//----------------------------------------------------------------------------- // (c) 2009 Henryk Plötz // 2016 Iceman // 2018 AntiCat (rwd rewritten) // // This code is licensed to you under the terms of the GNU GPL, version 2 or, // at your option, any later version. See the LICENSE.txt file for the text of // the license. //----------------------------------------------------------------------------- // LEGIC RF simulation code //----------------------------------------------------------------------------- #include "proxmark3.h" #include "apps.h" #include "util.h" #include "string.h" #include "legicrf.h" #include "legic_prng.h" #include "legic.h" #include "crc.h" static struct legic_frame { int bits; uint32_t data; } current_frame; static enum { STATE_DISCON, STATE_IV, STATE_CON, } legic_state; static crc_t legic_crc; static int legic_read_count; static uint32_t legic_prng_bc; static uint32_t legic_prng_iv; static int legic_phase_drift; static int legic_frame_drift; static int legic_reqresp_drift; AT91PS_TC timer; AT91PS_TC prng_timer; static legic_card_select_t card;/* metadata of currently selected card */ //----------------------------------------------------------------------------- // Frame timing and pseudorandom number generator // // The Prng is forwarded every 100us (TAG_BIT_PERIOD), except when the reader is // transmitting. In that case the prng has to be forwarded every bit transmitted: // - 60us for a 0 (RWD_TIME_0) // - 100us for a 1 (RWD_TIME_1) // // The data dependent timing makes writing comprehensible code significantly // harder. The current aproach forwards the prng data based if there is data on // air and time based, using GET_TICKS, during computational and wait periodes. // // To not have the necessity to calculate/guess exection time dependend timeouts // tx_frame and rx_frame use a shared timestamp to coordinate tx and rx timeslots. //----------------------------------------------------------------------------- static uint32_t last_frame_end; /* ts of last bit of previews rx or tx frame */ #define RWD_TIME_PAUSE 30 /* 20us */ #define RWD_TIME_1 150 /* READER_TIME_PAUSE 20us off + 80us on = 100us */ #define RWD_TIME_0 90 /* READER_TIME_PAUSE 20us off + 40us on = 60us */ #define RWD_FRAME_WAIT 330 /* 220us from TAG frame end to READER frame start */ #define TAG_FRAME_WAIT 495 /* 330us from READER frame end to TAG frame start */ #define TAG_BIT_PERIOD 150 /* 100us */ #define TAG_WRITE_TIMEOUT 60 /* 40 * 100us (write should take at most 3.6ms) */ #define SIM_DIVISOR 586 /* prng_time/DIV count prng needs to be forwared */ #define SIM_SHIFT 900 /* prng_time+SHIFT shift of delayed start */ #define RWD_TIME_FUZZ 20 /* rather generous 13us, since the peak detector /+ hysteresis fuzz quite a bit */ #define LEGIC_READ 0x01 /* Read Command */ #define LEGIC_WRITE 0x00 /* Write Command */ #define SESSION_IV 0x55 /* An arbitrary chose session IV, all shoud work */ #define OFFSET_LOG 1024 /* The largest Legic Prime card is 1k */ #define WRITE_LOWERLIMIT 4 /* UID and MCC are not writable */ #define INPUT_THRESHOLD 8 /* heuristically determined, lower values */ /* lead to detecting false ack during write */ #define FUZZ_EQUAL(value, target, fuzz) ((value) > ((target)-(fuzz)) && (value) < ((target)+(fuzz))) //----------------------------------------------------------------------------- // I/O interface abstraction (FPGA -> ARM) //----------------------------------------------------------------------------- static inline uint8_t rx_byte_from_fpga() { for(;;) { WDT_HIT(); // wait for byte be become available in rx holding register if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { return AT91C_BASE_SSC->SSC_RHR; } } } //----------------------------------------------------------------------------- // Demodulation (Reader) //----------------------------------------------------------------------------- // Returns a demedulated bit // // The FPGA running xcorrelation samples the subcarrier at ~13.56 MHz. The mode // was initialy designed to receive BSPK/2-PSK. Hance, it reports an I/Q pair // every 4.7us (8 bits i and 8 bits q). // // The subcarrier amplitude can be calculated using Pythagoras sqrt(i^2 + q^2). // To reduce CPU time the amplitude is approximated by using linear functions: // am = MAX(ABS(i),ABS(q)) + 1/2*MIN(ABS(i),ABSq)) // // Note: The SSC receiver is never synchronized the calculation my be performed // on a I/Q pair from two subsequent correlations, but does not matter. // // The bit time is 99.1us (21 I/Q pairs). The receiver skips the first 5 samples // and averages the next (most stable) 8 samples. The final 8 samples are dropped // also. // // The demedulated should be alligned to the bit periode by the caller. This is // done in rx_bit_as_reader and rx_ack_as_reader. static inline bool rx_bit_as_reader() { int32_t cq = 0; int32_t ci = 0; // skip first 5 I/Q pairs for(size_t i = 0; i<5; ++i) { (int8_t)rx_byte_from_fpga(); (int8_t)rx_byte_from_fpga(); } // sample next 8 I/Q pairs for(size_t i = 0; i<8; ++i) { cq += (int8_t)rx_byte_from_fpga(); ci += (int8_t)rx_byte_from_fpga(); } // calculate power int32_t power = (MAX(ABS(ci), ABS(cq)) + (MIN(ABS(ci), ABS(cq)) >> 1)); // compare average (power / 8) to threshold return ((power >> 3) > INPUT_THRESHOLD); } //----------------------------------------------------------------------------- // Modulation (Reader) // // I've tried to modulate the Legic specific pause-puls using ssc and the default // ssc clock of 105.4 kHz (bit periode of 9.4us) - previous commit. However, // the timing was not precise enough. By increasing the ssc clock this could // be circumvented, but the adventage over bitbang would be little. //----------------------------------------------------------------------------- static inline void tx_bit_as_reader(bool bit) { // insert pause LOW(GPIO_SSC_DOUT); last_frame_end += RWD_TIME_PAUSE; while(GET_TICKS < last_frame_end) { }; HIGH(GPIO_SSC_DOUT); // return to high, wait for bit periode to end last_frame_end += (bit ? RWD_TIME_1 : RWD_TIME_0) - RWD_TIME_PAUSE; while(GET_TICKS < last_frame_end) { }; } //----------------------------------------------------------------------------- // Frame Handling (Reader) // // The LEGIC RF protocol from card to reader does not include explicit frame // start/stop information or length information. The reader must know beforehand // how many bits it wants to receive. // Notably: a card sending a stream of 0-bits is indistinguishable from no card // present. //----------------------------------------------------------------------------- static void tx_frame_as_reader(uint32_t frame, uint8_t len) { FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX); // wait for next tx timeslot last_frame_end += RWD_FRAME_WAIT; while(GET_TICKS < last_frame_end) { }; // transmit frame, MSB first for(uint8_t i = 0; i < len; ++i) { bool bit = (frame >> i) & 0x01; tx_bit_as_reader(bit ^ legic_prng_get_bit()); legic_prng_forward(1); }; // add pause to mark end of the frame LOW(GPIO_SSC_DOUT); last_frame_end += RWD_TIME_PAUSE; while(GET_TICKS < last_frame_end) { }; HIGH(GPIO_SSC_DOUT); } static uint32_t rx_frame_as_reader(uint8_t len) { FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ | FPGA_HF_READER_RX_XCORR_QUARTER_FREQ); // hold sampling until card is expected to respond last_frame_end += TAG_FRAME_WAIT; while(GET_TICKS < last_frame_end) { }; uint32_t frame = 0; for(uint8_t i = 0; i < len; i++) { frame |= (rx_bit_as_reader() ^ legic_prng_get_bit()) << i; legic_prng_forward(1); // rx_bit_as_reader runs only 95us, resync to TAG_BIT_PERIOD last_frame_end += TAG_BIT_PERIOD; while(GET_TICKS < last_frame_end) { }; } return frame; } static bool rx_ack_as_reader() { // change fpga into rx mode FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ | FPGA_HF_READER_RX_XCORR_QUARTER_FREQ); // hold sampling until card is expected to respond last_frame_end += TAG_FRAME_WAIT; while(GET_TICKS < last_frame_end) { }; uint32_t ack = 0; for(uint8_t i = 0; i < TAG_WRITE_TIMEOUT; ++i) { // sample bit ack = rx_bit_as_reader(); legic_prng_forward(1); // rx_bit_as_reader runs only 95us, resync to TAG_BIT_PERIOD last_frame_end += TAG_BIT_PERIOD; while(GET_TICKS < last_frame_end) { }; // check if it was an ACK if(ack) { break; } } return ack; } //----------------------------------------------------------------------------- // Legic Reader //----------------------------------------------------------------------------- int init_card(uint8_t cardtype, legic_card_select_t *p_card) { p_card->tagtype = cardtype; switch(p_card->tagtype) { case 0x0d: p_card->cmdsize = 6; p_card->addrsize = 5; p_card->cardsize = 22; break; case 0x1d: p_card->cmdsize = 9; p_card->addrsize = 8; p_card->cardsize = 256; break; case 0x3d: p_card->cmdsize = 11; p_card->addrsize = 10; p_card->cardsize = 1024; break; default: p_card->cmdsize = 0; p_card->addrsize = 0; p_card->cardsize = 0; return 2; } return 0; } static void init_reader(bool clear_mem) { // configure FPGA FpgaDownloadAndGo(FPGA_BITSTREAM_HF); FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ | FPGA_HF_READER_RX_XCORR_QUARTER_FREQ); SetAdcMuxFor(GPIO_MUXSEL_HIPKD); LED_D_ON(); // configure SSC with defaults FpgaSetupSsc(); // re-claim GPIO_SSC_DOUT as GPIO and enable output AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT; HIGH(GPIO_SSC_DOUT); // init crc calculator crc_init(&legic_crc, 4, 0x19 >> 1, 0x05, 0); // start us timer StartTicks(); } // Setup reader to card connection // // The setup consists of a three way handshake: // - Transmit initialisation vector 7 bits // - Receive card type 6 bits // - Acknowledge frame 6 bits static uint32_t setup_phase_reader(uint8_t iv) { // init coordination timestamp last_frame_end = GET_TICKS; // Switch on carrier and let the card charge for 5ms. last_frame_end += 7500; while(GET_TICKS < last_frame_end) { }; legic_prng_init(0); tx_frame_as_reader(iv, 7); // configure iv legic_prng_init(iv); legic_prng_forward(2); // receive card type int32_t card_type = rx_frame_as_reader(6); legic_prng_forward(3); // send obsfuscated acknowledgment frame switch (card_type) { case 0x0D: tx_frame_as_reader(0x19, 6); // MIM22 | READCMD = 0x18 | 0x01 break; case 0x1D: case 0x3D: tx_frame_as_reader(0x39, 6); // MIM256 | READCMD = 0x38 | 0x01 break; } return card_type; } static uint8_t calc_crc4(uint16_t cmd, uint8_t cmd_sz, uint8_t value) { crc_clear(&legic_crc); crc_update(&legic_crc, (value << cmd_sz) | cmd, 8 + cmd_sz); return crc_finish(&legic_crc); } static int16_t read_byte(uint16_t index, uint8_t cmd_sz) { uint16_t cmd = (index << 1) | LEGIC_READ; // read one byte LED_B_ON(); legic_prng_forward(2); tx_frame_as_reader(cmd, cmd_sz); legic_prng_forward(2); uint32_t frame = rx_frame_as_reader(12); LED_B_OFF(); // split frame into data and crc uint8_t byte = BYTEx(frame, 0); uint8_t crc = BYTEx(frame, 1); // check received against calculated crc uint8_t calc_crc = calc_crc4(cmd, cmd_sz, byte); if(calc_crc != crc) { Dbprintf("!!! crc mismatch: %x != %x !!!", calc_crc, crc); return -1; } legic_prng_forward(1); return byte; } // Transmit write command, wait until (3.6ms) the tag sends back an unencrypted // ACK ('1' bit) and forward the prng time based. bool write_byte(uint16_t index, uint8_t byte, uint8_t addr_sz) { uint32_t cmd = index << 1 | LEGIC_WRITE; // prepare command uint8_t crc = calc_crc4(cmd, addr_sz + 1, byte); // calculate crc cmd |= byte << (addr_sz + 1); // append value cmd |= (crc & 0xF) << (addr_sz + 1 + 8); // and crc // send write command LED_C_ON(); legic_prng_forward(2); tx_frame_as_reader(cmd, addr_sz + 1 + 8 + 4); // sz = addr_sz + cmd + data + crc legic_prng_forward(3); LED_C_OFF(); // wait for ack return rx_ack_as_reader(); } //----------------------------------------------------------------------------- // Command Line Interface // // Only this functions are public / called from appmain.c //----------------------------------------------------------------------------- void LegicRfReader(int offset, int bytes) { uint8_t *BigBuf = BigBuf_get_addr(); memset(BigBuf, 0, 1024); // configure ARM and FPGA init_reader(false); // establish shared secret and detect card type DbpString("Reading card ..."); uint8_t card_type = setup_phase_reader(SESSION_IV); if(init_card(card_type, &card) != 0) { Dbprintf("No or unknown card found, aborting"); goto OUT; } // if no argument is specified create full dump if(bytes == -1) { bytes = card.cardsize; } // do not read beyond card memory if(bytes + offset > card.cardsize) { bytes = card.cardsize - offset; } for(uint16_t i = 0; i < bytes; ++i) { int16_t byte = read_byte(offset + i, card.cmdsize); if(byte == -1) { Dbprintf("operation failed @ 0x%03.3x", bytes); goto OUT; } BigBuf[i] = byte; } // OK Dbprintf("Card (MIM %i) read, use 'hf legic decode' or", card.cardsize); Dbprintf("'data hexsamples %d' to view results", (bytes+7) & ~7); OUT: FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); LED_B_OFF(); LED_C_OFF(); LED_D_OFF(); StopTicks(); } void LegicRfWriter(int bytes, int offset) { uint8_t *BigBuf = BigBuf_get_addr(); // configure ARM and FPGA init_reader(false); // uid is not writeable if(offset <= WRITE_LOWERLIMIT) { goto OUT; } // establish shared secret and detect card type Dbprintf("Writing 0x%02.2x - 0x%02.2x ...", offset, offset+bytes); uint8_t card_type = setup_phase_reader(SESSION_IV); if(init_card(card_type, &card) != 0) { Dbprintf("No or unknown card found, aborting"); goto OUT; } // do not write beyond card memory if(bytes + offset > card.cardsize) { bytes = card.cardsize - offset; } // write in reverse order, only then is DCF (decremental field) writable while(bytes-- > 0 && !BUTTON_PRESS()) { if(!write_byte(bytes + offset, BigBuf[bytes + offset], card.addrsize)) { Dbprintf("operation failed @ 0x%03.3x", bytes); goto OUT; } } // OK DbpString("Write successful"); OUT: FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); LED_B_OFF(); LED_C_OFF(); LED_D_OFF(); StopTicks(); } //----------------------------------------------------------------------------- // Legic Simulator //----------------------------------------------------------------------------- static void setup_timer(void) { /* Set up Timer 1 to use for measuring time between pulses. Since we're bit-banging * this it won't be terribly accurate but should be good enough. */ AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC1); timer = AT91C_BASE_TC1; timer->TC_CCR = AT91C_TC_CLKDIS; timer->TC_CMR = AT91C_TC_CLKS_TIMER_DIV3_CLOCK; timer->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG; /* * Set up Timer 2 to use for measuring time between frames in * tag simulation mode. Runs 4x faster as Timer 1 */ AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC2); prng_timer = AT91C_BASE_TC2; prng_timer->TC_CCR = AT91C_TC_CLKDIS; prng_timer->TC_CMR = AT91C_TC_CLKS_TIMER_DIV2_CLOCK; prng_timer->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG; } /* Generate Keystream */ static uint32_t get_key_stream(int skip, int count) { uint32_t key=0; int i; /* Use int to enlarge timer tc to 32bit */ legic_prng_bc += prng_timer->TC_CV; prng_timer->TC_CCR = AT91C_TC_SWTRG; /* If skip == -1, forward prng time based */ if(skip == -1) { i = (legic_prng_bc+SIM_SHIFT)/SIM_DIVISOR; /* Calculate Cycles based on timer */ i -= legic_prng_count(); /* substract cycles of finished frames */ i -= count; /* substract current frame length, rewidn to bedinning */ legic_prng_forward(i); } else { legic_prng_forward(skip); } /* Write Time Data into LOG */ uint8_t *BigBuf = BigBuf_get_addr(); if(count == 6) { i = -1; } else { i = legic_read_count; } BigBuf[OFFSET_LOG+128+i] = legic_prng_count(); BigBuf[OFFSET_LOG+256+i*4] = (legic_prng_bc >> 0) & 0xff; BigBuf[OFFSET_LOG+256+i*4+1] = (legic_prng_bc >> 8) & 0xff; BigBuf[OFFSET_LOG+256+i*4+2] = (legic_prng_bc >>16) & 0xff; BigBuf[OFFSET_LOG+256+i*4+3] = (legic_prng_bc >>24) & 0xff; BigBuf[OFFSET_LOG+384+i] = count; /* Generate KeyStream */ for(i=0; iPIO_CODR = GPIO_SSC_DOUT; AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT; /* Use time to crypt frame */ if(crypt) { legic_prng_forward(2); /* TAG_TIME_WAIT -> shift by 2 */ int i; int key = 0; for(i=0; iTC_CV < (TAG_FRAME_WAIT - 30)) ; int i; for(i=0; iTC_CV + TAG_BIT_PERIOD; int bit = response & 1; response = response >> 1; if(bit) { AT91C_BASE_PIOA->PIO_SODR = GPIO_SSC_DOUT; } else { AT91C_BASE_PIOA->PIO_CODR = GPIO_SSC_DOUT; } while(timer->TC_CV < nextbit) ; } AT91C_BASE_PIOA->PIO_CODR = GPIO_SSC_DOUT; } static void frame_append_bit(struct legic_frame * const f, int bit) { if(f->bits >= 31) { return; /* Overflow, won't happen */ } f->data |= (bit<bits); f->bits++; } static void frame_clean(struct legic_frame * const f) { f->data = 0; f->bits = 0; } /* Handle (whether to respond) a frame in tag mode */ static void frame_handle_tag(struct legic_frame const * const f) { uint8_t *BigBuf = BigBuf_get_addr(); /* First Part of Handshake (IV) */ if(f->bits == 7) { if(f->data == SESSION_IV) { LED_C_ON(); prng_timer->TC_CCR = AT91C_TC_SWTRG; legic_prng_init(f->data); frame_send_tag(0x3d, 6, 1); /* 0x3d^0x26 = 0x1b */ legic_state = STATE_IV; legic_read_count = 0; legic_prng_bc = 0; legic_prng_iv = f->data; /* TIMEOUT */ timer->TC_CCR = AT91C_TC_SWTRG; while(timer->TC_CV > 1); while(timer->TC_CV < 280); return; } else if((prng_timer->TC_CV % 50) > 40) { legic_prng_init(f->data); frame_send_tag(0x3d, 6, 1); SpinDelay(20); return; } } /* 0x19==??? */ if(legic_state == STATE_IV) { if((f->bits == 6) && (f->data == (0x19 ^ get_key_stream(1, 6)))) { legic_state = STATE_CON; /* TIMEOUT */ timer->TC_CCR = AT91C_TC_SWTRG; while(timer->TC_CV > 1); while(timer->TC_CV < 200); return; } else { legic_state = STATE_DISCON; LED_C_OFF(); Dbprintf("0x19 - Frame: %03.3x", f->data); return; } } /* Read */ if(f->bits == 11) { if(legic_state == STATE_CON) { int key = get_key_stream(-1, 11); //legic_phase_drift, 11); int addr = f->data ^ key; addr = addr >> 1; int data = BigBuf[addr]; int hash = calc_crc4(addr, data, 11) << 8; BigBuf[OFFSET_LOG+legic_read_count] = (uint8_t)addr; legic_read_count++; //Dbprintf("Data:%03.3x, key:%03.3x, addr: %03.3x, read_c:%u", f->data, key, addr, read_c); legic_prng_forward(legic_reqresp_drift); frame_send_tag(hash | data, 12, 1); /* SHORT TIMEOUT */ timer->TC_CCR = AT91C_TC_SWTRG; while(timer->TC_CV > 1); legic_prng_forward(legic_frame_drift); while(timer->TC_CV < 180); return; } } /* Write */ if(f->bits == 23) { int key = get_key_stream(-1, 23); //legic_frame_drift, 23); int addr = f->data ^ key; addr = addr >> 1; addr = addr & 0x3ff; int data = f->data ^ key; data = data >> 11; data = data & 0xff; /* write command */ legic_state = STATE_DISCON; LED_C_OFF(); Dbprintf("write - addr: %x, data: %x", addr, data); return; } if(legic_state != STATE_DISCON) { Dbprintf("Unexpected: sz:%u, Data:%03.3x, State:%u, Count:%u", f->bits, f->data, legic_state, legic_read_count); int i; Dbprintf("IV: %03.3x", legic_prng_iv); for(i = 0; iPIO_ODR = GPIO_SSC_DIN; AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DIN; setup_timer(); crc_init(&legic_crc, 4, 0x19 >> 1, 0x5, 0); int old_level = 0; int active = 0; legic_state = STATE_DISCON; LED_B_ON(); DbpString("Starting Legic emulator, press button to end"); while(!BUTTON_PRESS()) { int level = !!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_DIN); int time = timer->TC_CV; if(level != old_level) { if(level == 1) { timer->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG; if(FUZZ_EQUAL(time, RWD_TIME_1, RWD_TIME_FUZZ)) { /* 1 bit */ emit(1); active = 1; LED_A_ON(); } else if(FUZZ_EQUAL(time, RWD_TIME_0, RWD_TIME_FUZZ)) { /* 0 bit */ emit(0); active = 1; LED_A_ON(); } else if(active) { /* invalid */ emit(-1); active = 0; LED_A_OFF(); } } } if(time >= (RWD_TIME_1+RWD_TIME_FUZZ) && active) { /* Frame end */ emit(-1); active = 0; LED_A_OFF(); } if(time >= (20*RWD_TIME_1) && (timer->TC_SR & AT91C_TC_CLKSTA)) { timer->TC_CCR = AT91C_TC_CLKDIS; } old_level = level; WDT_HIT(); } DbpString("Stopped"); LED_B_OFF(); LED_A_OFF(); LED_C_OFF(); }