCSCN network.")
|
||||
|
||||
if self.mode != 'raw':
|
||||
self.final_image_color_degrade_power = np.clip ( io.input_int ("Degrade color power of final image [0..100] (skip:0) : ", 0), 0, 100)
|
||||
self.alpha = io.input_bool("Export png with alpha channel? (y/n skip:n) : ", False)
|
||||
|
||||
io.log_info ("")
|
||||
|
||||
if self.super_resolution:
|
||||
host_proc, dc_upscale = SubprocessFunctionCaller.make_pair( imagelib.DCSCN().upscale )
|
||||
self.dc_host = AntiPickler(host_proc)
|
||||
self.dc_upscale = dc_upscale
|
||||
else:
|
||||
self.dc_host = None
|
||||
|
||||
#overridable
|
||||
def on_host_tick(self):
|
||||
self.predictor_func_host.obj.process_messages()
|
||||
|
||||
if self.dc_host is not None:
|
||||
self.dc_host.obj.process_messages()
|
||||
|
||||
#overridable
|
||||
def on_cli_initialize(self):
|
||||
if (self.mask_mode >= 3 and self.mask_mode <= 6) and self.fan_seg == None:
|
||||
self.fan_seg = FANSegmentator(256, FaceType.toString( self.face_type ) )
|
||||
|
||||
#override
|
||||
def cli_convert_face (self, img_bgr, img_face_landmarks, debug, **kwargs):
|
||||
if debug:
|
||||
debugs = [img_bgr.copy()]
|
||||
|
||||
img_size = img_bgr.shape[1], img_bgr.shape[0]
|
||||
|
||||
img_face_mask_a = LandmarksProcessor.get_image_hull_mask (img_bgr.shape, img_face_landmarks)
|
||||
|
||||
output_size = self.predictor_input_size
|
||||
if self.super_resolution:
|
||||
output_size *= 2
|
||||
|
||||
face_mat = LandmarksProcessor.get_transform_mat (img_face_landmarks, output_size, face_type=self.face_type)
|
||||
face_output_mat = LandmarksProcessor.get_transform_mat (img_face_landmarks, output_size, face_type=self.face_type, scale=self.output_face_scale)
|
||||
|
||||
dst_face_bgr = cv2.warpAffine( img_bgr , face_mat, (output_size, output_size), flags=cv2.INTER_LANCZOS4 )
|
||||
dst_face_mask_a_0 = cv2.warpAffine( img_face_mask_a, face_mat, (output_size, output_size), flags=cv2.INTER_LANCZOS4 )
|
||||
|
||||
predictor_input_bgr = cv2.resize (dst_face_bgr, (self.predictor_input_size,self.predictor_input_size))
|
||||
|
||||
if self.predictor_masked:
|
||||
prd_face_bgr, prd_face_mask_a_0 = self.predictor_func (predictor_input_bgr)
|
||||
|
||||
prd_face_bgr = np.clip (prd_face_bgr, 0, 1.0 )
|
||||
prd_face_mask_a_0 = np.clip (prd_face_mask_a_0, 0.0, 1.0)
|
||||
else:
|
||||
predicted = self.predictor_func (predictor_input_bgr)
|
||||
prd_face_bgr = np.clip (predicted, 0, 1.0 )
|
||||
prd_face_mask_a_0 = cv2.resize (dst_face_mask_a_0, (self.predictor_input_size,self.predictor_input_size))
|
||||
|
||||
if self.super_resolution:
|
||||
if debug:
|
||||
tmp = cv2.resize (prd_face_bgr, (output_size,output_size), cv2.INTER_CUBIC)
|
||||
debugs += [ np.clip( cv2.warpAffine( tmp, face_output_mat, img_size, img_bgr.copy(), cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4, cv2.BORDER_TRANSPARENT ), 0, 1.0) ]
|
||||
|
||||
prd_face_bgr = self.dc_upscale(prd_face_bgr)
|
||||
if debug:
|
||||
debugs += [ np.clip( cv2.warpAffine( prd_face_bgr, face_output_mat, img_size, img_bgr.copy(), cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4, cv2.BORDER_TRANSPARENT ), 0, 1.0) ]
|
||||
|
||||
if self.predictor_masked:
|
||||
prd_face_mask_a_0 = cv2.resize (prd_face_mask_a_0, (output_size, output_size), cv2.INTER_CUBIC)
|
||||
else:
|
||||
prd_face_mask_a_0 = cv2.resize (dst_face_mask_a_0, (output_size, output_size), cv2.INTER_CUBIC)
|
||||
|
||||
if self.mask_mode == 2: #dst
|
||||
prd_face_mask_a_0 = cv2.resize (dst_face_mask_a_0, (output_size,output_size), cv2.INTER_CUBIC)
|
||||
elif self.mask_mode >= 3 and self.mask_mode <= 6:
|
||||
|
||||
if self.mask_mode == 3 or self.mask_mode == 5 or self.mask_mode == 6:
|
||||
prd_face_bgr_256 = cv2.resize (prd_face_bgr, (256,256) )
|
||||
prd_face_bgr_256_mask = self.fan_seg.extract( prd_face_bgr_256 )
|
||||
FAN_prd_face_mask_a_0 = cv2.resize (prd_face_bgr_256_mask, (output_size,output_size), cv2.INTER_CUBIC)
|
||||
|
||||
if self.mask_mode == 4 or self.mask_mode == 5 or self.mask_mode == 6:
|
||||
face_256_mat = LandmarksProcessor.get_transform_mat (img_face_landmarks, 256, face_type=FaceType.FULL)
|
||||
dst_face_256_bgr = cv2.warpAffine(img_bgr, face_256_mat, (256, 256), flags=cv2.INTER_LANCZOS4 )
|
||||
dst_face_256_mask = self.fan_seg.extract( dst_face_256_bgr )
|
||||
FAN_dst_face_mask_a_0 = cv2.resize (dst_face_256_mask, (output_size,output_size), cv2.INTER_CUBIC)
|
||||
|
||||
if self.mask_mode == 3: #FAN-prd
|
||||
prd_face_mask_a_0 = FAN_prd_face_mask_a_0
|
||||
elif self.mask_mode == 4: #FAN-dst
|
||||
prd_face_mask_a_0 = FAN_dst_face_mask_a_0
|
||||
elif self.mask_mode == 5:
|
||||
prd_face_mask_a_0 = FAN_prd_face_mask_a_0 * FAN_dst_face_mask_a_0
|
||||
elif self.mask_mode == 6:
|
||||
prd_face_mask_a_0 = prd_face_mask_a_0 * FAN_prd_face_mask_a_0 * FAN_dst_face_mask_a_0
|
||||
|
||||
prd_face_mask_a_0[ prd_face_mask_a_0 < 0.001 ] = 0.0
|
||||
|
||||
prd_face_mask_a = prd_face_mask_a_0[...,np.newaxis]
|
||||
prd_face_mask_aaa = np.repeat (prd_face_mask_a, (3,), axis=-1)
|
||||
|
||||
img_face_mask_aaa = cv2.warpAffine( prd_face_mask_aaa, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), flags=cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4 )
|
||||
img_face_mask_aaa = np.clip (img_face_mask_aaa, 0.0, 1.0)
|
||||
img_face_mask_aaa [ img_face_mask_aaa <= 0.1 ] = 0.0 #get rid of noise
|
||||
|
||||
if debug:
|
||||
debugs += [img_face_mask_aaa.copy()]
|
||||
|
||||
|
||||
out_img = img_bgr.copy()
|
||||
|
||||
if self.mode == 'raw':
|
||||
if self.raw_mode == 'rgb' or self.raw_mode == 'rgb-mask':
|
||||
out_img = cv2.warpAffine( prd_face_bgr, face_output_mat, img_size, out_img, cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4, cv2.BORDER_TRANSPARENT )
|
||||
|
||||
if self.raw_mode == 'rgb-mask':
|
||||
out_img = np.concatenate ( [out_img, np.expand_dims (img_face_mask_aaa[:,:,0],-1)], -1 )
|
||||
|
||||
if self.raw_mode == 'mask-only':
|
||||
out_img = img_face_mask_aaa
|
||||
|
||||
if self.raw_mode == 'predicted-only':
|
||||
out_img = cv2.warpAffine( prd_face_bgr, face_output_mat, img_size, np.zeros(out_img.shape, dtype=np.float32), cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4, cv2.BORDER_TRANSPARENT )
|
||||
|
||||
else:
|
||||
#averaging [lenx, leny, maskx, masky] by grayscale gradients of upscaled mask
|
||||
ar = []
|
||||
for i in range(1, 10):
|
||||
maxregion = np.argwhere( img_face_mask_aaa > i / 10.0 )
|
||||
if maxregion.size != 0:
|
||||
miny,minx = maxregion.min(axis=0)[:2]
|
||||
maxy,maxx = maxregion.max(axis=0)[:2]
|
||||
lenx = maxx - minx
|
||||
leny = maxy - miny
|
||||
if min(lenx,leny) >= 4:
|
||||
ar += [ [ lenx, leny] ]
|
||||
|
||||
if len(ar) > 0:
|
||||
lenx, leny = np.mean ( ar, axis=0 )
|
||||
lowest_len = min (lenx, leny)
|
||||
if debug:
|
||||
io.log_info ("lenx/leny:(%d/%d) " % (lenx, leny ) )
|
||||
io.log_info ("lowest_len = %f" % (lowest_len) )
|
||||
|
||||
if self.erode_mask_modifier != 0:
|
||||
ero = int( lowest_len * ( 0.126 - lowest_len * 0.00004551365 ) * 0.01*self.erode_mask_modifier )
|
||||
if debug:
|
||||
io.log_info ("erode_size = %d" % (ero) )
|
||||
if ero > 0:
|
||||
img_face_mask_aaa = cv2.erode(img_face_mask_aaa, cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(ero,ero)), iterations = 1 )
|
||||
elif ero < 0:
|
||||
img_face_mask_aaa = cv2.dilate(img_face_mask_aaa, cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(-ero,-ero)), iterations = 1 )
|
||||
|
||||
img_mask_blurry_aaa = img_face_mask_aaa
|
||||
|
||||
if self.clip_hborder_mask_per > 0: #clip hborder before blur
|
||||
prd_hborder_rect_mask_a = np.ones ( prd_face_mask_a.shape, dtype=np.float32)
|
||||
prd_border_size = int ( prd_hborder_rect_mask_a.shape[1] * self.clip_hborder_mask_per )
|
||||
prd_hborder_rect_mask_a[:,0:prd_border_size,:] = 0
|
||||
prd_hborder_rect_mask_a[:,-prd_border_size:,:] = 0
|
||||
prd_hborder_rect_mask_a[-prd_border_size:,:,:] = 0
|
||||
prd_hborder_rect_mask_a = np.expand_dims(cv2.blur(prd_hborder_rect_mask_a, (prd_border_size, prd_border_size) ),-1)
|
||||
|
||||
img_prd_hborder_rect_mask_a = cv2.warpAffine( prd_hborder_rect_mask_a, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4 )
|
||||
img_prd_hborder_rect_mask_a = np.expand_dims (img_prd_hborder_rect_mask_a, -1)
|
||||
img_mask_blurry_aaa *= img_prd_hborder_rect_mask_a
|
||||
img_mask_blurry_aaa = np.clip( img_mask_blurry_aaa, 0, 1.0 )
|
||||
|
||||
if debug:
|
||||
debugs += [img_mask_blurry_aaa.copy()]
|
||||
|
||||
if self.blur_mask_modifier > 0:
|
||||
blur = int( lowest_len * 0.10 * 0.01*self.blur_mask_modifier )
|
||||
if debug:
|
||||
io.log_info ("blur_size = %d" % (blur) )
|
||||
if blur > 0:
|
||||
img_mask_blurry_aaa = cv2.blur(img_mask_blurry_aaa, (blur, blur) )
|
||||
|
||||
img_mask_blurry_aaa = np.clip( img_mask_blurry_aaa, 0, 1.0 )
|
||||
face_mask_blurry_aaa = cv2.warpAffine( img_mask_blurry_aaa, face_mat, (output_size, output_size) )
|
||||
|
||||
if debug:
|
||||
debugs += [img_mask_blurry_aaa.copy()]
|
||||
|
||||
if 'seamless' not in self.mode and self.color_transfer_mode is not None:
|
||||
if self.color_transfer_mode == 'rct':
|
||||
if debug:
|
||||
debugs += [ np.clip( cv2.warpAffine( prd_face_bgr, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4, cv2.BORDER_TRANSPARENT ), 0, 1.0) ]
|
||||
|
||||
prd_face_bgr = imagelib.reinhard_color_transfer ( np.clip( (prd_face_bgr*255).astype(np.uint8), 0, 255),
|
||||
np.clip( (dst_face_bgr*255).astype(np.uint8), 0, 255),
|
||||
source_mask=prd_face_mask_a, target_mask=prd_face_mask_a)
|
||||
prd_face_bgr = np.clip( prd_face_bgr.astype(np.float32) / 255.0, 0.0, 1.0)
|
||||
|
||||
if debug:
|
||||
debugs += [ np.clip( cv2.warpAffine( prd_face_bgr, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4, cv2.BORDER_TRANSPARENT ), 0, 1.0) ]
|
||||
|
||||
|
||||
elif self.color_transfer_mode == 'lct':
|
||||
if debug:
|
||||
debugs += [ np.clip( cv2.warpAffine( prd_face_bgr, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4, cv2.BORDER_TRANSPARENT ), 0, 1.0) ]
|
||||
|
||||
prd_face_bgr = imagelib.linear_color_transfer (prd_face_bgr, dst_face_bgr)
|
||||
prd_face_bgr = np.clip( prd_face_bgr, 0.0, 1.0)
|
||||
|
||||
if debug:
|
||||
debugs += [ np.clip( cv2.warpAffine( prd_face_bgr, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4, cv2.BORDER_TRANSPARENT ), 0, 1.0) ]
|
||||
|
||||
if self.mode == 'hist-match-bw':
|
||||
prd_face_bgr = cv2.cvtColor(prd_face_bgr, cv2.COLOR_BGR2GRAY)
|
||||
prd_face_bgr = np.repeat( np.expand_dims (prd_face_bgr, -1), (3,), -1 )
|
||||
|
||||
if self.mode == 'hist-match' or self.mode == 'hist-match-bw':
|
||||
if debug:
|
||||
debugs += [ cv2.warpAffine( prd_face_bgr, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4, cv2.BORDER_TRANSPARENT ) ]
|
||||
|
||||
hist_mask_a = np.ones ( prd_face_bgr.shape[:2] + (1,) , dtype=np.float32)
|
||||
|
||||
if self.masked_hist_match:
|
||||
hist_mask_a *= prd_face_mask_a
|
||||
|
||||
white = (1.0-hist_mask_a)* np.ones ( prd_face_bgr.shape[:2] + (1,) , dtype=np.float32)
|
||||
|
||||
hist_match_1 = prd_face_bgr*hist_mask_a + white
|
||||
hist_match_1[ hist_match_1 > 1.0 ] = 1.0
|
||||
|
||||
hist_match_2 = dst_face_bgr*hist_mask_a + white
|
||||
hist_match_2[ hist_match_1 > 1.0 ] = 1.0
|
||||
|
||||
prd_face_bgr = imagelib.color_hist_match(hist_match_1, hist_match_2, self.hist_match_threshold )
|
||||
|
||||
#if self.masked_hist_match:
|
||||
# prd_face_bgr -= white
|
||||
|
||||
if self.mode == 'hist-match-bw':
|
||||
prd_face_bgr = prd_face_bgr.astype(dtype=np.float32)
|
||||
|
||||
out_img = cv2.warpAffine( prd_face_bgr, face_output_mat, img_size, out_img, cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4, cv2.BORDER_TRANSPARENT )
|
||||
out_img = np.clip(out_img, 0.0, 1.0)
|
||||
|
||||
if debug:
|
||||
debugs += [out_img.copy()]
|
||||
|
||||
if self.mode == 'overlay':
|
||||
pass
|
||||
|
||||
if 'seamless' in self.mode:
|
||||
#mask used for cv2.seamlessClone
|
||||
img_face_seamless_mask_a = None
|
||||
img_face_mask_a = img_mask_blurry_aaa[...,0:1]
|
||||
for i in range(1,10):
|
||||
a = img_face_mask_a > i / 10.0
|
||||
if len(np.argwhere(a)) == 0:
|
||||
continue
|
||||
img_face_seamless_mask_a = img_mask_blurry_aaa[...,0:1].copy()
|
||||
img_face_seamless_mask_a[a] = 1.0
|
||||
img_face_seamless_mask_a[img_face_seamless_mask_a <= i / 10.0] = 0.0
|
||||
break
|
||||
|
||||
try:
|
||||
#calc same bounding rect and center point as in cv2.seamlessClone to prevent jittering
|
||||
l,t,w,h = cv2.boundingRect( (img_face_seamless_mask_a*255).astype(np.uint8) )
|
||||
s_maskx, s_masky = int(l+w/2), int(t+h/2)
|
||||
|
||||
out_img = cv2.seamlessClone( (out_img*255).astype(np.uint8), (img_bgr*255).astype(np.uint8), (img_face_seamless_mask_a*255).astype(np.uint8), (s_maskx,s_masky) , cv2.NORMAL_CLONE )
|
||||
out_img = out_img.astype(dtype=np.float32) / 255.0
|
||||
except Exception as e:
|
||||
#seamlessClone may fail in some cases
|
||||
e_str = traceback.format_exc()
|
||||
|
||||
if 'MemoryError' in e_str:
|
||||
raise Exception("Seamless fail: " + e_str) #reraise MemoryError in order to reprocess this data by other processes
|
||||
else:
|
||||
print ("Seamless fail: " + e_str)
|
||||
|
||||
if debug:
|
||||
debugs += [out_img.copy()]
|
||||
|
||||
out_img = np.clip( img_bgr*(1-img_mask_blurry_aaa) + (out_img*img_mask_blurry_aaa) , 0, 1.0 )
|
||||
|
||||
if 'seamless' in self.mode and self.color_transfer_mode is not None:
|
||||
out_face_bgr = cv2.warpAffine( out_img, face_mat, (output_size, output_size) )
|
||||
|
||||
if self.color_transfer_mode == 'rct':
|
||||
if debug:
|
||||
debugs += [ np.clip( cv2.warpAffine( out_face_bgr, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4, cv2.BORDER_TRANSPARENT ), 0, 1.0) ]
|
||||
|
||||
new_out_face_bgr = imagelib.reinhard_color_transfer ( np.clip( (out_face_bgr*255).astype(np.uint8), 0, 255),
|
||||
np.clip( (dst_face_bgr*255).astype(np.uint8), 0, 255),
|
||||
source_mask=face_mask_blurry_aaa, target_mask=face_mask_blurry_aaa)
|
||||
new_out_face_bgr = np.clip( new_out_face_bgr.astype(np.float32) / 255.0, 0.0, 1.0)
|
||||
|
||||
if debug:
|
||||
debugs += [ np.clip( cv2.warpAffine( new_out_face_bgr, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4, cv2.BORDER_TRANSPARENT ), 0, 1.0) ]
|
||||
|
||||
|
||||
elif self.color_transfer_mode == 'lct':
|
||||
if debug:
|
||||
debugs += [ np.clip( cv2.warpAffine( out_face_bgr, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4, cv2.BORDER_TRANSPARENT ), 0, 1.0) ]
|
||||
|
||||
new_out_face_bgr = imagelib.linear_color_transfer (out_face_bgr, dst_face_bgr)
|
||||
new_out_face_bgr = np.clip( new_out_face_bgr, 0.0, 1.0)
|
||||
|
||||
if debug:
|
||||
debugs += [ np.clip( cv2.warpAffine( new_out_face_bgr, face_output_mat, img_size, np.zeros(img_bgr.shape, dtype=np.float32), cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4, cv2.BORDER_TRANSPARENT ), 0, 1.0) ]
|
||||
|
||||
new_out = cv2.warpAffine( new_out_face_bgr, face_mat, img_size, img_bgr.copy(), cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4, cv2.BORDER_TRANSPARENT )
|
||||
out_img = np.clip( img_bgr*(1-img_mask_blurry_aaa) + (new_out*img_mask_blurry_aaa) , 0, 1.0 )
|
||||
|
||||
if self.mode == 'seamless-hist-match':
|
||||
out_face_bgr = cv2.warpAffine( out_img, face_mat, (output_size, output_size) )
|
||||
new_out_face_bgr = imagelib.color_hist_match(out_face_bgr, dst_face_bgr, self.hist_match_threshold)
|
||||
new_out = cv2.warpAffine( new_out_face_bgr, face_mat, img_size, img_bgr.copy(), cv2.WARP_INVERSE_MAP | cv2.INTER_LANCZOS4, cv2.BORDER_TRANSPARENT )
|
||||
out_img = np.clip( img_bgr*(1-img_mask_blurry_aaa) + (new_out*img_mask_blurry_aaa) , 0, 1.0 )
|
||||
|
||||
if self.final_image_color_degrade_power != 0:
|
||||
if debug:
|
||||
debugs += [out_img.copy()]
|
||||
out_img_reduced = imagelib.reduce_colors(out_img, 256)
|
||||
if self.final_image_color_degrade_power == 100:
|
||||
out_img = out_img_reduced
|
||||
else:
|
||||
alpha = self.final_image_color_degrade_power / 100.0
|
||||
out_img = (out_img*(1.0-alpha) + out_img_reduced*alpha)
|
||||
|
||||
if self.alpha:
|
||||
out_img = np.concatenate ( [out_img, np.expand_dims (img_mask_blurry_aaa[:,:,0],-1)], -1 )
|
||||
|
||||
out_img = np.clip (out_img, 0.0, 1.0 )
|
||||
|
||||
if debug:
|
||||
debugs += [out_img.copy()]
|
||||
|
||||
return debugs if debug else out_img
|
6
converters/FrameInfo.py
Normal file
6
converters/FrameInfo.py
Normal file
|
@ -0,0 +1,6 @@
|
|||
class FrameInfo(object):
|
||||
def __init__(self, filename=None, landmarks_list=None):
|
||||
self.filename = filename
|
||||
self.landmarks_list = landmarks_list or []
|
||||
self.motion_deg = 0
|
||||
self.motion_power = 0
|
|
@ -1,4 +1,4 @@
|
|||
from .Converter import Converter
|
||||
from .ConverterMasked import ConverterMasked
|
||||
from .ConverterImage import ConverterImage
|
||||
from .ConverterAvatar import ConverterAvatar
|
||||
from .FrameInfo import FrameInfo
|
||||
from .ConverterConfig import ConverterConfig, ConverterConfigMasked, ConverterConfigFaceAvatar
|
||||
from .ConvertMasked import ConvertMasked
|
||||
from .ConvertAvatar import ConvertFaceAvatar
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue