mirror of
https://github.com/Proxmark/proxmark3.git
synced 2025-07-30 19:40:09 -07:00
- implemented ISO 14443A anticollision loop See http://www.proxmark.org/forum/viewtopic.php?id=1797 further details
379 lines
13 KiB
Verilog
379 lines
13 KiB
Verilog
//-----------------------------------------------------------------------------
|
|
// ISO14443-A support for the Proxmark III
|
|
// Gerhard de Koning Gans, April 2008
|
|
//-----------------------------------------------------------------------------
|
|
|
|
module hi_iso14443a(
|
|
pck0, ck_1356meg, ck_1356megb,
|
|
pwr_lo, pwr_hi, pwr_oe1, pwr_oe2, pwr_oe3, pwr_oe4,
|
|
adc_d, adc_clk,
|
|
ssp_frame, ssp_din, ssp_dout, ssp_clk,
|
|
cross_hi, cross_lo,
|
|
dbg,
|
|
mod_type
|
|
);
|
|
input pck0, ck_1356meg, ck_1356megb;
|
|
output pwr_lo, pwr_hi, pwr_oe1, pwr_oe2, pwr_oe3, pwr_oe4;
|
|
input [7:0] adc_d;
|
|
output adc_clk;
|
|
input ssp_dout;
|
|
output ssp_frame, ssp_din, ssp_clk;
|
|
input cross_hi, cross_lo;
|
|
output dbg;
|
|
input [2:0] mod_type;
|
|
|
|
reg ssp_clk;
|
|
reg ssp_frame;
|
|
|
|
reg fc_div_2;
|
|
always @(posedge ck_1356meg)
|
|
fc_div_2 = ~fc_div_2;
|
|
|
|
wire adc_clk;
|
|
assign adc_clk = ck_1356meg;
|
|
|
|
reg after_hysteresis, after_hysteresis_prev1, after_hysteresis_prev2, after_hysteresis_prev3;
|
|
reg [11:0] has_been_low_for;
|
|
reg [8:0] saw_deep_modulation;
|
|
reg [2:0] deep_counter;
|
|
reg deep_modulation;
|
|
always @(negedge adc_clk)
|
|
begin
|
|
if(& adc_d[7:6]) after_hysteresis <= 1'b1; // if adc_d >= 196
|
|
else if(~(| adc_d[7:4])) after_hysteresis <= 1'b0; // if adc_d <= 15
|
|
|
|
if(~(| adc_d[7:0]))
|
|
begin
|
|
if(deep_counter == 3'd7)
|
|
begin
|
|
deep_modulation <= 1'b1;
|
|
saw_deep_modulation <= 8'd0;
|
|
end
|
|
else
|
|
deep_counter <= deep_counter + 1;
|
|
end
|
|
else
|
|
begin
|
|
deep_counter <= 3'd0;
|
|
if(saw_deep_modulation == 8'd255)
|
|
deep_modulation <= 1'b0;
|
|
else
|
|
saw_deep_modulation <= saw_deep_modulation + 1;
|
|
end
|
|
|
|
if(after_hysteresis)
|
|
begin
|
|
has_been_low_for <= 7'b0;
|
|
end
|
|
else
|
|
begin
|
|
if(has_been_low_for == 12'd4095)
|
|
begin
|
|
has_been_low_for <= 12'd0;
|
|
after_hysteresis <= 1'b1;
|
|
end
|
|
else
|
|
has_been_low_for <= has_been_low_for + 1;
|
|
end
|
|
end
|
|
|
|
// Report every 4 subcarrier cycles
|
|
// 64 periods of carrier frequency => 6-bit counter [negedge_cnt]
|
|
reg [5:0] negedge_cnt;
|
|
reg bit1, bit2, bit3;
|
|
reg [3:0] count_ones;
|
|
reg [3:0] count_zeros;
|
|
// wire [7:0] avg;
|
|
// reg [7:0] lavg;
|
|
// reg signed [12:0] step1;
|
|
// reg signed [12:0] step2;
|
|
// reg [7:0] stepsize;
|
|
reg [7:0] rx_mod_edge_threshold;
|
|
reg curbit;
|
|
// reg [12:0] average;
|
|
// wire signed [9:0] dif;
|
|
|
|
// storage for two previous samples:
|
|
reg [7:0] adc_d_1;
|
|
reg [7:0] adc_d_2;
|
|
reg [7:0] adc_d_3;
|
|
reg [7:0] adc_d_4;
|
|
|
|
// the filtered signal (filter performs noise reduction and edge detection)
|
|
// (gaussian derivative)
|
|
wire signed [10:0] adc_d_filtered;
|
|
assign adc_d_filtered = (adc_d_4 << 1) + adc_d_3 - adc_d_1 - (adc_d << 1);
|
|
|
|
// Registers to store steepest edges detected:
|
|
reg [7:0] rx_mod_falling_edge_max;
|
|
reg [7:0] rx_mod_rising_edge_max;
|
|
|
|
// A register to send the results to the arm
|
|
reg signed [7:0] to_arm;
|
|
|
|
|
|
reg bit_to_arm;
|
|
reg fdt_indicator, fdt_elapsed;
|
|
reg [10:0] fdt_counter;
|
|
reg [47:0] mod_sig_buf;
|
|
wire mod_sig_buf_empty;
|
|
reg [5:0] mod_sig_ptr;
|
|
reg [3:0] mod_sig_flip;
|
|
reg mod_sig, mod_sig_coil;
|
|
reg temp_buffer_reset;
|
|
reg sendbit;
|
|
|
|
assign mod_sig_buf_empty = ~(|mod_sig_buf[47:0]);
|
|
reg [2:0] ssp_frame_counter;
|
|
|
|
// ADC data appears on the rising edge, so sample it on the falling edge
|
|
always @(negedge adc_clk)
|
|
begin
|
|
// ------------------------------------------------------------------------------------------------------------------------------------------------------------------
|
|
// relevant for TAGSIM_MOD only. Timing of Tag's answer to a command received from a reader
|
|
// ISO14443-3 specifies:
|
|
// fdt = 1172, if last bit was 0.
|
|
// fdt = 1236, if last bit was 1.
|
|
// the FPGA takes care for the 1172 delay. To achieve the additional 1236-1172=64 ticks delay, the ARM must send an additional correction bit (before the start bit).
|
|
// The correction bit will be coded as 00010000, i.e. it adds 4 bits to the transmission stream, causing the required delay.
|
|
if(fdt_counter == 11'd740) fdt_indicator = 1'b1; // fdt_indicator is true for 740 <= fdt_counter <= 1148. Ready to buffer data. (?)
|
|
// Shouldn' this be 1236 - 720 = 516? (The mod_sig_buf can buffer 46 data bits,
|
|
// i.e. a maximum delay of 46 * 16 = 720 adc_clk ticks)
|
|
|
|
if(fdt_counter == 11'd1148) // additional 16 (+ eventual n*128) adc_clk_ticks delay will be added by the mod_sig_buf below
|
|
// the remaining 8 ticks delay comes from the 8 ticks timing difference between reseting fdt_counter and the mod_sig_buf clock.
|
|
begin
|
|
if(fdt_elapsed)
|
|
begin
|
|
if(negedge_cnt[3:0] == mod_sig_flip[3:0]) mod_sig_coil <= mod_sig; // start modulating (if mod_sig is already set)
|
|
end
|
|
else
|
|
begin
|
|
mod_sig_flip[3:0] <= negedge_cnt[3:0]; // exact timing of modulation
|
|
mod_sig_coil <= mod_sig; // modulate (if mod_sig is already set)
|
|
fdt_elapsed = 1'b1;
|
|
fdt_indicator = 1'b0;
|
|
|
|
if(~(| mod_sig_ptr[5:0])) mod_sig_ptr <= 6'b001001; // didn't receive a 1 yet. Delay next 1 by n*128 ticks.
|
|
else temp_buffer_reset = 1'b1; // else fix the buffer size at current position
|
|
end
|
|
end
|
|
else
|
|
begin
|
|
fdt_counter <= fdt_counter + 1; // Count until 1148
|
|
end
|
|
|
|
|
|
//-------------------------------------------------------------------------------------------------------------------------------------------
|
|
// Relevant for READER_LISTEN only
|
|
// look for steepest falling and rising edges:
|
|
if (adc_d_filtered > 0)
|
|
begin
|
|
if (adc_d_filtered > rx_mod_falling_edge_max)
|
|
rx_mod_falling_edge_max <= adc_d_filtered;
|
|
end
|
|
else
|
|
begin
|
|
if (-adc_d_filtered > rx_mod_rising_edge_max)
|
|
rx_mod_rising_edge_max <= -adc_d_filtered;
|
|
end
|
|
|
|
// store previous samples for filtering and edge detection:
|
|
adc_d_4 <= adc_d_3;
|
|
adc_d_3 <= adc_d_2;
|
|
adc_d_2 <= adc_d_1;
|
|
adc_d_1 <= adc_d;
|
|
|
|
|
|
|
|
if(& negedge_cnt[3:0]) // == 0xf == 15
|
|
begin
|
|
// Relevant for TAGSIM_MOD only (timing Tag's answer. See above)
|
|
// When there is a dip in the signal and not in (READER_MOD, READER_LISTEN, TAGSIM_MOD)
|
|
if(~after_hysteresis && mod_sig_buf_empty && ~((mod_type == 3'b100) || (mod_type == 3'b011) || (mod_type == 3'b010))) // last condition to prevent reset
|
|
begin
|
|
fdt_counter <= 11'd0;
|
|
fdt_elapsed = 1'b0;
|
|
fdt_indicator = 1'b0;
|
|
temp_buffer_reset = 1'b0;
|
|
mod_sig_ptr <= 6'b000000;
|
|
end
|
|
|
|
// Relevant for READER_LISTEN only
|
|
// detect modulation signal: if modulating, there must be a falling and a rising edge ... and vice versa
|
|
if (rx_mod_falling_edge_max > 6 && rx_mod_rising_edge_max > 6)
|
|
curbit = 1'b1; // modulation
|
|
else
|
|
curbit = 1'b0; // no modulation
|
|
|
|
// prepare next edge detection:
|
|
rx_mod_rising_edge_max <= 0;
|
|
rx_mod_falling_edge_max <= 0;
|
|
|
|
|
|
// What do we communicate to the ARM
|
|
if(mod_type == 3'b001) sendbit = after_hysteresis; // TAGSIM_LISTEN
|
|
else if(mod_type == 3'b010) // TAGSIM_MOD
|
|
begin
|
|
if(fdt_counter > 11'd772) sendbit = mod_sig_coil;
|
|
else sendbit = fdt_indicator;
|
|
end
|
|
else if(mod_type == 3'b011) sendbit = curbit; // READER_LISTEN
|
|
else sendbit = 1'b0; // READER_MOD, SNIFFER
|
|
|
|
end
|
|
|
|
//------------------------------------------------------------------------------------------------------------------------------------------
|
|
// Relevant for SNIFFER mode only. Prepare communication to ARM.
|
|
if(negedge_cnt == 7'd63)
|
|
begin
|
|
if(deep_modulation)
|
|
begin
|
|
to_arm <= {after_hysteresis_prev1,after_hysteresis_prev2,after_hysteresis_prev3,after_hysteresis,1'b0,1'b0,1'b0,1'b0};
|
|
end
|
|
else
|
|
begin
|
|
to_arm <= {after_hysteresis_prev1,after_hysteresis_prev2,after_hysteresis_prev3,after_hysteresis,bit1,bit2,bit3,curbit};
|
|
end
|
|
|
|
negedge_cnt <= 0;
|
|
|
|
end
|
|
else
|
|
begin
|
|
negedge_cnt <= negedge_cnt + 1;
|
|
end
|
|
|
|
if(negedge_cnt == 6'd15)
|
|
begin
|
|
after_hysteresis_prev1 <= after_hysteresis;
|
|
bit1 <= curbit;
|
|
end
|
|
if(negedge_cnt == 6'd31)
|
|
begin
|
|
after_hysteresis_prev2 <= after_hysteresis;
|
|
bit2 <= curbit;
|
|
end
|
|
if(negedge_cnt == 6'd47)
|
|
begin
|
|
after_hysteresis_prev3 <= after_hysteresis;
|
|
bit3 <= curbit;
|
|
end
|
|
|
|
//--------------------------------------------------------------------------------------------------------------------------------------------------------------
|
|
// Relevant in TAGSIM_MOD only. Delay-Line to buffer data and send it at the correct time
|
|
// Note: Data in READER_MOD is fed through this delay line as well.
|
|
if(mod_type != 3'b000) // != SNIFFER
|
|
begin
|
|
if(negedge_cnt[3:0] == 4'b1000) // == 0x8
|
|
begin
|
|
// The modulation signal of the tag. The delay line is only relevant for TAGSIM_MOD, but used in other modes as well.
|
|
// Note: this means that even in READER_MOD, there will be an arbitrary delay depending on the time of a previous reset of fdt_counter and the time and
|
|
// content of the next bit to be transmitted.
|
|
mod_sig_buf[47:0] <= {mod_sig_buf[46:1], ssp_dout, 1'b0}; // shift in new data starting at mod_sig_buf[1]. mod_sig_buf[0] = 0 always.
|
|
if((ssp_dout || (| mod_sig_ptr[5:0])) && ~fdt_elapsed) // buffer a 1 (and all subsequent data) until fdt_counter = 1148 adc_clk ticks.
|
|
if(mod_sig_ptr == 6'b101110) // buffer overflow at 46 - this would mean data loss
|
|
begin
|
|
mod_sig_ptr <= 6'b000000;
|
|
end
|
|
else mod_sig_ptr <= mod_sig_ptr + 1; // increase buffer (= increase delay by 16 adc_clk ticks). ptr always points to first 1.
|
|
else if(fdt_elapsed && ~temp_buffer_reset)
|
|
// fdt_elapsed. If we didn't receive a 1 yet, ptr will be at 9 and not yet fixed. Otherwise temp_buffer_reset will be 1 already.
|
|
begin
|
|
// wait for the next 1 after fdt_elapsed before fixing the delay and starting modulation. This ensures that the response can only happen
|
|
// at intervals of 8 * 16 = 128 adc_clk ticks intervals (as defined in ISO14443-3)
|
|
if(ssp_dout) temp_buffer_reset = 1'b1;
|
|
if(mod_sig_ptr == 6'b000010) mod_sig_ptr <= 6'b001001; // still nothing received, need to go for the next interval
|
|
else mod_sig_ptr <= mod_sig_ptr - 1; // decrease buffer.
|
|
end
|
|
else
|
|
// mod_sig_ptr and therefore the delay is now fixed until fdt_counter is reset (this can happen in SNIFFER and TAGSIM_LISTEN mode only. Note that SNIFFER
|
|
// mode (3'b000) is the default and is active in FPGA_MAJOR_MODE_OFF if no other minor mode is explicitly requested.
|
|
begin
|
|
// don't modulate with the correction bit (which is sent as 00010000, all other bits will come with at least 2 consecutive 1s)
|
|
// side effect: when ptr = 1 it will cancel the first 1 of every block of ones. Note: this would only be the case if we received a 1 just before fdt_elapsed.
|
|
if(~mod_sig_buf[mod_sig_ptr-1] && ~mod_sig_buf[mod_sig_ptr+1]) mod_sig = 1'b0;
|
|
// finally, do the modulation:
|
|
else mod_sig = mod_sig_buf[mod_sig_ptr] & fdt_elapsed;
|
|
end
|
|
end
|
|
end
|
|
|
|
//-----------------------------------------------------------------------------------------------------------------------------------------------------------------------
|
|
// Communication to ARM (SSP Clock and data)
|
|
// SNIFFER mode (ssp_clk = adc_clk / 8, ssp_frame clock = adc_clk / 64)):
|
|
if(mod_type == 3'b000)
|
|
begin
|
|
if(negedge_cnt[2:0] == 3'b100)
|
|
ssp_clk <= 1'b0;
|
|
|
|
if(negedge_cnt[2:0] == 3'b000)
|
|
begin
|
|
ssp_clk <= 1'b1;
|
|
// Don't shift if we just loaded new data, obviously.
|
|
if(negedge_cnt != 7'd0)
|
|
begin
|
|
to_arm[7:1] <= to_arm[6:0];
|
|
end
|
|
end
|
|
|
|
if(negedge_cnt[5:4] == 2'b00)
|
|
ssp_frame = 1'b1;
|
|
else
|
|
ssp_frame = 1'b0;
|
|
|
|
bit_to_arm = to_arm[7];
|
|
end
|
|
else
|
|
//-----------------------------------------------------------------------------------------------------------------------------------------------------------------------
|
|
// Communication to ARM (SSP Clock and data)
|
|
// all other modes (ssp_clk = adc_clk / 16, ssp_frame clock = adc_clk / 128):
|
|
begin
|
|
if(negedge_cnt[3:0] == 4'b1000) ssp_clk <= 1'b0;
|
|
|
|
if(negedge_cnt[3:0] == 4'b0111)
|
|
begin
|
|
if(ssp_frame_counter == 3'd7) ssp_frame_counter <= 3'd0;
|
|
else ssp_frame_counter <= ssp_frame_counter + 1;
|
|
end
|
|
|
|
if(negedge_cnt[3:0] == 4'b0000)
|
|
begin
|
|
ssp_clk <= 1'b1;
|
|
end
|
|
|
|
ssp_frame = (ssp_frame_counter == 3'd7);
|
|
|
|
bit_to_arm = sendbit;
|
|
end
|
|
|
|
end
|
|
|
|
assign ssp_din = bit_to_arm;
|
|
|
|
|
|
// Modulating carrier (adc_clk/16, for TAGSIM_MOD only). Will be 0 for other modes.
|
|
wire modulating_carrier;
|
|
assign modulating_carrier = (mod_sig_coil & negedge_cnt[3] & (mod_type == 3'b010)); // in TAGSIM_MOD only. Otherwise always 0.
|
|
|
|
// for READER_MOD only: drop carrier for mod_sig_coil==1 (pause), READER_LISTEN: carrier always on, others: carrier always off
|
|
assign pwr_hi = (ck_1356megb & (((mod_type == 3'b100) & ~mod_sig_coil) || (mod_type == 3'b011)));
|
|
|
|
|
|
// Enable HF antenna drivers:
|
|
assign pwr_oe1 = 1'b0;
|
|
assign pwr_oe3 = 1'b0;
|
|
|
|
// TAGSIM_MOD: short circuit antenna with different resistances (modulated by modulating_carrier)
|
|
// for pwr_oe4 = 1 (tristate): antenna load = 10k || 33 = 32,9 Ohms
|
|
// for pwr_oe4 = 0 (active): antenna load = 10k || 33 || 33 = 16,5 Ohms
|
|
assign pwr_oe4 = modulating_carrier;
|
|
|
|
// This is all LF, so doesn't matter.
|
|
assign pwr_oe2 = 1'b0;
|
|
assign pwr_lo = 1'b0;
|
|
|
|
|
|
assign dbg = negedge_cnt[3];
|
|
|
|
endmodule
|