proxmark3/client/cmdlfem4x.c
marshmellow42 217cfb6b29 fix lf search bugs when no tag is on antenna
cotag read could enter endless loop, now cancels if the next bit doesn't
appear

em4x05 detection would loop due to a threshold never being met, now has
a dump out after 1000 samples tested.

fixed some indenting in hitag2 while i was reviewing that code for
potential endless loops...
2017-11-10 15:57:55 -05:00

1363 lines
41 KiB
C

//-----------------------------------------------------------------------------
// Copyright (C) 2010 iZsh <izsh at fail0verflow.com>
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// Low frequency EM4x commands
//-----------------------------------------------------------------------------
#include <stdio.h>
#include <string.h>
#include <inttypes.h>
#include "cmdlfem4x.h"
#include "proxmark3.h"
#include "ui.h"
#include "util.h"
#include "data.h"
#include "graph.h"
#include "cmdparser.h"
#include "cmddata.h"
#include "cmdlf.h"
#include "cmdmain.h"
#include "lfdemod.h"
#include "protocols.h"
#include "util_posix.h"
uint64_t g_em410xId=0;
static int CmdHelp(const char *Cmd);
void ConstructEM410xEmulGraph(const char *uid,const uint8_t clock);
int CmdEMdemodASK(const char *Cmd)
{
char cmdp = param_getchar(Cmd, 0);
int findone = (cmdp == '1') ? 1 : 0;
UsbCommand c={CMD_EM410X_DEMOD};
c.arg[0]=findone;
SendCommand(&c);
return 0;
}
//by marshmellow
//print 64 bit EM410x ID in multiple formats
void printEM410x(uint32_t hi, uint64_t id)
{
if (id || hi){
uint64_t iii=1;
uint64_t id2lo=0;
uint32_t ii=0;
uint32_t i=0;
for (ii=5; ii>0;ii--){
for (i=0;i<8;i++){
id2lo=(id2lo<<1LL) | ((id & (iii << (i+((ii-1)*8)))) >> (i+((ii-1)*8)));
}
}
if (hi){
//output 88 bit em id
PrintAndLog("\nEM TAG ID : %06X%016" PRIX64, hi, id);
} else{
//output 40 bit em id
PrintAndLog("\nEM TAG ID : %010" PRIX64, id);
PrintAndLog("\nPossible de-scramble patterns");
PrintAndLog("Unique TAG ID : %010" PRIX64, id2lo);
PrintAndLog("HoneyWell IdentKey {");
PrintAndLog("DEZ 8 : %08" PRIu64,id & 0xFFFFFF);
PrintAndLog("DEZ 10 : %010" PRIu64,id & 0xFFFFFFFF);
PrintAndLog("DEZ 5.5 : %05lld.%05" PRIu64,(id>>16LL) & 0xFFFF,(id & 0xFFFF));
PrintAndLog("DEZ 3.5A : %03lld.%05" PRIu64,(id>>32ll),(id & 0xFFFF));
PrintAndLog("DEZ 3.5B : %03lld.%05" PRIu64,(id & 0xFF000000) >> 24,(id & 0xFFFF));
PrintAndLog("DEZ 3.5C : %03lld.%05" PRIu64,(id & 0xFF0000) >> 16,(id & 0xFFFF));
PrintAndLog("DEZ 14/IK2 : %014" PRIu64,id);
PrintAndLog("DEZ 15/IK3 : %015" PRIu64,id2lo);
PrintAndLog("DEZ 20/ZK : %02" PRIu64 "%02" PRIu64 "%02" PRIu64 "%02" PRIu64 "%02" PRIu64 "%02" PRIu64 "%02" PRIu64 "%02" PRIu64 "%02" PRIu64 "%02" PRIu64,
(id2lo & 0xf000000000) >> 36,
(id2lo & 0x0f00000000) >> 32,
(id2lo & 0x00f0000000) >> 28,
(id2lo & 0x000f000000) >> 24,
(id2lo & 0x0000f00000) >> 20,
(id2lo & 0x00000f0000) >> 16,
(id2lo & 0x000000f000) >> 12,
(id2lo & 0x0000000f00) >> 8,
(id2lo & 0x00000000f0) >> 4,
(id2lo & 0x000000000f)
);
uint64_t paxton = (((id>>32) << 24) | (id & 0xffffff)) + 0x143e00;
PrintAndLog("}\nOther : %05" PRIu64 "_%03" PRIu64 "_%08" PRIu64 "",(id&0xFFFF),((id>>16LL) & 0xFF),(id & 0xFFFFFF));
PrintAndLog("Pattern Paxton : %" PRIu64 " [0x%" PRIX64 "]", paxton, paxton);
uint32_t p1id = (id & 0xFFFFFF);
uint8_t arr[32] = {0x00};
int i =0;
int j = 23;
for (; i < 24; ++i, --j ){
arr[i] = (p1id >> i) & 1;
}
uint32_t p1 = 0;
p1 |= arr[23] << 21;
p1 |= arr[22] << 23;
p1 |= arr[21] << 20;
p1 |= arr[20] << 22;
p1 |= arr[19] << 18;
p1 |= arr[18] << 16;
p1 |= arr[17] << 19;
p1 |= arr[16] << 17;
p1 |= arr[15] << 13;
p1 |= arr[14] << 15;
p1 |= arr[13] << 12;
p1 |= arr[12] << 14;
p1 |= arr[11] << 6;
p1 |= arr[10] << 2;
p1 |= arr[9] << 7;
p1 |= arr[8] << 1;
p1 |= arr[7] << 0;
p1 |= arr[6] << 8;
p1 |= arr[5] << 11;
p1 |= arr[4] << 3;
p1 |= arr[3] << 10;
p1 |= arr[2] << 4;
p1 |= arr[1] << 5;
p1 |= arr[0] << 9;
PrintAndLog("Pattern 1 : %d [0x%X]", p1, p1);
uint16_t sebury1 = id & 0xFFFF;
uint8_t sebury2 = (id >> 16) & 0x7F;
uint32_t sebury3 = id & 0x7FFFFF;
PrintAndLog("Pattern Sebury : %d %d %d [0x%X 0x%X 0x%X]", sebury1, sebury2, sebury3, sebury1, sebury2, sebury3);
}
}
return;
}
/* Read the ID of an EM410x tag.
* Format:
* 1111 1111 1 <-- standard non-repeatable header
* XXXX [row parity bit] <-- 10 rows of 5 bits for our 40 bit tag ID
* ....
* CCCC <-- each bit here is parity for the 10 bits above in corresponding column
* 0 <-- stop bit, end of tag
*/
int AskEm410xDecode(bool verbose, uint32_t *hi, uint64_t *lo )
{
size_t idx = 0;
uint8_t BitStream[512]={0};
size_t BitLen = sizeof(BitStream);
if ( !getDemodBuf(BitStream, &BitLen) ) return 0;
if (Em410xDecode(BitStream, &BitLen, &idx, hi, lo)) {
//set GraphBuffer for clone or sim command
setDemodBuf(DemodBuffer, (BitLen==40) ? 64 : 128, idx+1);
setClockGrid(g_DemodClock, g_DemodStartIdx + ((idx+1)*g_DemodClock));
if (g_debugMode) {
PrintAndLog("DEBUG: idx: %d, Len: %d, Printing Demod Buffer:", idx, BitLen);
printDemodBuff();
}
if (verbose) {
PrintAndLog("EM410x pattern found: ");
printEM410x(*hi, *lo);
g_em410xId = *lo;
}
return 1;
}
return 0;
}
//askdemod then call Em410xdecode
int AskEm410xDemod(const char *Cmd, uint32_t *hi, uint64_t *lo, bool verbose)
{
bool st = true;
if (!ASKDemod_ext(Cmd, false, false, 1, &st)) return 0;
return AskEm410xDecode(verbose, hi, lo);
}
//by marshmellow
//takes 3 arguments - clock, invert and maxErr as integers
//attempts to demodulate ask while decoding manchester
//prints binary found and saves in graphbuffer for further commands
int CmdAskEM410xDemod(const char *Cmd)
{
char cmdp = param_getchar(Cmd, 0);
if (strlen(Cmd) > 10 || cmdp == 'h' || cmdp == 'H') {
PrintAndLog("Usage: lf em 410xdemod [clock] <0|1> [maxError]");
PrintAndLog(" [set clock as integer] optional, if not set, autodetect.");
PrintAndLog(" <invert>, 1 for invert output");
PrintAndLog(" [set maximum allowed errors], default = 100.");
PrintAndLog("");
PrintAndLog(" sample: lf em 410xdemod = demod an EM410x Tag ID from GraphBuffer");
PrintAndLog(" : lf em 410xdemod 32 = demod an EM410x Tag ID from GraphBuffer using a clock of RF/32");
PrintAndLog(" : lf em 410xdemod 32 1 = demod an EM410x Tag ID from GraphBuffer using a clock of RF/32 and inverting data");
PrintAndLog(" : lf em 410xdemod 1 = demod an EM410x Tag ID from GraphBuffer while inverting data");
PrintAndLog(" : lf em 410xdemod 64 1 0 = demod an EM410x Tag ID from GraphBuffer using a clock of RF/64 and inverting data and allowing 0 demod errors");
return 0;
}
uint64_t lo = 0;
uint32_t hi = 0;
return AskEm410xDemod(Cmd, &hi, &lo, true);
}
int usage_lf_em410x_sim(void) {
PrintAndLog("Simulating EM410x tag");
PrintAndLog("");
PrintAndLog("Usage: lf em 410xsim [h] <uid> <clock>");
PrintAndLog("Options:");
PrintAndLog(" h - this help");
PrintAndLog(" uid - uid (10 HEX symbols)");
PrintAndLog(" clock - clock (32|64) (optional)");
PrintAndLog("samples:");
PrintAndLog(" lf em 410xsim 0F0368568B");
PrintAndLog(" lf em 410xsim 0F0368568B 32");
return 0;
}
// Construct the graph for emulating an EM410X tag
void ConstructEM410xEmulGraph(const char *uid,const uint8_t clock)
{
int i, n, j, binary[4], parity[4];
/* clear our graph */
ClearGraph(0);
/* write 9 start bits */
for (i = 0; i < 9; i++)
AppendGraph(0, clock, 1);
/* for each hex char */
parity[0] = parity[1] = parity[2] = parity[3] = 0;
for (i = 0; i < 10; i++){
/* read each hex char */
sscanf(&uid[i], "%1x", &n);
for (j = 3; j >= 0; j--, n/= 2)
binary[j] = n % 2;
/* append each bit */
AppendGraph(0, clock, binary[0]);
AppendGraph(0, clock, binary[1]);
AppendGraph(0, clock, binary[2]);
AppendGraph(0, clock, binary[3]);
/* append parity bit */
AppendGraph(0, clock, binary[0] ^ binary[1] ^ binary[2] ^ binary[3]);
/* keep track of column parity */
parity[0] ^= binary[0];
parity[1] ^= binary[1];
parity[2] ^= binary[2];
parity[3] ^= binary[3];
}
/* parity columns */
AppendGraph(0, clock, parity[0]);
AppendGraph(0, clock, parity[1]);
AppendGraph(0, clock, parity[2]);
AppendGraph(0, clock, parity[3]);
/* stop bit */
AppendGraph(1, clock, 0);
}
// emulate an EM410X tag
int CmdEM410xSim(const char *Cmd)
{
char cmdp = param_getchar(Cmd, 0);
uint8_t uid[5] = {0x00};
if (cmdp == 'h' || cmdp == 'H') return usage_lf_em410x_sim();
/* clock is 64 in EM410x tags */
uint8_t clock = 64;
if (param_gethex(Cmd, 0, uid, 10)) {
PrintAndLog("UID must include 10 HEX symbols");
return 0;
}
param_getdec(Cmd,1, &clock);
PrintAndLog("Starting simulating UID %02X%02X%02X%02X%02X clock: %d", uid[0],uid[1],uid[2],uid[3],uid[4],clock);
PrintAndLog("Press pm3-button to abort simulation");
ConstructEM410xEmulGraph(Cmd, clock);
CmdLFSim("0"); //240 start_gap.
return 0;
}
int usage_lf_em410x_brute(void) {
PrintAndLog("Bruteforcing by emulating EM410x tag");
PrintAndLog("");
PrintAndLog("Usage: lf em 410xbrute [h] ids.txt [d 2000] [c clock]");
PrintAndLog("Options:");
PrintAndLog(" h - this help");
PrintAndLog(" ids.txt - file with UIDs in HEX format, one per line");
PrintAndLog(" d (2000) - pause delay in milliseconds between UIDs simulation, default 1000 ms (optional)");
PrintAndLog(" c (32) - clock (32|64), default 64 (optional)");
PrintAndLog("samples:");
PrintAndLog(" lf em 410xbrute ids.txt");
PrintAndLog(" lf em 410xbrute ids.txt c 32");
PrintAndLog(" lf em 410xbrute ids.txt d 3000");
PrintAndLog(" lf em 410xbrute ids.txt d 3000 c 32");
return 0;
}
int CmdEM410xBrute(const char *Cmd)
{
char filename[FILE_PATH_SIZE]={0};
FILE *f = NULL;
char buf[11];
uint32_t uidcnt = 0;
uint8_t stUidBlock = 20;
uint8_t *uidBlock = NULL, *p = NULL;
int ch;
uint8_t uid[5] = {0x00};
/* clock is 64 in EM410x tags */
uint8_t clock = 64;
/* default pause time: 1 second */
uint32_t delay = 1000;
char cmdp = param_getchar(Cmd, 0);
if (cmdp == 'h' || cmdp == 'H') return usage_lf_em410x_brute();
cmdp = param_getchar(Cmd, 1);
if (cmdp == 'd' || cmdp == 'D') {
delay = param_get32ex(Cmd, 2, 1000, 10);
param_getdec(Cmd, 4, &clock);
} else if (cmdp == 'c' || cmdp == 'C') {
param_getdec(Cmd, 2, &clock);
delay = param_get32ex(Cmd, 4, 1000, 10);
}
param_getstr(Cmd, 0, filename);
uidBlock = calloc(stUidBlock, 5);
if (uidBlock == NULL) return 1;
if (strlen(filename) > 0) {
if ((f = fopen(filename, "r")) == NULL) {
PrintAndLog("Error: Could not open UIDs file [%s]",filename);
free(uidBlock);
return 1;
}
} else {
PrintAndLog("Error: Please specify a filename");
free(uidBlock);
return 1;
}
while( fgets(buf, sizeof(buf), f) ) {
if (strlen(buf) < 10 || buf[9] == '\n') continue;
while (fgetc(f) != '\n' && !feof(f)); //goto next line
//The line start with # is comment, skip
if( buf[0]=='#' ) continue;
if (param_gethex(buf, 0, uid, 10)) {
PrintAndLog("UIDs must include 10 HEX symbols");
free(uidBlock);
fclose(f);
return 1;
}
buf[10] = 0;
if ( stUidBlock - uidcnt < 2) {
p = realloc(uidBlock, 5*(stUidBlock+=10));
if (!p) {
PrintAndLog("Cannot allocate memory for UIDs");
free(uidBlock);
fclose(f);
return 1;
}
uidBlock = p;
}
memset(uidBlock + 5 * uidcnt, 0, 5);
num_to_bytes(strtoll(buf, NULL, 16), 5, uidBlock + 5*uidcnt);
uidcnt++;
memset(buf, 0, sizeof(buf));
}
fclose(f);
if (uidcnt == 0) {
PrintAndLog("No UIDs found in file");
free(uidBlock);
return 1;
}
PrintAndLog("Loaded %d UIDs from %s, pause delay: %d ms", uidcnt, filename, delay);
// loop
for(uint32_t c = 0; c < uidcnt; ++c ) {
char testuid[11];
testuid[10] = 0;
if (ukbhit()) {
ch = getchar();
(void)ch;
printf("\nAborted via keyboard!\n");
free(uidBlock);
return 0;
}
sprintf(testuid, "%010" PRIX64, bytes_to_num(uidBlock + 5*c, 5));
PrintAndLog("Bruteforce %d / %d: simulating UID %s, clock %d", c + 1, uidcnt, testuid, clock);
ConstructEM410xEmulGraph(testuid, clock);
CmdLFSim("0"); //240 start_gap.
msleep(delay);
}
free(uidBlock);
return 0;
}
/* Function is equivalent of lf read + data samples + em410xread
* looped until an EM410x tag is detected
*
* Why is CmdSamples("16000")?
* TBD: Auto-grow sample size based on detected sample rate. IE: If the
* rate gets lower, then grow the number of samples
* Changed by martin, 4000 x 4 = 16000,
* see http://www.proxmark.org/forum/viewtopic.php?pid=7235#p7235
*
* EDIT -- capture enough to get 2 complete preambles at the slowest data rate known to be used (rf/64) (64*64*2+9 = 8201) marshmellow
*/
int CmdEM410xWatch(const char *Cmd)
{
do {
if (ukbhit()) {
printf("\naborted via keyboard!\n");
break;
}
lf_read(true, 8201);
} while (!CmdAskEM410xDemod(""));
return 0;
}
//currently only supports manchester modulations
int CmdEM410xWatchnSpoof(const char *Cmd)
{
CmdEM410xWatch(Cmd);
PrintAndLog("# Replaying captured ID: %010"PRIx64, g_em410xId);
CmdLFaskSim("");
return 0;
}
int CmdEM410xWrite(const char *Cmd)
{
uint64_t id = 0xFFFFFFFFFFFFFFFF; // invalid id value
int card = 0xFF; // invalid card value
unsigned int clock = 0; // invalid clock value
sscanf(Cmd, "%" SCNx64 " %d %d", &id, &card, &clock);
// Check ID
if (id == 0xFFFFFFFFFFFFFFFF) {
PrintAndLog("Error! ID is required.\n");
return 0;
}
if (id >= 0x10000000000) {
PrintAndLog("Error! Given EM410x ID is longer than 40 bits.\n");
return 0;
}
// Check Card
if (card == 0xFF) {
PrintAndLog("Error! Card type required.\n");
return 0;
}
if (card < 0) {
PrintAndLog("Error! Bad card type selected.\n");
return 0;
}
// Check Clock
// Default: 64
if (clock == 0)
clock = 64;
// Allowed clock rates: 16, 32, 40 and 64
if ((clock != 16) && (clock != 32) && (clock != 64) && (clock != 40)) {
PrintAndLog("Error! Clock rate %d not valid. Supported clock rates are 16, 32, 40 and 64.\n", clock);
return 0;
}
if (card == 1) {
PrintAndLog("Writing %s tag with UID 0x%010" PRIx64 " (clock rate: %d)", "T55x7", id, clock);
// NOTE: We really should pass the clock in as a separate argument, but to
// provide for backwards-compatibility for older firmware, and to avoid
// having to add another argument to CMD_EM410X_WRITE_TAG, we just store
// the clock rate in bits 8-15 of the card value
card = (card & 0xFF) | ((clock << 8) & 0xFF00);
} else if (card == 0) {
PrintAndLog("Writing %s tag with UID 0x%010" PRIx64, "T5555", id, clock);
card = (card & 0xFF) | ((clock << 8) & 0xFF00);
} else {
PrintAndLog("Error! Bad card type selected.\n");
return 0;
}
UsbCommand c = {CMD_EM410X_WRITE_TAG, {card, (uint32_t)(id >> 32), (uint32_t)id}};
SendCommand(&c);
return 0;
}
//**************** Start of EM4x50 Code ************************
bool EM_EndParityTest(uint8_t *BitStream, size_t size, uint8_t rows, uint8_t cols, uint8_t pType)
{
if (rows*cols>size) return false;
uint8_t colP=0;
//assume last col is a parity and do not test
for (uint8_t colNum = 0; colNum < cols-1; colNum++) {
for (uint8_t rowNum = 0; rowNum < rows; rowNum++) {
colP ^= BitStream[(rowNum*cols)+colNum];
}
if (colP != pType) return false;
}
return true;
}
bool EM_ByteParityTest(uint8_t *BitStream, size_t size, uint8_t rows, uint8_t cols, uint8_t pType)
{
if (rows*cols>size) return false;
uint8_t rowP=0;
//assume last row is a parity row and do not test
for (uint8_t rowNum = 0; rowNum < rows-1; rowNum++) {
for (uint8_t colNum = 0; colNum < cols; colNum++) {
rowP ^= BitStream[(rowNum*cols)+colNum];
}
if (rowP != pType) return false;
}
return true;
}
uint32_t OutputEM4x50_Block(uint8_t *BitStream, size_t size, bool verbose, bool pTest)
{
if (size<45) return 0;
uint32_t code = bytebits_to_byte(BitStream,8);
code = code<<8 | bytebits_to_byte(BitStream+9,8);
code = code<<8 | bytebits_to_byte(BitStream+18,8);
code = code<<8 | bytebits_to_byte(BitStream+27,8);
if (verbose || g_debugMode){
for (uint8_t i = 0; i<5; i++){
if (i == 4) PrintAndLog(""); //parity byte spacer
PrintAndLog("%d%d%d%d%d%d%d%d %d -> 0x%02x",
BitStream[i*9],
BitStream[i*9+1],
BitStream[i*9+2],
BitStream[i*9+3],
BitStream[i*9+4],
BitStream[i*9+5],
BitStream[i*9+6],
BitStream[i*9+7],
BitStream[i*9+8],
bytebits_to_byte(BitStream+i*9,8)
);
}
if (pTest)
PrintAndLog("Parity Passed");
else
PrintAndLog("Parity Failed");
}
return code;
}
/* Read the transmitted data of an EM4x50 tag from the graphbuffer
* Format:
*
* XXXXXXXX [row parity bit (even)] <- 8 bits plus parity
* XXXXXXXX [row parity bit (even)] <- 8 bits plus parity
* XXXXXXXX [row parity bit (even)] <- 8 bits plus parity
* XXXXXXXX [row parity bit (even)] <- 8 bits plus parity
* CCCCCCCC <- column parity bits
* 0 <- stop bit
* LW <- Listen Window
*
* This pattern repeats for every block of data being transmitted.
* Transmission starts with two Listen Windows (LW - a modulated
* pattern of 320 cycles each (32/32/128/64/64)).
*
* Note that this data may or may not be the UID. It is whatever data
* is stored in the blocks defined in the control word First and Last
* Word Read values. UID is stored in block 32.
*/
//completed by Marshmellow
int EM4x50Read(const char *Cmd, bool verbose)
{
uint8_t fndClk[] = {8,16,32,40,50,64,128};
int clk = 0;
int invert = 0;
int tol = 0;
int i, j, startblock, skip, block, start, end, low, high, minClk;
bool complete = false;
int tmpbuff[MAX_GRAPH_TRACE_LEN / 64];
uint32_t Code[6];
char tmp[6];
char tmp2[20];
int phaseoff;
high = low = 0;
memset(tmpbuff, 0, sizeof(tmpbuff));
// get user entry if any
sscanf(Cmd, "%i %i", &clk, &invert);
// first get high and low values
for (i = 0; i < GraphTraceLen; i++) {
if (GraphBuffer[i] > high)
high = GraphBuffer[i];
else if (GraphBuffer[i] < low)
low = GraphBuffer[i];
}
i = 0;
j = 0;
minClk = 255;
// get to first full low to prime loop and skip incomplete first pulse
while ((GraphBuffer[i] < high) && (i < GraphTraceLen))
++i;
while ((GraphBuffer[i] > low) && (i < GraphTraceLen))
++i;
skip = i;
// populate tmpbuff buffer with pulse lengths
while (i < GraphTraceLen) {
// measure from low to low
while ((GraphBuffer[i] > low) && (i < GraphTraceLen))
++i;
start= i;
while ((GraphBuffer[i] < high) && (i < GraphTraceLen))
++i;
while ((GraphBuffer[i] > low) && (i < GraphTraceLen))
++i;
if (j>=(MAX_GRAPH_TRACE_LEN/64)) {
break;
}
tmpbuff[j++]= i - start;
if (i-start < minClk && i < GraphTraceLen) {
minClk = i - start;
}
}
// set clock
if (!clk) {
for (uint8_t clkCnt = 0; clkCnt<7; clkCnt++) {
tol = fndClk[clkCnt]/8;
if (minClk >= fndClk[clkCnt]-tol && minClk <= fndClk[clkCnt]+1) {
clk=fndClk[clkCnt];
break;
}
}
if (!clk) return 0;
} else tol = clk/8;
// look for data start - should be 2 pairs of LW (pulses of clk*3,clk*2)
start = -1;
for (i= 0; i < j - 4 ; ++i) {
skip += tmpbuff[i];
if (tmpbuff[i] >= clk*3-tol && tmpbuff[i] <= clk*3+tol) //3 clocks
if (tmpbuff[i+1] >= clk*2-tol && tmpbuff[i+1] <= clk*2+tol) //2 clocks
if (tmpbuff[i+2] >= clk*3-tol && tmpbuff[i+2] <= clk*3+tol) //3 clocks
if (tmpbuff[i+3] >= clk-tol) //1.5 to 2 clocks - depends on bit following
{
start= i + 4;
break;
}
}
startblock = i + 4;
// skip over the remainder of LW
skip += tmpbuff[i+1] + tmpbuff[i+2] + clk;
if (tmpbuff[i+3]>clk)
phaseoff = tmpbuff[i+3]-clk;
else
phaseoff = 0;
// now do it again to find the end
end = skip;
for (i += 3; i < j - 4 ; ++i) {
end += tmpbuff[i];
if (tmpbuff[i] >= clk*3-tol && tmpbuff[i] <= clk*3+tol) //3 clocks
if (tmpbuff[i+1] >= clk*2-tol && tmpbuff[i+1] <= clk*2+tol) //2 clocks
if (tmpbuff[i+2] >= clk*3-tol && tmpbuff[i+2] <= clk*3+tol) //3 clocks
if (tmpbuff[i+3] >= clk-tol) //1.5 to 2 clocks - depends on bit following
{
complete= true;
break;
}
}
end = i;
// report back
if (verbose || g_debugMode) {
if (start >= 0) {
PrintAndLog("\nNote: one block = 50 bits (32 data, 12 parity, 6 marker)");
} else {
PrintAndLog("No data found!, clock tried:%d",clk);
PrintAndLog("Try again with more samples.");
PrintAndLog(" or after a 'data askedge' command to clean up the read");
return 0;
}
} else if (start < 0) return 0;
start = skip;
snprintf(tmp2, sizeof(tmp2),"%d %d 1000 %d", clk, invert, clk*47);
// save GraphBuffer - to restore it later
save_restoreGB(GRAPH_SAVE);
// get rid of leading crap
snprintf(tmp, sizeof(tmp), "%i", skip);
CmdLtrim(tmp);
bool pTest;
bool AllPTest = true;
// now work through remaining buffer printing out data blocks
block = 0;
i = startblock;
while (block < 6) {
if (verbose || g_debugMode) PrintAndLog("\nBlock %i:", block);
skip = phaseoff;
// look for LW before start of next block
for ( ; i < j - 4 ; ++i) {
skip += tmpbuff[i];
if (tmpbuff[i] >= clk*3-tol && tmpbuff[i] <= clk*3+tol)
if (tmpbuff[i+1] >= clk-tol)
break;
}
if (i >= j-4) break; //next LW not found
skip += clk;
if (tmpbuff[i+1]>clk)
phaseoff = tmpbuff[i+1]-clk;
else
phaseoff = 0;
i += 2;
if (ASKDemod(tmp2, false, false, 1) < 1) {
save_restoreGB(GRAPH_RESTORE);
return 0;
}
//set DemodBufferLen to just one block
DemodBufferLen = skip/clk;
//test parities
pTest = EM_ByteParityTest(DemodBuffer,DemodBufferLen,5,9,0);
pTest &= EM_EndParityTest(DemodBuffer,DemodBufferLen,5,9,0);
AllPTest &= pTest;
//get output
Code[block] = OutputEM4x50_Block(DemodBuffer,DemodBufferLen,verbose, pTest);
if (g_debugMode) PrintAndLog("\nskipping %d samples, bits:%d", skip, skip/clk);
//skip to start of next block
snprintf(tmp,sizeof(tmp),"%i",skip);
CmdLtrim(tmp);
block++;
if (i >= end) break; //in case chip doesn't output 6 blocks
}
//print full code:
if (verbose || g_debugMode || AllPTest){
if (!complete) {
PrintAndLog("*** Warning!");
PrintAndLog("Partial data - no end found!");
PrintAndLog("Try again with more samples.");
}
PrintAndLog("Found data at sample: %i - using clock: %i", start, clk);
end = block;
for (block=0; block < end; block++){
PrintAndLog("Block %d: %08x",block,Code[block]);
}
if (AllPTest) {
PrintAndLog("Parities Passed");
} else {
PrintAndLog("Parities Failed");
PrintAndLog("Try cleaning the read samples with 'data askedge'");
}
}
//restore GraphBuffer
save_restoreGB(GRAPH_RESTORE);
return (int)AllPTest;
}
int CmdEM4x50Read(const char *Cmd)
{
return EM4x50Read(Cmd, true);
}
//**************** Start of EM4x05/EM4x69 Code ************************
int usage_lf_em_read(void) {
PrintAndLog("Read EM4x05/EM4x69. Tag must be on antenna. ");
PrintAndLog("");
PrintAndLog("Usage: lf em 4x05readword [h] <address> <pwd>");
PrintAndLog("Options:");
PrintAndLog(" h - this help");
PrintAndLog(" address - memory address to read. (0-15)");
PrintAndLog(" pwd - password (hex) (optional)");
PrintAndLog("samples:");
PrintAndLog(" lf em 4x05readword 1");
PrintAndLog(" lf em 4x05readword 1 11223344");
return 0;
}
// for command responses from em4x05 or em4x69
// download samples from device and copy them to the Graphbuffer
bool downloadSamplesEM() {
// 8 bit preamble + 32 bit word response (max clock (128) * 40bits = 5120 samples)
uint8_t got[6000];
GetFromBigBuf(got, sizeof(got), 0);
if ( !WaitForResponseTimeout(CMD_ACK, NULL, 4000) ) {
PrintAndLog("command execution time out");
return false;
}
setGraphBuf(got, sizeof(got));
return true;
}
bool EM4x05testDemodReadData(uint32_t *word, bool readCmd) {
// em4x05/em4x69 command response preamble is 00001010
// skip first two 0 bits as they might have been missed in the demod
uint8_t preamble[] = {0,0,1,0,1,0};
size_t startIdx = 0;
// set size to 20 to only test first 14 positions for the preamble or less if not a read command
size_t size = (readCmd) ? 20 : 11;
// sanity check
size = (size > DemodBufferLen) ? DemodBufferLen : size;
// test preamble
if ( !preambleSearchEx(DemodBuffer, preamble, sizeof(preamble), &size, &startIdx, true) ) {
if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305 preamble not found :: %d", startIdx);
return false;
}
// if this is a readword command, get the read bytes and test the parities
if (readCmd) {
if (!EM_EndParityTest(DemodBuffer + startIdx + sizeof(preamble), 45, 5, 9, 0)) {
if (g_debugMode) PrintAndLog("DEBUG: Error - End Parity check failed");
return false;
}
// test for even parity bits and remove them. (leave out the end row of parities so 36 bits)
if ( removeParity(DemodBuffer, startIdx + sizeof(preamble),9,0,36) == 0 ) {
if (g_debugMode) PrintAndLog("DEBUG: Error - Parity not detected");
return false;
}
setDemodBuf(DemodBuffer, 32, 0);
//setClockGrid(0,0);
*word = bytebits_to_byteLSBF(DemodBuffer, 32);
}
return true;
}
// FSK, PSK, ASK/MANCHESTER, ASK/BIPHASE, ASK/DIPHASE
// should cover 90% of known used configs
// the rest will need to be manually demoded for now...
int demodEM4x05resp(uint32_t *word, bool readCmd) {
int ans = 0;
// test for FSK wave (easiest to 99% ID)
if (GetFskClock("", false, false)) {
//valid fsk clocks found
ans = FSKrawDemod("0 0", false);
if (!ans) {
if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305: FSK Demod failed, ans: %d", ans);
} else {
if (EM4x05testDemodReadData(word, readCmd)) {
return 1;
}
}
}
// PSK clocks should be easy to detect ( but difficult to demod a non-repeating pattern... )
ans = GetPskClock("", false, false);
if (ans>0) {
//try psk1
ans = PSKDemod("0 0 6", false);
if (!ans) {
if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305: PSK1 Demod failed, ans: %d", ans);
} else {
if (EM4x05testDemodReadData(word, readCmd)) {
return 1;
} else {
//try psk2
psk1TOpsk2(DemodBuffer, DemodBufferLen);
if (EM4x05testDemodReadData(word, readCmd)) {
return 1;
}
}
//try psk1 inverted
ans = PSKDemod("0 1 6", false);
if (!ans) {
if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305: PSK1 Demod failed, ans: %d", ans);
} else {
if (EM4x05testDemodReadData(word, readCmd)) {
return 1;
} else {
//try psk2
psk1TOpsk2(DemodBuffer, DemodBufferLen);
if (EM4x05testDemodReadData(word, readCmd)) {
return 1;
}
}
}
}
}
// manchester is more common than biphase... try first
bool stcheck = false;
// try manchester - NOTE: ST only applies to T55x7 tags.
ans = ASKDemod_ext("0,0,1", false, false, 1, &stcheck);
if (!ans) {
if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305: ASK/Manchester Demod failed, ans: %d", ans);
} else {
if (EM4x05testDemodReadData(word, readCmd)) {
return 1;
}
}
//try biphase
ans = ASKbiphaseDemod("0 0 1", false);
if (!ans) {
if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305: ASK/biphase Demod failed, ans: %d", ans);
} else {
if (EM4x05testDemodReadData(word, readCmd)) {
return 1;
}
}
//try diphase (differential biphase or inverted)
ans = ASKbiphaseDemod("0 1 1", false);
if (!ans) {
if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305: ASK/biphase Demod failed, ans: %d", ans);
} else {
if (EM4x05testDemodReadData(word, readCmd)) {
return 1;
}
}
return -1;
}
int EM4x05ReadWord_ext(uint8_t addr, uint32_t pwd, bool usePwd, uint32_t *wordData) {
UsbCommand c = {CMD_EM4X_READ_WORD, {addr, pwd, usePwd}};
clearCommandBuffer();
SendCommand(&c);
UsbCommand resp;
if (!WaitForResponseTimeout(CMD_ACK, &resp, 2500)){
PrintAndLog("Command timed out");
return -1;
}
if ( !downloadSamplesEM() ) {
return -1;
}
int testLen = (GraphTraceLen < 1000) ? GraphTraceLen : 1000;
if (graphJustNoise(GraphBuffer, testLen)) {
return -1;
}
//attempt demod:
return demodEM4x05resp(wordData, true);
}
int EM4x05ReadWord(uint8_t addr, uint32_t pwd, bool usePwd) {
uint32_t wordData = 0;
int success = EM4x05ReadWord_ext(addr, pwd, usePwd, &wordData);
if (success == 1)
PrintAndLog("%s Address %02d | %08X", (addr>13) ? "Lock":" Got",addr,wordData);
else
PrintAndLog("Read Address %02d | failed",addr);
return success;
}
int CmdEM4x05ReadWord(const char *Cmd) {
uint8_t addr;
uint32_t pwd;
bool usePwd = false;
uint8_t ctmp = param_getchar(Cmd, 0);
if ( strlen(Cmd) == 0 || ctmp == 'H' || ctmp == 'h' ) return usage_lf_em_read();
addr = param_get8ex(Cmd, 0, 50, 10);
// for now use default input of 1 as invalid (unlikely 1 will be a valid password...)
pwd = param_get32ex(Cmd, 1, 1, 16);
if ( (addr > 15) ) {
PrintAndLog("Address must be between 0 and 15");
return 1;
}
if ( pwd == 1 ) {
PrintAndLog("Reading address %02u", addr);
} else {
usePwd = true;
PrintAndLog("Reading address %02u | password %08X", addr, pwd);
}
return EM4x05ReadWord(addr, pwd, usePwd);
}
int usage_lf_em_dump(void) {
PrintAndLog("Dump EM4x05/EM4x69. Tag must be on antenna. ");
PrintAndLog("");
PrintAndLog("Usage: lf em 4x05dump [h] <pwd>");
PrintAndLog("Options:");
PrintAndLog(" h - this help");
PrintAndLog(" pwd - password (hex) (optional)");
PrintAndLog("samples:");
PrintAndLog(" lf em 4x05dump");
PrintAndLog(" lf em 4x05dump 11223344");
return 0;
}
int CmdEM4x05dump(const char *Cmd) {
uint8_t addr = 0;
uint32_t pwd;
bool usePwd = false;
uint8_t ctmp = param_getchar(Cmd, 0);
if ( ctmp == 'H' || ctmp == 'h' ) return usage_lf_em_dump();
// for now use default input of 1 as invalid (unlikely 1 will be a valid password...)
pwd = param_get32ex(Cmd, 0, 1, 16);
if ( pwd != 1 ) {
usePwd = true;
}
int success = 1;
for (; addr < 16; addr++) {
if (addr == 2) {
if (usePwd) {
PrintAndLog(" PWD Address %02u | %08X",addr,pwd);
} else {
PrintAndLog(" PWD Address 02 | cannot read");
}
} else {
success &= EM4x05ReadWord(addr, pwd, usePwd);
}
}
return success;
}
int usage_lf_em_write(void) {
PrintAndLog("Write EM4x05/EM4x69. Tag must be on antenna. ");
PrintAndLog("");
PrintAndLog("Usage: lf em 4x05writeword [h] a <address> d <data> p <pwd> [s] [i]");
PrintAndLog("Options:");
PrintAndLog(" h - this help");
PrintAndLog(" a <address> - memory address to write to. (0-15)");
PrintAndLog(" d <data> - data to write (hex)");
PrintAndLog(" p <pwd> - password (hex) (optional)");
PrintAndLog(" s - swap the data bit order before write");
PrintAndLog(" i - invert the data bits before write");
PrintAndLog("samples:");
PrintAndLog(" lf em 4x05writeword a 5 d 11223344");
PrintAndLog(" lf em 4x05writeword a 5 p deadc0de d 11223344 s i");
return 0;
}
// note: em4x05 doesn't have a way to invert data output so we must invert the data prior to writing
// it if invertion is needed. (example FSK2a vs FSK)
// also em4x05 requires swapping word data when compared to the data used for t55xx chips.
int EM4x05WriteWord(uint8_t addr, uint32_t data, uint32_t pwd, bool usePwd, bool swap, bool invert) {
if (swap) data = SwapBits(data, 32);
if (invert) data ^= 0xFFFFFFFF;
if ( (addr > 15) ) {
PrintAndLog("Address must be between 0 and 15");
return -1;
}
if ( !usePwd ) {
PrintAndLog("Writing address %d data %08X", addr, data);
} else {
PrintAndLog("Writing address %d data %08X using password %08X", addr, data, pwd);
}
uint16_t flag = (addr << 8 ) | usePwd;
UsbCommand c = {CMD_EM4X_WRITE_WORD, {flag, data, pwd}};
clearCommandBuffer();
SendCommand(&c);
UsbCommand resp;
if (!WaitForResponseTimeout(CMD_ACK, &resp, 2000)){
PrintAndLog("Error occurred, device did not respond during write operation.");
return -1;
}
if ( !downloadSamplesEM() ) {
return -1;
}
//check response for 00001010 for write confirmation!
//attempt demod:
uint32_t dummy = 0;
int result = demodEM4x05resp(&dummy,false);
if (result == 1) {
PrintAndLog("Write Verified");
} else {
PrintAndLog("Write could not be verified");
}
return result;
}
int CmdEM4x05WriteWord(const char *Cmd) {
bool errors = false;
bool usePwd = false;
uint32_t data = 0xFFFFFFFF;
uint32_t pwd = 0xFFFFFFFF;
bool swap = false;
bool invert = false;
uint8_t addr = 16; // default to invalid address
bool gotData = false;
char cmdp = 0;
while(param_getchar(Cmd, cmdp) != 0x00)
{
switch(param_getchar(Cmd, cmdp))
{
case 'h':
case 'H':
return usage_lf_em_write();
case 'a':
case 'A':
addr = param_get8ex(Cmd, cmdp+1, 16, 10);
cmdp += 2;
break;
case 'd':
case 'D':
data = param_get32ex(Cmd, cmdp+1, 0, 16);
gotData = true;
cmdp += 2;
break;
case 'i':
case 'I':
invert = true;
cmdp++;
break;
case 'p':
case 'P':
pwd = param_get32ex(Cmd, cmdp+1, 1, 16);
if (pwd == 1) {
PrintAndLog("invalid pwd");
errors = true;
}
usePwd = true;
cmdp += 2;
break;
case 's':
case 'S':
swap = true;
cmdp++;
break;
default:
PrintAndLog("Unknown parameter '%c'", param_getchar(Cmd, cmdp));
errors = true;
break;
}
if(errors) break;
}
//Validations
if(errors) return usage_lf_em_write();
if ( strlen(Cmd) == 0 ) return usage_lf_em_write();
if (!gotData) {
PrintAndLog("You must enter the data you want to write");
return usage_lf_em_write();
}
return EM4x05WriteWord(addr, data, pwd, usePwd, swap, invert);
}
void printEM4x05config(uint32_t wordData) {
uint16_t datarate = EM4x05_GET_BITRATE(wordData);
uint8_t encoder = ((wordData >> 6) & 0xF);
char enc[14];
memset(enc,0,sizeof(enc));
uint8_t PSKcf = (wordData >> 10) & 0x3;
char cf[10];
memset(cf,0,sizeof(cf));
uint8_t delay = (wordData >> 12) & 0x3;
char cdelay[33];
memset(cdelay,0,sizeof(cdelay));
uint8_t numblks = EM4x05_GET_NUM_BLOCKS(wordData);
uint8_t LWR = numblks+5-1; //last word read
switch (encoder) {
case 0: snprintf(enc,sizeof(enc),"NRZ"); break;
case 1: snprintf(enc,sizeof(enc),"Manchester"); break;
case 2: snprintf(enc,sizeof(enc),"Biphase"); break;
case 3: snprintf(enc,sizeof(enc),"Miller"); break;
case 4: snprintf(enc,sizeof(enc),"PSK1"); break;
case 5: snprintf(enc,sizeof(enc),"PSK2"); break;
case 6: snprintf(enc,sizeof(enc),"PSK3"); break;
case 7: snprintf(enc,sizeof(enc),"Unknown"); break;
case 8: snprintf(enc,sizeof(enc),"FSK1"); break;
case 9: snprintf(enc,sizeof(enc),"FSK2"); break;
default: snprintf(enc,sizeof(enc),"Unknown"); break;
}
switch (PSKcf) {
case 0: snprintf(cf,sizeof(cf),"RF/2"); break;
case 1: snprintf(cf,sizeof(cf),"RF/8"); break;
case 2: snprintf(cf,sizeof(cf),"RF/4"); break;
case 3: snprintf(cf,sizeof(cf),"unknown"); break;
}
switch (delay) {
case 0: snprintf(cdelay, sizeof(cdelay),"no delay"); break;
case 1: snprintf(cdelay, sizeof(cdelay),"BP/8 or 1/8th bit period delay"); break;
case 2: snprintf(cdelay, sizeof(cdelay),"BP/4 or 1/4th bit period delay"); break;
case 3: snprintf(cdelay, sizeof(cdelay),"no delay"); break;
}
uint8_t readLogin = (wordData & EM4x05_READ_LOGIN_REQ)>>18;
uint8_t readHKL = (wordData & EM4x05_READ_HK_LOGIN_REQ)>>19;
uint8_t writeLogin = (wordData & EM4x05_WRITE_LOGIN_REQ)>>20;
uint8_t writeHKL = (wordData & EM4x05_WRITE_HK_LOGIN_REQ)>>21;
uint8_t raw = (wordData & EM4x05_READ_AFTER_WRITE)>>22;
uint8_t disable = (wordData & EM4x05_DISABLE_ALLOWED)>>23;
uint8_t rtf = (wordData & EM4x05_READER_TALK_FIRST)>>24;
uint8_t pigeon = (wordData & (1<<26))>>26;
PrintAndLog("ConfigWord: %08X (Word 4)\n", wordData);
PrintAndLog("Config Breakdown:");
PrintAndLog(" Data Rate: %02u | RF/%u", wordData & 0x3F, datarate);
PrintAndLog(" Encoder: %u | %s", encoder, enc);
PrintAndLog(" PSK CF: %u | %s", PSKcf, cf);
PrintAndLog(" Delay: %u | %s", delay, cdelay);
PrintAndLog(" LastWordR: %02u | Address of last word for default read - meaning %u blocks are output", LWR, numblks);
PrintAndLog(" ReadLogin: %u | Read Login is %s", readLogin, readLogin ? "Required" : "Not Required");
PrintAndLog(" ReadHKL: %u | Read Housekeeping Words Login is %s", readHKL, readHKL ? "Required" : "Not Required");
PrintAndLog("WriteLogin: %u | Write Login is %s", writeLogin, writeLogin ? "Required" : "Not Required");
PrintAndLog(" WriteHKL: %u | Write Housekeeping Words Login is %s", writeHKL, writeHKL ? "Required" : "Not Required");
PrintAndLog(" R.A.W.: %u | Read After Write is %s", raw, raw ? "On" : "Off");
PrintAndLog(" Disable: %u | Disable Command is %s", disable, disable ? "Accepted" : "Not Accepted");
PrintAndLog(" R.T.F.: %u | Reader Talk First is %s", rtf, rtf ? "Enabled" : "Disabled");
PrintAndLog(" Pigeon: %u | Pigeon Mode is %s\n", pigeon, pigeon ? "Enabled" : "Disabled");
}
void printEM4x05info(uint8_t chipType, uint8_t cap, uint16_t custCode, uint32_t serial) {
switch (chipType) {
case 9: PrintAndLog("\n Chip Type: %u | EM4305", chipType); break;
case 4: PrintAndLog(" Chip Type: %u | Unknown", chipType); break;
case 2: PrintAndLog(" Chip Type: %u | EM4469", chipType); break;
//add more here when known
default: PrintAndLog(" Chip Type: %u Unknown", chipType); break;
}
switch (cap) {
case 3: PrintAndLog(" Cap Type: %u | 330pF",cap); break;
case 2: PrintAndLog(" Cap Type: %u | %spF",cap, (chipType==2)? "75":"210"); break;
case 1: PrintAndLog(" Cap Type: %u | 250pF",cap); break;
case 0: PrintAndLog(" Cap Type: %u | no resonant capacitor",cap); break;
default: PrintAndLog(" Cap Type: %u | unknown",cap); break;
}
PrintAndLog(" Cust Code: %03u | %s", custCode, (custCode == 0x200) ? "Default": "Unknown");
if (serial != 0) {
PrintAndLog("\n Serial #: %08X\n", serial);
}
}
void printEM4x05ProtectionBits(uint32_t wordData) {
for (uint8_t i = 0; i < 15; i++) {
PrintAndLog(" Word: %02u | %s", i, (((1 << i) & wordData ) || i < 2) ? "Is Write Locked" : "Is Not Write Locked");
if (i==14) {
PrintAndLog(" Word: %02u | %s", i+1, (((1 << i) & wordData ) || i < 2) ? "Is Write Locked" : "Is Not Write Locked");
}
}
}
//quick test for EM4x05/EM4x69 tag
bool EM4x05Block0Test(uint32_t *wordData) {
if (EM4x05ReadWord_ext(0,0,false,wordData) == 1) {
return true;
}
return false;
}
int CmdEM4x05info(const char *Cmd) {
//uint8_t addr = 0;
uint32_t pwd;
uint32_t wordData = 0;
bool usePwd = false;
uint8_t ctmp = param_getchar(Cmd, 0);
if ( ctmp == 'H' || ctmp == 'h' ) return usage_lf_em_dump();
// for now use default input of 1 as invalid (unlikely 1 will be a valid password...)
pwd = param_get32ex(Cmd, 0, 1, 16);
if ( pwd != 1 ) {
usePwd = true;
}
// read word 0 (chip info)
// block 0 can be read even without a password.
if ( !EM4x05Block0Test(&wordData) )
return -1;
uint8_t chipType = (wordData >> 1) & 0xF;
uint8_t cap = (wordData >> 5) & 3;
uint16_t custCode = (wordData >> 9) & 0x3FF;
// read word 1 (serial #) doesn't need pwd
wordData = 0;
if (EM4x05ReadWord_ext(1, 0, false, &wordData) != 1) {
//failed, but continue anyway...
}
printEM4x05info(chipType, cap, custCode, wordData);
// read word 4 (config block)
// needs password if one is set
wordData = 0;
if ( EM4x05ReadWord_ext(4, pwd, usePwd, &wordData) != 1 ) {
//failed
PrintAndLog("Config block read failed - might be password protected.");
return 0;
}
printEM4x05config(wordData);
// read word 14 and 15 to see which is being used for the protection bits
wordData = 0;
if ( EM4x05ReadWord_ext(14, pwd, usePwd, &wordData) != 1 ) {
//failed
return 0;
}
// if status bit says this is not the used protection word
if (!(wordData & 0x8000)) {
if ( EM4x05ReadWord_ext(15, pwd, usePwd, &wordData) != 1 ) {
//failed
return 0;
}
}
if (!(wordData & 0x8000)) {
//something went wrong
return 0;
}
printEM4x05ProtectionBits(wordData);
return 1;
}
static command_t CommandTable[] =
{
{"help", CmdHelp, 1, "This help"},
{"410xread", CmdEMdemodASK, 0, "[findone] -- Extract ID from EM410x tag (option 0 for continuous loop, 1 for only 1 tag)"},
{"410xdemod", CmdAskEM410xDemod, 1, "[clock] [invert<0|1>] [maxErr] -- Demodulate an EM410x tag from GraphBuffer (args optional)"},
{"410xsim", CmdEM410xSim, 0, "<UID> [clock rate] -- Simulate EM410x tag"},
{"410xbrute", CmdEM410xBrute, 0, "ids.txt [d (delay in ms)] [c (clock rate)] -- Reader bruteforce attack by simulating EM410x tags"},
{"410xwatch", CmdEM410xWatch, 0, "['h'] -- Watches for EM410x 125/134 kHz tags (option 'h' for 134)"},
{"410xspoof", CmdEM410xWatchnSpoof, 0, "['h'] --- Watches for EM410x 125/134 kHz tags, and replays them. (option 'h' for 134)" },
{"410xwrite", CmdEM410xWrite, 0, "<UID> <'0' T5555> <'1' T55x7> [clock rate] -- Write EM410x UID to T5555(Q5) or T55x7 tag, optionally setting clock rate"},
{"4x05dump", CmdEM4x05dump, 0, "(pwd) -- Read EM4x05/EM4x69 all word data"},
{"4x05info", CmdEM4x05info, 0, "(pwd) -- Get info from EM4x05/EM4x69 tag"},
{"4x05readword", CmdEM4x05ReadWord, 0, "<Word> (pwd) -- Read EM4x05/EM4x69 word data"},
{"4x05writeword", CmdEM4x05WriteWord, 0, "<Word> <data> (pwd) -- Write EM4x05/EM4x69 word data"},
{"4x50read", CmdEM4x50Read, 1, "demod data from EM4x50 tag from the graph buffer"},
{NULL, NULL, 0, NULL}
};
int CmdLFEM4X(const char *Cmd)
{
CmdsParse(CommandTable, Cmd);
return 0;
}
int CmdHelp(const char *Cmd)
{
CmdsHelp(CommandTable);
return 0;
}