proxmark3/common/lfdemod.c
marshmellow42 ec75f5c10a lf Bug Fixes and lf demod additions
added data fskparadoxdemod
added data setdebugmode (for demods)
added data shiftgraphzero (to help clean weak reads)
fixed a few bugs with the data detectaskclock
added data fskfcdetect to detect FSK clocks
adjusted most of my demods to put raw tag binary to demod buffer for
future sim and clone commands (psk still needs work)
2015-01-20 17:28:51 -05:00

1366 lines
40 KiB
C

//-----------------------------------------------------------------------------
// Copyright (C) 2014
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// Low frequency demod/decode commands
//-----------------------------------------------------------------------------
#include <stdlib.h>
#include <string.h>
#include "lfdemod.h"
//by marshmellow
//get high and low with passed in fuzz factor. also return noise test = 1 for passed or 0 for only noise
int getHiLo(uint8_t *BitStream, size_t size, int *high, int *low, uint8_t fuzzHi, uint8_t fuzzLo)
{
*high=0;
*low=255;
// get high and low thresholds
for (int i=0; i < size; i++){
if (BitStream[i] > *high) *high = BitStream[i];
if (BitStream[i] < *low) *low = BitStream[i];
}
if (*high < 123) return -1; // just noise
*high = (int)(((*high-128)*(((float)fuzzHi)/100))+128);
*low = (int)(((*low-128)*(((float)fuzzLo)/100))+128);
return 1;
}
//by marshmellow
//takes 1s and 0s and searches for EM410x format - output EM ID
uint64_t Em410xDecode(uint8_t *BitStream, size_t *size, size_t *startIdx)
{
//no arguments needed - built this way in case we want this to be a direct call from "data " cmds in the future
// otherwise could be a void with no arguments
//set defaults
uint64_t lo=0;
uint32_t i = 0;
if (BitStream[10]>1){ //allow only 1s and 0s
// PrintAndLog("no data found");
return 0;
}
uint8_t parityTest=0;
// 111111111 bit pattern represent start of frame
uint8_t frame_marker_mask[] = {1,1,1,1,1,1,1,1,1};
uint32_t idx = 0;
uint32_t ii=0;
uint8_t resetCnt = 0;
while( (idx + 64) < *size) {
restart:
// search for a start of frame marker
if ( memcmp(BitStream+idx, frame_marker_mask, sizeof(frame_marker_mask)) == 0)
{ // frame marker found
*startIdx=idx;
idx+=9;
for (i=0; i<10;i++){
for(ii=0; ii<5; ++ii){
parityTest ^= BitStream[(i*5)+ii+idx];
}
if (!parityTest){ //even parity
parityTest=0;
for (ii=0; ii<4;++ii){
lo=(lo<<1LL)|(BitStream[(i*5)+ii+idx]);
}
//PrintAndLog("DEBUG: EM parity passed parity val: %d, i:%d, ii:%d,idx:%d, Buffer: %d%d%d%d%d,lo: %d",parityTest,i,ii,idx,BitStream[idx+ii+(i*5)-5],BitStream[idx+ii+(i*5)-4],BitStream[idx+ii+(i*5)-3],BitStream[idx+ii+(i*5)-2],BitStream[idx+ii+(i*5)-1],lo);
}else {//parity failed
//PrintAndLog("DEBUG: EM parity failed parity val: %d, i:%d, ii:%d,idx:%d, Buffer: %d%d%d%d%d",parityTest,i,ii,idx,BitStream[idx+ii+(i*5)-5],BitStream[idx+ii+(i*5)-4],BitStream[idx+ii+(i*5)-3],BitStream[idx+ii+(i*5)-2],BitStream[idx+ii+(i*5)-1]);
parityTest=0;
idx-=8;
if (resetCnt>5)return 0; //try 5 times
resetCnt++;
goto restart;//continue;
}
}
//skip last 5 bit parity test for simplicity.
*size = 64;
return lo;
}else{
idx++;
}
}
return 0;
}
//by marshmellow
//takes 2 arguments - clock and invert both as integers
//attempts to demodulate ask while decoding manchester
//prints binary found and saves in graphbuffer for further commands
int askmandemod(uint8_t *BinStream, size_t *size, int *clk, int *invert)
{
int i;
int clk2=*clk;
*clk=DetectASKClock(BinStream, *size, *clk); //clock default
// if autodetected too low then adjust //MAY NEED ADJUSTMENT
if (clk2==0 && *clk<8) *clk =64;
if (clk2==0 && *clk<32) *clk=32;
if (*invert != 0 && *invert != 1) *invert=0;
uint32_t initLoopMax = 200;
if (initLoopMax > *size) initLoopMax=*size;
// Detect high and lows
// 25% fuzz in case highs and lows aren't clipped [marshmellow]
int high, low, ans;
ans = getHiLo(BinStream, initLoopMax, &high, &low, 75, 75);
if (ans<1) return -2; //just noise
// PrintAndLog("DEBUG - valid high: %d - valid low: %d",high,low);
int lastBit = 0; //set first clock check
uint32_t bitnum = 0; //output counter
int tol = 0; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave
if (*clk<=32)tol=1; //clock tolerance may not be needed anymore currently set to + or - 1 but could be increased for poor waves or removed entirely
int iii = 0;
uint32_t gLen = *size;
if (gLen > 3000) gLen=3000;
uint8_t errCnt =0;
uint32_t bestStart = *size;
uint32_t bestErrCnt = (*size/1000);
uint32_t maxErr = (*size/1000);
// PrintAndLog("DEBUG - lastbit - %d",lastBit);
// loop to find first wave that works
for (iii=0; iii < gLen; ++iii){
if ((BinStream[iii] >= high) || (BinStream[iii] <= low)){
lastBit=iii-*clk;
errCnt=0;
// loop through to see if this start location works
for (i = iii; i < *size; ++i) {
if ((BinStream[i] >= high) && ((i-lastBit) > (*clk-tol))){
lastBit+=*clk;
} else if ((BinStream[i] <= low) && ((i-lastBit) > (*clk-tol))){
//low found and we are expecting a bar
lastBit+=*clk;
} else {
//mid value found or no bar supposed to be here
if ((i-lastBit)>(*clk+tol)){
//should have hit a high or low based on clock!!
//debug
//PrintAndLog("DEBUG - no wave in expected area - location: %d, expected: %d-%d, lastBit: %d - resetting search",i,(lastBit+(clk-((int)(tol)))),(lastBit+(clk+((int)(tol)))),lastBit);
errCnt++;
lastBit+=*clk;//skip over until hit too many errors
if (errCnt>(maxErr)) break; //allow 1 error for every 1000 samples else start over
}
}
if ((i-iii) >(400 * *clk)) break; //got plenty of bits
}
//we got more than 64 good bits and not all errors
if ((((i-iii)/ *clk) > (64+errCnt)) && (errCnt<maxErr)) {
//possible good read
if (errCnt==0){
bestStart=iii;
bestErrCnt=errCnt;
break; //great read - finish
}
if (errCnt<bestErrCnt){ //set this as new best run
bestErrCnt=errCnt;
bestStart = iii;
}
}
}
}
if (bestErrCnt<maxErr){
//best run is good enough set to best run and set overwrite BinStream
iii=bestStart;
lastBit = bestStart - *clk;
bitnum=0;
for (i = iii; i < *size; ++i) {
if ((BinStream[i] >= high) && ((i-lastBit) > (*clk-tol))){
lastBit += *clk;
BinStream[bitnum] = *invert;
bitnum++;
} else if ((BinStream[i] <= low) && ((i-lastBit) > (*clk-tol))){
//low found and we are expecting a bar
lastBit+=*clk;
BinStream[bitnum] = 1-*invert;
bitnum++;
} else {
//mid value found or no bar supposed to be here
if ((i-lastBit)>(*clk+tol)){
//should have hit a high or low based on clock!!
//debug
//PrintAndLog("DEBUG - no wave in expected area - location: %d, expected: %d-%d, lastBit: %d - resetting search",i,(lastBit+(clk-((int)(tol)))),(lastBit+(clk+((int)(tol)))),lastBit);
if (bitnum > 0){
BinStream[bitnum]=77;
bitnum++;
}
lastBit+=*clk;//skip over error
}
}
if (bitnum >=400) break;
}
*size=bitnum;
} else{
*invert=bestStart;
*clk=iii;
return -1;
}
return bestErrCnt;
}
//by marshmellow
//encode binary data into binary manchester
int ManchesterEncode(uint8_t *BitStream, size_t size)
{
size_t modIdx=20000, i=0;
if (size>modIdx) return -1;
for (size_t idx=0; idx < size; idx++){
BitStream[idx+modIdx++] = BitStream[idx];
BitStream[idx+modIdx++] = BitStream[idx]^1;
}
for (; i<(size*2); i++){
BitStream[i] = BitStream[i+20000];
}
return i;
}
//by marshmellow
//take 10 and 01 and manchester decode
//run through 2 times and take least errCnt
int manrawdecode(uint8_t * BitStream, size_t *size)
{
int bitnum=0;
int errCnt =0;
int i=1;
int bestErr = 1000;
int bestRun = 0;
int ii=1;
for (ii=1;ii<3;++ii){
i=1;
for (i=i+ii;i<*size-2;i+=2){
if(BitStream[i]==1 && (BitStream[i+1]==0)){
} else if((BitStream[i]==0)&& BitStream[i+1]==1){
} else {
errCnt++;
}
if(bitnum>300) break;
}
if (bestErr>errCnt){
bestErr=errCnt;
bestRun=ii;
}
errCnt=0;
}
errCnt=bestErr;
if (errCnt<20){
ii=bestRun;
i=1;
for (i=i+ii;i < *size-2;i+=2){
if(BitStream[i] == 1 && (BitStream[i+1] == 0)){
BitStream[bitnum++]=0;
} else if((BitStream[i] == 0) && BitStream[i+1] == 1){
BitStream[bitnum++]=1;
} else {
BitStream[bitnum++]=77;
//errCnt++;
}
if(bitnum>300) break;
}
*size=bitnum;
}
return errCnt;
}
//by marshmellow
//take 01 or 10 = 0 and 11 or 00 = 1
int BiphaseRawDecode(uint8_t *BitStream, size_t *size, int offset, int invert)
{
uint8_t bitnum=0;
uint32_t errCnt =0;
uint32_t i;
i=offset;
for (;i<*size-2; i+=2){
if((BitStream[i]==1 && BitStream[i+1]==0) || (BitStream[i]==0 && BitStream[i+1]==1)){
BitStream[bitnum++]=1^invert;
} else if((BitStream[i]==0 && BitStream[i+1]==0) || (BitStream[i]==1 && BitStream[i+1]==1)){
BitStream[bitnum++]=invert;
} else {
BitStream[bitnum++]=77;
errCnt++;
}
if(bitnum>250) break;
}
*size=bitnum;
return errCnt;
}
//by marshmellow
//takes 2 arguments - clock and invert both as integers
//attempts to demodulate ask only
//prints binary found and saves in graphbuffer for further commands
int askrawdemod(uint8_t *BinStream, size_t *size, int *clk, int *invert)
{
uint32_t i;
// int invert=0; //invert default
int clk2 = *clk;
*clk=DetectASKClock(BinStream, *size, *clk); //clock default
//uint8_t BitStream[502] = {0};
//HACK: if clock not detected correctly - default
if (clk2==0 && *clk<8) *clk =64;
if (clk2==0 && *clk<32 && clk2==0) *clk=32;
if (*invert != 0 && *invert != 1) *invert =0;
uint32_t initLoopMax = 200;
if (initLoopMax > *size) initLoopMax=*size;
// Detect high and lows
//25% fuzz in case highs and lows aren't clipped [marshmellow]
int high, low, ans;
ans = getHiLo(BinStream, initLoopMax, &high, &low, 75, 75);
if (ans<1) return -2; //just noise
//PrintAndLog("DEBUG - valid high: %d - valid low: %d",high,low);
int lastBit = 0; //set first clock check
uint32_t bitnum = 0; //output counter
uint8_t tol = 0; //clock tolerance adjust - waves will be accepted as within the clock
// if they fall + or - this value + clock from last valid wave
if (*clk == 32) tol=1; //clock tolerance may not be needed anymore currently set to
// + or - 1 but could be increased for poor waves or removed entirely
uint32_t iii = 0;
uint32_t gLen = *size;
if (gLen > 500) gLen=500;
uint8_t errCnt =0;
uint32_t bestStart = *size;
uint32_t bestErrCnt = (*size/1000);
uint32_t maxErr = bestErrCnt;
uint8_t midBit=0;
//PrintAndLog("DEBUG - lastbit - %d",lastBit);
//loop to find first wave that works
for (iii=0; iii < gLen; ++iii){
if ((BinStream[iii]>=high) || (BinStream[iii]<=low)){
lastBit=iii-*clk;
//loop through to see if this start location works
for (i = iii; i < *size; ++i) {
if ((BinStream[i] >= high) && ((i-lastBit)>(*clk-tol))){
lastBit+=*clk;
//BitStream[bitnum] = *invert;
//bitnum++;
midBit=0;
} else if ((BinStream[i] <= low) && ((i-lastBit)>(*clk-tol))){
//low found and we are expecting a bar
lastBit+=*clk;
//BitStream[bitnum] = 1- *invert;
//bitnum++;
midBit=0;
} else if ((BinStream[i]<=low) && (midBit==0) && ((i-lastBit)>((*clk/2)-tol))){
//mid bar?
midBit=1;
//BitStream[bitnum]= 1- *invert;
//bitnum++;
} else if ((BinStream[i]>=high) && (midBit==0) && ((i-lastBit)>((*clk/2)-tol))){
//mid bar?
midBit=1;
//BitStream[bitnum]= *invert;
//bitnum++;
} else if ((i-lastBit)>((*clk/2)+tol) && (midBit==0)){
//no mid bar found
midBit=1;
//BitStream[bitnum]= BitStream[bitnum-1];
//bitnum++;
} else {
//mid value found or no bar supposed to be here
if ((i-lastBit)>(*clk+tol)){
//should have hit a high or low based on clock!!
//debug
//PrintAndLog("DEBUG - no wave in expected area - location: %d, expected: %d-%d, lastBit: %d - resetting search",i,(lastBit+(clk-((int)(tol)))),(lastBit+(clk+((int)(tol)))),lastBit);
//if (bitnum > 0){
// BitStream[bitnum]=77;
// bitnum++;
//}
errCnt++;
lastBit+=*clk;//skip over until hit too many errors
if (errCnt > ((*size/1000))){ //allow 1 error for every 1000 samples else start over
errCnt=0;
// bitnum=0;//start over
break;
}
}
}
if ((i-iii)>(500 * *clk)) break; //got enough bits
}
//we got more than 64 good bits and not all errors
if ((((i-iii)/ *clk) > (64+errCnt)) && (errCnt<(*size/1000))) {
//possible good read
if (errCnt==0){
bestStart=iii;
bestErrCnt=errCnt;
break; //great read - finish
}
if (errCnt<bestErrCnt){ //set this as new best run
bestErrCnt=errCnt;
bestStart = iii;
}
}
}
}
if (bestErrCnt<maxErr){
//best run is good enough - set to best run and overwrite BinStream
iii=bestStart;
lastBit = bestStart - *clk;
bitnum=0;
for (i = iii; i < *size; ++i) {
if ((BinStream[i] >= high) && ((i-lastBit) > (*clk-tol))){
lastBit += *clk;
BinStream[bitnum] = *invert;
bitnum++;
midBit=0;
} else if ((BinStream[i] <= low) && ((i-lastBit) > (*clk-tol))){
//low found and we are expecting a bar
lastBit+=*clk;
BinStream[bitnum] = 1-*invert;
bitnum++;
midBit=0;
} else if ((BinStream[i]<=low) && (midBit==0) && ((i-lastBit)>((*clk/2)-tol))){
//mid bar?
midBit=1;
BinStream[bitnum] = 1 - *invert;
bitnum++;
} else if ((BinStream[i]>=high) && (midBit==0) && ((i-lastBit)>((*clk/2)-tol))){
//mid bar?
midBit=1;
BinStream[bitnum] = *invert;
bitnum++;
} else if ((i-lastBit)>((*clk/2)+tol) && (midBit==0)){
//no mid bar found
midBit=1;
if (bitnum!=0) BinStream[bitnum] = BinStream[bitnum-1];
bitnum++;
} else {
//mid value found or no bar supposed to be here
if ((i-lastBit)>(*clk+tol)){
//should have hit a high or low based on clock!!
//debug
//PrintAndLog("DEBUG - no wave in expected area - location: %d, expected: %d-%d, lastBit: %d - resetting search",i,(lastBit+(clk-((int)(tol)))),(lastBit+(clk+((int)(tol)))),lastBit);
if (bitnum > 0){
BinStream[bitnum]=77;
bitnum++;
}
lastBit+=*clk;//skip over error
}
}
if (bitnum >=400) break;
}
*size=bitnum;
} else{
*invert=bestStart;
*clk=iii;
return -1;
}
return bestErrCnt;
}
//translate wave to 11111100000 (1 for each short wave 0 for each long wave)
size_t fsk_wave_demod(uint8_t * dest, size_t size, uint8_t fchigh, uint8_t fclow)
{
uint32_t last_transition = 0;
uint32_t idx = 1;
//uint32_t maxVal=0;
if (fchigh==0) fchigh=10;
if (fclow==0) fclow=8;
//set the threshold close to 0 (graph) or 128 std to avoid static
uint8_t threshold_value = 123;
// sync to first lo-hi transition, and threshold
// Need to threshold first sample
if(dest[0] < threshold_value) dest[0] = 0;
else dest[0] = 1;
size_t numBits = 0;
// count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)
// or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere
// between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10
for(idx = 1; idx < size; idx++) {
// threshold current value
if (dest[idx] < threshold_value) dest[idx] = 0;
else dest[idx] = 1;
// Check for 0->1 transition
if (dest[idx-1] < dest[idx]) { // 0 -> 1 transition
if ((idx-last_transition)<(fclow-2)){ //0-5 = garbage noise
//do nothing with extra garbage
} else if ((idx-last_transition) < (fchigh-1)) { //6-8 = 8 waves
dest[numBits]=1;
} else { //9+ = 10 waves
dest[numBits]=0;
}
last_transition = idx;
numBits++;
}
}
return numBits; //Actually, it returns the number of bytes, but each byte represents a bit: 1 or 0
}
uint32_t myround2(float f)
{
if (f >= 2000) return 2000;//something bad happened
return (uint32_t) (f + (float)0.5);
}
//translate 11111100000 to 10
size_t aggregate_bits(uint8_t *dest, size_t size, uint8_t rfLen, uint8_t maxConsequtiveBits,
uint8_t invert, uint8_t fchigh, uint8_t fclow)
{
uint8_t lastval=dest[0];
uint32_t idx=0;
size_t numBits=0;
uint32_t n=1;
for( idx=1; idx < size; idx++) {
if (dest[idx]==lastval) {
n++;
continue;
}
//if lastval was 1, we have a 1->0 crossing
if ( dest[idx-1]==1 ) {
n=myround2((float)(n+1)/((float)(rfLen)/(float)fclow));
} else {// 0->1 crossing
n=myround2((float)(n+1)/((float)(rfLen-1)/(float)fchigh)); //-1 for fudge factor
}
if (n == 0) n = 1;
if(n < maxConsequtiveBits) //Consecutive
{
if(invert==0){ //invert bits
memset(dest+numBits, dest[idx-1] , n);
}else{
memset(dest+numBits, dest[idx-1]^1 , n);
}
numBits += n;
}
n=0;
lastval=dest[idx];
}//end for
return numBits;
}
//by marshmellow (from holiman's base)
// full fsk demod from GraphBuffer wave to decoded 1s and 0s (no mandemod)
int fskdemod(uint8_t *dest, size_t size, uint8_t rfLen, uint8_t invert, uint8_t fchigh, uint8_t fclow)
{
// FSK demodulator
size = fsk_wave_demod(dest, size, fchigh, fclow);
size = aggregate_bits(dest, size, rfLen, 192, invert, fchigh, fclow);
return size;
}
// loop to get raw HID waveform then FSK demodulate the TAG ID from it
int HIDdemodFSK(uint8_t *dest, size_t *size, uint32_t *hi2, uint32_t *hi, uint32_t *lo)
{
size_t idx=0, size2=*size, startIdx=0;
// FSK demodulator
*size = fskdemod(dest, size2,50,0,10,8);
// final loop, go over previously decoded manchester data and decode into usable tag ID
// 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0
uint8_t frame_marker_mask[] = {1,1,1,0,0,0};
int numshifts = 0;
idx = 0;
//one scan
while( idx + sizeof(frame_marker_mask) < *size) {
// search for a start of frame marker
if ( memcmp(dest+idx, frame_marker_mask, sizeof(frame_marker_mask)) == 0)
{ // frame marker found
startIdx=idx;
idx+=sizeof(frame_marker_mask);
while(dest[idx] != dest[idx+1] && idx < *size-2)
{
// Keep going until next frame marker (or error)
// Shift in a bit. Start by shifting high registers
*hi2 = (*hi2<<1)|(*hi>>31);
*hi = (*hi<<1)|(*lo>>31);
//Then, shift in a 0 or one into low
if (dest[idx] && !dest[idx+1]) // 1 0
*lo=(*lo<<1)|0;
else // 0 1
*lo=(*lo<<1)|1;
numshifts++;
idx += 2;
}
// Hopefully, we read a tag and hit upon the next frame marker
if(idx + sizeof(frame_marker_mask) < *size)
{
if ( memcmp(dest+idx, frame_marker_mask, sizeof(frame_marker_mask)) == 0)
{
//good return
*size=idx-startIdx;
return startIdx;
}
}
// reset
*hi2 = *hi = *lo = 0;
numshifts = 0;
}else {
idx++;
}
}
return -1;
}
// loop to get raw paradox waveform then FSK demodulate the TAG ID from it
size_t ParadoxdemodFSK(uint8_t *dest, size_t *size, uint32_t *hi2, uint32_t *hi, uint32_t *lo)
{
size_t idx=0, size2=*size;
// FSK demodulator
*size = fskdemod(dest, size2,50,1,10,8);
// final loop, go over previously decoded manchester data and decode into usable tag ID
// 00001111 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0
uint8_t frame_marker_mask[] = {0,0,0,0,1,1,1,1};
uint16_t numshifts = 0;
idx = 0;
//one scan
while( idx + sizeof(frame_marker_mask) < *size) {
// search for a start of frame marker
if ( memcmp(dest+idx, frame_marker_mask, sizeof(frame_marker_mask)) == 0)
{ // frame marker found
size2=idx;
idx+=sizeof(frame_marker_mask);
while(dest[idx] != dest[idx+1] && idx < *size-2)
{
// Keep going until next frame marker (or error)
// Shift in a bit. Start by shifting high registers
*hi2 = (*hi2<<1)|(*hi>>31);
*hi = (*hi<<1)|(*lo>>31);
//Then, shift in a 0 or one into low
if (dest[idx] && !dest[idx+1]) // 1 0
*lo=(*lo<<1)|1;
else // 0 1
*lo=(*lo<<1)|0;
numshifts++;
idx += 2;
}
// Hopefully, we read a tag and hit upon the next frame marker and got enough bits
if(idx + sizeof(frame_marker_mask) < *size && numshifts > 40)
{
if ( memcmp(dest+idx, frame_marker_mask, sizeof(frame_marker_mask)) == 0)
{
//good return - return start grid position and bits found
*size = ((numshifts*2)+8);
return size2;
}
}
// reset
*hi2 = *hi = *lo = 0;
numshifts = 0;
}else {
idx++;
}
}
return 0;
}
uint32_t bytebits_to_byte(uint8_t* src, size_t numbits)
{
uint32_t num = 0;
for(int i = 0 ; i < numbits ; i++)
{
num = (num << 1) | (*src);
src++;
}
return num;
}
int IOdemodFSK(uint8_t *dest, size_t size)
{
static const uint8_t THRESHOLD = 129;
uint32_t idx=0;
//make sure buffer has data
if (size < 66) return -1;
//test samples are not just noise
uint8_t justNoise = 1;
for(idx=0;idx< size && justNoise ;idx++){
justNoise = dest[idx] < THRESHOLD;
}
if(justNoise) return 0;
// FSK demodulator
size = fskdemod(dest, size, 64, 1, 10, 8); // RF/64 and invert
if (size < 65) return -1; //did we get a good demod?
//Index map
//0 10 20 30 40 50 60
//| | | | | | |
//01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
//-----------------------------------------------------------------------------
//00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11
//
//XSF(version)facility:codeone+codetwo
//Handle the data
uint8_t mask[] = {0,0,0,0,0,0,0,0,0,1};
for( idx=0; idx < (size - 65); idx++) {
if ( memcmp(dest + idx, mask, sizeof(mask))==0) {
//frame marker found
if (!dest[idx+8] && dest[idx+17]==1 && dest[idx+26]==1 && dest[idx+35]==1 && dest[idx+44]==1 && dest[idx+53]==1){
//confirmed proper separator bits found
//return start position
return (int) idx;
}
}
}
return 0;
}
// by marshmellow
// pass bits to be tested in bits, length bits passed in bitLen, and parity type (even=0 | odd=1) in pType
// returns 1 if passed
uint8_t parityTest(uint32_t bits, uint8_t bitLen, uint8_t pType)
{
uint8_t ans = 0;
for (uint8_t i = 0; i < bitLen; i++){
ans ^= ((bits >> i) & 1);
}
//PrintAndLog("DEBUG: ans: %d, ptype: %d",ans,pType);
return (ans == pType);
}
// by marshmellow
// takes a array of binary values, start position, length of bits per parity (includes parity bit),
// Parity Type (1 for odd 0 for even), and binary Length (length to run)
size_t removeParity(uint8_t *BitStream, size_t startIdx, uint8_t pLen, uint8_t pType, size_t bLen)
{
uint32_t parityWd = 0;
size_t j = 0, bitCnt = 0;
for (int word = 0; word < (bLen); word+=pLen){
for (int bit=0; bit < pLen; bit++){
parityWd = (parityWd << 1) | BitStream[startIdx+word+bit];
BitStream[j++] = (BitStream[startIdx+word+bit]);
}
j--;
// if parity fails then return 0
if (parityTest(parityWd, pLen, pType) == 0) return -1;
bitCnt+=(pLen-1);
parityWd = 0;
}
// if we got here then all the parities passed
//return ID start index and size
return bitCnt;
}
// by marshmellow
// FSK Demod then try to locate an AWID ID
int AWIDdemodFSK(uint8_t *dest, size_t size)
{
static const uint8_t THRESHOLD = 123;
uint32_t idx=0, idx2=0;
//make sure buffer has data
if (size < 96*50) return -1;
//test samples are not just noise
uint8_t justNoise = 1;
for(idx=0; idx < size && justNoise ;idx++){
justNoise = dest[idx] < THRESHOLD;
}
if(justNoise) return -2;
// FSK demodulator
size = fskdemod(dest, size, 50, 1, 10, 8); // RF/64 and invert
if (size < 96) return -3; //did we get a good demod?
uint8_t mask[] = {0,0,0,0,0,0,0,1};
for( idx=0; idx < (size - 96); idx++) {
if ( memcmp(dest + idx, mask, sizeof(mask))==0) {
// frame marker found
//return ID start index
if (idx2 == 0) idx2=idx;
else if(idx-idx2==96) return idx2;
else return -5;
// should always get 96 bits if it is awid
}
}
//never found mask
return -4;
}
// by marshmellow
// FSK Demod then try to locate an Farpointe Data (pyramid) ID
int PyramiddemodFSK(uint8_t *dest, size_t size)
{
static const uint8_t THRESHOLD = 123;
uint32_t idx=0, idx2=0;
// size_t size2 = size;
//make sure buffer has data
if (size < 128*50) return -5;
//test samples are not just noise
uint8_t justNoise = 1;
for(idx=0; idx < size && justNoise ;idx++){
justNoise = dest[idx] < THRESHOLD;
}
if(justNoise) return -1;
// FSK demodulator
size = fskdemod(dest, size, 50, 1, 10, 8); // RF/64 and invert
if (size < 128) return -2; //did we get a good demod?
uint8_t mask[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1};
for( idx=0; idx < (size - 128); idx++) {
if ( memcmp(dest + idx, mask, sizeof(mask))==0) {
// frame marker found
if (idx2==0) idx2=idx;
else if (idx-idx2==128) return idx2;
else return -3;
}
}
//never found mask
return -4;
}
// by marshmellow
// not perfect especially with lower clocks or VERY good antennas (heavy wave clipping)
// maybe somehow adjust peak trimming value based on samples to fix?
int DetectASKClock(uint8_t dest[], size_t size, int clock)
{
int i=0;
int clk[]={8,16,32,40,50,64,100,128,256};
int loopCnt = 256; //don't need to loop through entire array...
if (size<loopCnt) loopCnt = size;
//if we already have a valid clock quit
for (;i<8;++i)
if (clk[i] == clock) return clock;
//get high and low peak
int peak, low;
getHiLo(dest, loopCnt, &peak, &low, 75, 75);
int ii;
int clkCnt;
int tol = 0;
int bestErr[]={1000,1000,1000,1000,1000,1000,1000,1000,1000};
int errCnt=0;
//test each valid clock from smallest to greatest to see which lines up
for(clkCnt=0; clkCnt < 8; ++clkCnt){
if (clk[clkCnt] == 32){
tol=1;
}else{
tol=0;
}
bestErr[clkCnt]=1000;
//try lining up the peaks by moving starting point (try first 256)
for (ii=0; ii < loopCnt; ++ii){
if ((dest[ii] >= peak) || (dest[ii] <= low)){
errCnt=0;
// now that we have the first one lined up test rest of wave array
for (i=0; i<((int)((size-ii-tol)/clk[clkCnt])-1); ++i){
if (dest[ii+(i*clk[clkCnt])]>=peak || dest[ii+(i*clk[clkCnt])]<=low){
}else if(dest[ii+(i*clk[clkCnt])-tol]>=peak || dest[ii+(i*clk[clkCnt])-tol]<=low){
}else if(dest[ii+(i*clk[clkCnt])+tol]>=peak || dest[ii+(i*clk[clkCnt])+tol]<=low){
}else{ //error no peak detected
errCnt++;
}
}
//if we found no errors then we can stop here
// this is correct one - return this clock
//PrintAndLog("DEBUG: clk %d, err %d, ii %d, i %d",clk[clkCnt],errCnt,ii,i);
if(errCnt==0 && clkCnt<6) return clk[clkCnt];
//if we found errors see if it is lowest so far and save it as best run
if(errCnt<bestErr[clkCnt]) bestErr[clkCnt]=errCnt;
}
}
}
uint8_t iii=0;
uint8_t best=0;
for (iii=0; iii<8; ++iii){
if (bestErr[iii]<bestErr[best]){
if (bestErr[iii]==0) bestErr[iii]=1;
// current best bit to error ratio vs new bit to error ratio
if (((size/clk[best])/bestErr[best] < (size/clk[iii])/bestErr[iii]) ){
best = iii;
}
}
}
return clk[best];
}
//by marshmellow
//detect psk clock by reading #peaks vs no peaks(or errors)
int DetectpskNRZClock(uint8_t dest[], size_t size, int clock)
{
int i=0;
int clk[]={16,32,40,50,64,100,128,256};
int loopCnt = 2048; //don't need to loop through entire array...
if (size<loopCnt) loopCnt = size;
//if we already have a valid clock quit
for (; i < 7; ++i)
if (clk[i] == clock) return clock;
//get high and low peak
int peak, low;
getHiLo(dest, loopCnt, &peak, &low, 75, 75);
//PrintAndLog("DEBUG: peak: %d, low: %d",peak,low);
int ii;
uint8_t clkCnt;
uint8_t tol = 0;
int peakcnt=0;
int errCnt=0;
int bestErr[]={1000,1000,1000,1000,1000,1000,1000,1000};
int peaksdet[]={0,0,0,0,0,0,0,0};
//test each valid clock from smallest to greatest to see which lines up
for(clkCnt=0; clkCnt < 7; ++clkCnt){
if (clk[clkCnt] <= 32){
tol=1;
}else{
tol=0;
}
//try lining up the peaks by moving starting point (try first 256)
for (ii=0; ii< loopCnt; ++ii){
if ((dest[ii] >= peak) || (dest[ii] <= low)){
errCnt=0;
peakcnt=0;
// now that we have the first one lined up test rest of wave array
for (i=0; i < ((int)((size-ii-tol)/clk[clkCnt])-1); ++i){
if (dest[ii+(i*clk[clkCnt])]>=peak || dest[ii+(i*clk[clkCnt])]<=low){
peakcnt++;
}else if(dest[ii+(i*clk[clkCnt])-tol]>=peak || dest[ii+(i*clk[clkCnt])-tol]<=low){
peakcnt++;
}else if(dest[ii+(i*clk[clkCnt])+tol]>=peak || dest[ii+(i*clk[clkCnt])+tol]<=low){
peakcnt++;
}else{ //error no peak detected
errCnt++;
}
}
if(peakcnt>peaksdet[clkCnt]) {
peaksdet[clkCnt]=peakcnt;
bestErr[clkCnt]=errCnt;
}
}
}
}
int iii=0;
int best=0;
//int ratio2; //debug
int ratio;
//int bits;
for (iii=0; iii < 7; ++iii){
ratio=1000;
//ratio2=1000; //debug
//bits=size/clk[iii]; //debug
if (peaksdet[iii] > 0){
ratio=bestErr[iii]/peaksdet[iii];
if (((bestErr[best]/peaksdet[best]) > (ratio)+1)){
best = iii;
}
//ratio2=bits/peaksdet[iii]; //debug
}
//PrintAndLog("DEBUG: Clk: %d, peaks: %d, errs: %d, bestClk: %d, ratio: %d, bits: %d, peakbitr: %d",clk[iii],peaksdet[iii],bestErr[iii],clk[best],ratio, bits,ratio2);
}
return clk[best];
}
//by marshmellow (attempt to get rid of high immediately after a low)
void pskCleanWave(uint8_t *BitStream, size_t size)
{
int i;
int gap = 4;
int newLow=0;
int newHigh=0;
int high, low;
getHiLo(BitStream, size, &high, &low, 80, 90);
for (i=0; i < size; ++i){
if (newLow == 1){
if (BitStream[i]>low){
BitStream[i]=low+8;
gap--;
}
if (gap == 0){
newLow=0;
gap=4;
}
}else if (newHigh == 1){
if (BitStream[i]<high){
BitStream[i]=high-8;
gap--;
}
if (gap == 0){
newHigh=0;
gap=4;
}
}
if (BitStream[i] <= low) newLow=1;
if (BitStream[i] >= high) newHigh=1;
}
return;
}
//redesigned by marshmellow adjusted from existing decode functions
//indala id decoding - only tested on 26 bit tags, but attempted to make it work for more
int indala26decode(uint8_t *bitStream, size_t *size, uint8_t *invert)
{
//26 bit 40134 format (don't know other formats)
int i;
int long_wait=29;//29 leading zeros in format
int start;
int first = 0;
int first2 = 0;
int bitCnt = 0;
int ii;
// Finding the start of a UID
for (start = 0; start <= *size - 250; start++) {
first = bitStream[start];
for (i = start; i < start + long_wait; i++) {
if (bitStream[i] != first) {
break;
}
}
if (i == (start + long_wait)) {
break;
}
}
if (start == *size - 250 + 1) {
// did not find start sequence
return -1;
}
// Inverting signal if needed
if (first == 1) {
for (i = start; i < *size; i++) {
bitStream[i] = !bitStream[i];
}
*invert = 1;
}else *invert=0;
int iii;
//found start once now test length by finding next one
for (ii=start+29; ii <= *size - 250; ii++) {
first2 = bitStream[ii];
for (iii = ii; iii < ii + long_wait; iii++) {
if (bitStream[iii] != first2) {
break;
}
}
if (iii == (ii + long_wait)) {
break;
}
}
if (ii== *size - 250 + 1){
// did not find second start sequence
return -2;
}
bitCnt=ii-start;
// Dumping UID
i = start;
for (ii = 0; ii < bitCnt; ii++) {
bitStream[ii] = bitStream[i++];
}
*size=bitCnt;
return 1;
}
//by marshmellow - demodulate PSK1 wave or NRZ wave (both similar enough)
//peaks switch bit (high=1 low=0) each clock cycle = 1 bit determined by last peak
int pskNRZrawDemod(uint8_t *dest, size_t *size, int *clk, int *invert)
{
pskCleanWave(dest,*size);
int clk2 = DetectpskNRZClock(dest, *size, *clk);
*clk=clk2;
uint32_t i;
int high, low, ans;
ans = getHiLo(dest, 1260, &high, &low, 75, 80); //25% fuzz on high 20% fuzz on low
if (ans<1) return -2; //just noise
uint32_t gLen = *size;
//PrintAndLog("DEBUG - valid high: %d - valid low: %d",high,low);
int lastBit = 0; //set first clock check
uint32_t bitnum = 0; //output counter
uint8_t tol = 1; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave
if (*clk==32) tol = 2; //clock tolerance may not be needed anymore currently set to + or - 1 but could be increased for poor waves or removed entirely
uint32_t iii = 0;
uint8_t errCnt =0;
uint32_t bestStart = *size;
uint32_t maxErr = (*size/1000);
uint32_t bestErrCnt = maxErr;
//uint8_t midBit=0;
uint8_t curBit=0;
uint8_t bitHigh=0;
uint8_t ignorewin=*clk/8;
//PrintAndLog("DEBUG - lastbit - %d",lastBit);
//loop to find first wave that works - align to clock
for (iii=0; iii < gLen; ++iii){
if ((dest[iii]>=high) || (dest[iii]<=low)){
lastBit=iii-*clk;
//loop through to see if this start location works
for (i = iii; i < *size; ++i) {
//if we found a high bar and we are at a clock bit
if ((dest[i]>=high ) && (i>=lastBit+*clk-tol && i<=lastBit+*clk+tol)){
bitHigh=1;
lastBit+=*clk;
ignorewin=*clk/8;
bitnum++;
//else if low bar found and we are at a clock point
}else if ((dest[i]<=low ) && (i>=lastBit+*clk-tol && i<=lastBit+*clk+tol)){
bitHigh=1;
lastBit+=*clk;
ignorewin=*clk/8;
bitnum++;
//else if no bars found
}else if(dest[i] < high && dest[i] > low) {
if (ignorewin==0){
bitHigh=0;
}else ignorewin--;
//if we are past a clock point
if (i >= lastBit+*clk+tol){ //clock val
lastBit+=*clk;
bitnum++;
}
//else if bar found but we are not at a clock bit and we did not just have a clock bit
}else if ((dest[i]>=high || dest[i]<=low) && (i<lastBit+*clk-tol || i>lastBit+*clk+tol) && (bitHigh==0)){
//error bar found no clock...
errCnt++;
}
if (bitnum>=1000) break;
}
//we got more than 64 good bits and not all errors
if ((bitnum > (64+errCnt)) && (errCnt < (maxErr))) {
//possible good read
if (errCnt == 0){
bestStart = iii;
bestErrCnt = errCnt;
break; //great read - finish
}
if (errCnt < bestErrCnt){ //set this as new best run
bestErrCnt = errCnt;
bestStart = iii;
}
}
}
}
if (bestErrCnt < maxErr){
//best run is good enough set to best run and set overwrite BinStream
iii=bestStart;
lastBit=bestStart-*clk;
bitnum=0;
for (i = iii; i < *size; ++i) {
//if we found a high bar and we are at a clock bit
if ((dest[i] >= high ) && (i>=lastBit+*clk-tol && i<=lastBit+*clk+tol)){
bitHigh=1;
lastBit+=*clk;
curBit=1-*invert;
dest[bitnum]=curBit;
ignorewin=*clk/8;
bitnum++;
//else if low bar found and we are at a clock point
}else if ((dest[i]<=low ) && (i>=lastBit+*clk-tol && i<=lastBit+*clk+tol)){
bitHigh=1;
lastBit+=*clk;
curBit=*invert;
dest[bitnum]=curBit;
ignorewin=*clk/8;
bitnum++;
//else if no bars found
}else if(dest[i]<high && dest[i]>low) {
if (ignorewin==0){
bitHigh=0;
}else ignorewin--;
//if we are past a clock point
if (i>=lastBit+*clk+tol){ //clock val
lastBit+=*clk;
dest[bitnum]=curBit;
bitnum++;
}
//else if bar found but we are not at a clock bit and we did not just have a clock bit
}else if ((dest[i]>=high || dest[i]<=low) && ((i<lastBit+*clk-tol) || (i>lastBit+*clk+tol)) && (bitHigh==0)){
//error bar found no clock...
bitHigh=1;
dest[bitnum]=77;
bitnum++;
errCnt++;
}
if (bitnum >=1000) break;
}
*size=bitnum;
} else{
*size=bitnum;
*clk=bestStart;
return -1;
}
if (bitnum>16){
*size=bitnum;
} else return -1;
return errCnt;
}
//by marshmellow
//countFC is to detect the field clock and bit clock rates.
//for fsk or ask not psk or nrz
uint32_t countFC(uint8_t *BitStream, size_t size)
{
// get high/low thresholds
int high, low;
getHiLo(BitStream,10, &high, &low, 100, 100);
// get zero crossing
uint8_t zeroC = (high-low)/2+low;
uint8_t clk[]={8,16,32,40,50,64,100,128};
uint8_t fcLens[] = {0,0,0,0,0,0,0,0,0,0};
uint16_t fcCnts[] = {0,0,0,0,0,0,0,0,0,0};
uint8_t rfLens[] = {0,0,0,0,0,0,0,0,0,0,0};
// uint8_t rfCnts[] = {0,0,0,0,0,0,0,0,0,0};
uint8_t fcLensFnd = 0;
uint8_t rfLensFnd = 0;
uint8_t lastBit=0;
uint8_t curBit=0;
uint8_t lastFCcnt=0;
uint32_t errCnt=0;
uint32_t fcCounter = 0;
uint32_t rfCounter = 0;
uint8_t firstBitFnd = 0;
int i;
// prime i to first up transition
for (i = 1; i < size; i++)
if (BitStream[i]>=zeroC && BitStream[i-1]<zeroC)
break;
for (; i < size; i++){
curBit = BitStream[i];
lastBit = BitStream[i-1];
if (lastBit<zeroC && curBit >= zeroC){
// new up transition
fcCounter++;
rfCounter++;
if (fcCounter > 3 && fcCounter < 256){
//we've counted enough that it could be a valid field clock
//if we had 5 and now have 9 then go back to 8 (for when we get a fc 9 instead of an 8)
if (lastFCcnt==5 && fcCounter==9) fcCounter--;
//if odd and not rc/5 add one (for when we get a fc 9 instead of 10)
if ((fcCounter==9 && fcCounter & 1) || fcCounter==4) fcCounter++;
//look for bit clock (rf/xx)
if ((fcCounter<lastFCcnt || fcCounter>lastFCcnt)){
//not the same size as the last wave - start of new bit sequence
if (firstBitFnd>1){ //skip first wave change - probably not a complete bit
for (int ii=0; ii<10; ii++){
if (rfLens[ii]==rfCounter){
//rfCnts[ii]++;
rfCounter=0;
break;
}
}
if (rfCounter>0 && rfLensFnd<10){
//PrintAndLog("DEBUG: rfCntr %d, fcCntr %d",rfCounter,fcCounter);
//rfCnts[rfLensFnd]++;
rfLens[rfLensFnd++]=rfCounter;
}
} else {
//PrintAndLog("DEBUG i: %d",i);
firstBitFnd++;
}
rfCounter=0;
lastFCcnt=fcCounter;
}
// save last field clock count (fc/xx)
// find which fcLens to save it to:
for (int ii=0; ii<10; ii++){
if (fcLens[ii]==fcCounter){
fcCnts[ii]++;
fcCounter=0;
break;
}
}
if (fcCounter>0 && fcLensFnd<10){
//add new fc length
//PrintAndLog("FCCntr %d",fcCounter);
fcCnts[fcLensFnd]++;
fcLens[fcLensFnd++]=fcCounter;
}
} else{
// hmmm this should not happen often - count them
errCnt++;
}
// reset counter
fcCounter=0;
} else {
// count sample
fcCounter++;
rfCounter++;
}
}
// if too many errors return errors as negative number (IS THIS NEEDED?)
if (errCnt>100) return -1*errCnt;
uint8_t maxCnt1=0, best1=9, best2=9, best3=9, rfHighest=10, rfHighest2=10, rfHighest3=10;
// go through fclens and find which ones are bigest 2
for (i=0; i<10; i++){
// PrintAndLog("DEBUG: FC %d, Cnt %d, Errs %d, RF %d",fcLens[i],fcCnts[i],errCnt,rfLens[i]);
// get the 3 best FC values
if (fcCnts[i]>maxCnt1) {
best3=best2;
best2=best1;
maxCnt1=fcCnts[i];
best1=i;
} else if(fcCnts[i]>fcCnts[best2]){
best3=best2;
best2=i;
} else if(fcCnts[i]>fcCnts[best3]){
best3=i;
}
//get highest 2 RF values (might need to get more values to compare or compare all?)
if (rfLens[i]>rfLens[rfHighest]){
rfHighest3=rfHighest2;
rfHighest2=rfHighest;
rfHighest=i;
} else if(rfLens[i]>rfLens[rfHighest2]){
rfHighest3=rfHighest2;
rfHighest2=i;
} else if(rfLens[i]>rfLens[rfHighest3]){
rfHighest3=i;
}
}
// set allowed clock remainder tolerance to be 1 large field clock length
// we could have mistakenly made a 9 a 10 instead of an 8 or visa versa so rfLens could be 1 FC off
int tol1 = (fcLens[best1]>fcLens[best2]) ? fcLens[best1] : fcLens[best2];
// loop to find the highest clock that has a remainder less than the tolerance
// compare samples counted divided by
int ii=7;
for (; ii>=0; ii--){
if (rfLens[rfHighest] % clk[ii] < tol1 || rfLens[rfHighest] % clk[ii] > clk[ii]-tol1){
if (rfLens[rfHighest2] % clk[ii] < tol1 || rfLens[rfHighest2] % clk[ii] > clk[ii]-tol1){
if (rfLens[rfHighest3] % clk[ii] < tol1 || rfLens[rfHighest3] % clk[ii] > clk[ii]-tol1){
break;
}
}
}
}
if (ii<0) ii=7; // oops we went too far
// TODO: take top 3 answers and compare to known Field clocks to get top 2
uint32_t fcs=0;
// PrintAndLog("DEBUG: Best %d best2 %d best3 %d, clk %d, clk2 %d",fcLens[best1],fcLens[best2],fcLens[best3],clk[i],clk[ii]);
//
if (fcLens[best1]>fcLens[best2]){
fcs = (((uint32_t)clk[ii])<<16) | (((uint32_t)fcLens[best1])<<8) | ((fcLens[best2]));
} else {
fcs = (((uint32_t)clk[ii])<<16) | (((uint32_t)fcLens[best2])<<8) | ((fcLens[best1]));
}
return fcs;
}