DeepFaceLab/converters/Converter.py
iperov 046649e6be
update == 04.20.2019 == (#242)
* superb improved fanseg

* _

* _

* added FANseg extractor for src and dst faces to use it in training

* -

* _

* _

* update to 'partial' func

* _

* trained FANSeg_256_full_face.h5,
new experimental models: AVATAR, RecycleGAN

* _

* _

* _

* fix for TCC mode cards(tesla), was conflict with plaidML initialization.

* _

* update manuals

* _
2019-04-20 08:23:08 +04:00

50 lines
1.5 KiB
Python

import copy
'''
You can implement your own Converter, check example ConverterMasked.py
'''
class Converter(object):
TYPE_FACE = 0 #calls convert_face
TYPE_FACE_AVATAR = 1 #calls convert_face with avatar_operator_face
TYPE_IMAGE = 2 #calls convert_image without landmarks
TYPE_IMAGE_WITH_LANDMARKS = 3 #calls convert_image with landmarks
#overridable
def __init__(self, predictor_func, type):
self.predictor_func = predictor_func
self.type = type
#overridable
def on_cli_initialize(self):
#cli initialization
pass
#overridable
def on_host_tick(self):
pass
#overridable
def cli_convert_face (self, img_bgr, img_face_landmarks, debug, avaperator_face_bgr=None, **kwargs):
#return float32 image
#if debug , return tuple ( images of any size and channels, ...)
return image
#overridable
def cli_convert_image (self, img_bgr, img_landmarks, debug):
#img_landmarks not None, if input image is png with embedded data
#return float32 image
#if debug , return tuple ( images of any size and channels, ...)
return image
#overridable
def dummy_predict(self):
#do dummy predict here
pass
def copy(self):
return copy.copy(self)
def copy_and_set_predictor(self, predictor_func):
result = self.copy()
result.predictor_func = predictor_func
return result