//----------------------------------------------------------------------------- // Copyright (C) 2014 // // This code is licensed to you under the terms of the GNU GPL, version 2 or, // at your option, any later version. See the LICENSE.txt file for the text of // the license. //----------------------------------------------------------------------------- // Low frequency commands //----------------------------------------------------------------------------- #include #include #include "lfdemod.h" //by marshmellow //takes 1s and 0s and searches for EM410x format - output EM ID uint64_t Em410xDecode(uint8_t *BitStream, int BitLen) { //no arguments needed - built this way in case we want this to be a direct call from "data " cmds in the future // otherwise could be a void with no arguments //set defaults int high=0, low=128; uint64_t lo=0; //hi=0, uint32_t i = 0; uint32_t initLoopMax = 65; if (initLoopMax>BitLen) initLoopMax=BitLen; for (;i < initLoopMax; ++i) //65 samples should be plenty to find high and low values { if (BitStream[i] > high) high = BitStream[i]; else if (BitStream[i] < low) low = BitStream[i]; } if (((high !=1)||(low !=0))){ //allow only 1s and 0s // PrintAndLog("no data found"); return 0; } uint8_t parityTest=0; // 111111111 bit pattern represent start of frame uint8_t frame_marker_mask[] = {1,1,1,1,1,1,1,1,1}; uint32_t idx = 0; uint32_t ii=0; uint8_t resetCnt = 0; while( (idx + 64) < BitLen) { restart: // search for a start of frame marker if ( memcmp(BitStream+idx, frame_marker_mask, sizeof(frame_marker_mask)) == 0) { // frame marker found idx+=9;//sizeof(frame_marker_mask); for (i=0; i<10;i++){ for(ii=0; ii<5; ++ii){ parityTest += BitStream[(i*5)+ii+idx]; } if (parityTest== ((parityTest>>1)<<1)){ parityTest=0; for (ii=0; ii<4;++ii){ //hi = (hi<<1)|(lo>>31); lo=(lo<<1LL)|(BitStream[(i*5)+ii+idx]); } //PrintAndLog("DEBUG: EM parity passed parity val: %d, i:%d, ii:%d,idx:%d, Buffer: %d%d%d%d%d,lo: %d",parityTest,i,ii,idx,BitStream[idx+ii+(i*5)-5],BitStream[idx+ii+(i*5)-4],BitStream[idx+ii+(i*5)-3],BitStream[idx+ii+(i*5)-2],BitStream[idx+ii+(i*5)-1],lo); }else {//parity failed //PrintAndLog("DEBUG: EM parity failed parity val: %d, i:%d, ii:%d,idx:%d, Buffer: %d%d%d%d%d",parityTest,i,ii,idx,BitStream[idx+ii+(i*5)-5],BitStream[idx+ii+(i*5)-4],BitStream[idx+ii+(i*5)-3],BitStream[idx+ii+(i*5)-2],BitStream[idx+ii+(i*5)-1]); parityTest=0; idx-=8; if (resetCnt>5)return 0; resetCnt++; goto restart;//continue; } } //skip last 5 bit parity test for simplicity. return lo; }else{ idx++; } } return 0; } //by marshmellow //takes 2 arguments - clock and invert both as integers //attempts to demodulate ask while decoding manchester //prints binary found and saves in graphbuffer for further commands int askmandemod(uint8_t * BinStream, int *BitLen,int *clk, int *invert) { int i; int high = 0, low = 128; *clk=DetectASKClock(BinStream,(size_t)*BitLen,*clk); //clock default if (*clk<8) *clk =64; if (*clk<32) *clk=32; if (*invert != 0 && *invert != 1) *invert=0; uint32_t initLoopMax = 200; if (initLoopMax>*BitLen) initLoopMax=*BitLen; // Detect high and lows for (i = 0; i < initLoopMax; ++i) //200 samples should be enough to find high and low values { if (BinStream[i] > high) high = BinStream[i]; else if (BinStream[i] < low) low = BinStream[i]; } if ((high < 158) ){ //throw away static //PrintAndLog("no data found"); return -2; } //25% fuzz in case highs and lows aren't clipped [marshmellow] high=(int)((high-128)*.75)+128; low= (int)((low-128)*.75)+128; //PrintAndLog("DEBUG - valid high: %d - valid low: %d",high,low); int lastBit = 0; //set first clock check uint32_t bitnum = 0; //output counter int tol = 0; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave if (*clk==32)tol=1; //clock tolerance may not be needed anymore currently set to + or - 1 but could be increased for poor waves or removed entirely int iii = 0; uint32_t gLen = *BitLen; if (gLen > 3000) gLen=3000; uint8_t errCnt =0; uint32_t bestStart = *BitLen; uint32_t bestErrCnt = (*BitLen/1000); uint32_t maxErr = (*BitLen/1000); //PrintAndLog("DEBUG - lastbit - %d",lastBit); //loop to find first wave that works for (iii=0; iii < gLen; ++iii){ if ((BinStream[iii]>=high)||(BinStream[iii]<=low)){ lastBit=iii-*clk; errCnt=0; //loop through to see if this start location works for (i = iii; i < *BitLen; ++i) { if ((BinStream[i] >= high) && ((i-lastBit)>(*clk-tol))){ lastBit+=*clk; } else if ((BinStream[i] <= low) && ((i-lastBit)>(*clk-tol))){ //low found and we are expecting a bar lastBit+=*clk; } else { //mid value found or no bar supposed to be here if ((i-lastBit)>(*clk+tol)){ //should have hit a high or low based on clock!! //debug //PrintAndLog("DEBUG - no wave in expected area - location: %d, expected: %d-%d, lastBit: %d - resetting search",i,(lastBit+(clk-((int)(tol)))),(lastBit+(clk+((int)(tol)))),lastBit); errCnt++; lastBit+=*clk;//skip over until hit too many errors if (errCnt>(maxErr)) break; //allow 1 error for every 1000 samples else start over } } if ((i-iii) >(400 * *clk)) break; //got plenty of bits } //we got more than 64 good bits and not all errors if ((((i-iii)/ *clk) > (64+errCnt)) && (errCnt= high) && ((i-lastBit)>(*clk-tol))){ lastBit+=*clk; BinStream[bitnum] = *invert; bitnum++; } else if ((BinStream[i] <= low) && ((i-lastBit)>(*clk-tol))){ //low found and we are expecting a bar lastBit+=*clk; BinStream[bitnum] = 1-*invert; bitnum++; } else { //mid value found or no bar supposed to be here if ((i-lastBit)>(*clk+tol)){ //should have hit a high or low based on clock!! //debug //PrintAndLog("DEBUG - no wave in expected area - location: %d, expected: %d-%d, lastBit: %d - resetting search",i,(lastBit+(clk-((int)(tol)))),(lastBit+(clk+((int)(tol)))),lastBit); if (bitnum > 0){ BinStream[bitnum]=77; bitnum++; } lastBit+=*clk;//skip over error } } if (bitnum >=400) break; } *BitLen=bitnum; } else{ *invert=bestStart; *clk=iii; return -1; } return bestErrCnt; } //by marshmellow //take 10 and 01 and manchester decode //run through 2 times and take least errCnt int manrawdecode(uint8_t * BitStream, int *bitLen) { int bitnum=0; int errCnt =0; int i=1; int bestErr = 1000; int bestRun = 0; int ii=1; for (ii=1;ii<3;++ii){ i=1; for (i=i+ii;i<*bitLen-2;i+=2){ if(BitStream[i]==1 && (BitStream[i+1]==0)){ } else if((BitStream[i]==0)&& BitStream[i+1]==1){ } else { errCnt++; } if(bitnum>300) break; } if (bestErr>errCnt){ bestErr=errCnt; bestRun=ii; } errCnt=0; } errCnt=bestErr; if (errCnt<20){ ii=bestRun; i=1; for (i=i+ii;i<*bitLen-2;i+=2){ if(BitStream[i]==1 && (BitStream[i+1]==0)){ BitStream[bitnum++]=0; } else if((BitStream[i]==0)&& BitStream[i+1]==1){ BitStream[bitnum++]=1; } else { BitStream[bitnum++]=77; //errCnt++; } if(bitnum>300) break; } *bitLen=bitnum; } return errCnt; } //by marshmellow //take 01 or 10 = 0 and 11 or 00 = 1 int BiphaseRawDecode(uint8_t * BitStream, int *bitLen, int offset) { uint8_t bitnum=0; uint32_t errCnt =0; uint32_t i=1; i=offset; for (;i<*bitLen-2;i+=2){ if((BitStream[i]==1 && BitStream[i+1]==0)||(BitStream[i]==0 && BitStream[i+1]==1)){ BitStream[bitnum++]=1; } else if((BitStream[i]==0 && BitStream[i+1]==0)||(BitStream[i]==1 && BitStream[i+1]==1)){ BitStream[bitnum++]=0; } else { BitStream[bitnum++]=77; errCnt++; } if(bitnum>250) break; } *bitLen=bitnum; return errCnt; } //by marshmellow //takes 2 arguments - clock and invert both as integers //attempts to demodulate ask only //prints binary found and saves in graphbuffer for further commands int askrawdemod(uint8_t *BinStream, int *bitLen,int *clk, int *invert) { uint32_t i; // int invert=0; //invert default int high = 0, low = 128; *clk=DetectASKClock(BinStream,*bitLen,*clk); //clock default uint8_t BitStream[502] = {0}; if (*clk<8) *clk =64; if (*clk<32) *clk=32; if (*invert != 0 && *invert != 1) *invert =0; uint32_t initLoopMax = 200; if (initLoopMax>*bitLen) initLoopMax=*bitLen; // Detect high and lows for (i = 0; i < initLoopMax; ++i) //200 samples should be plenty to find high and low values { if (BinStream[i] > high) high = BinStream[i]; else if (BinStream[i] < low) low = BinStream[i]; } if ((high < 158)){ //throw away static // PrintAndLog("no data found"); return -2; } //25% fuzz in case highs and lows aren't clipped [marshmellow] high=(int)((high-128)*.75)+128; low= (int)((low-128)*.75)+128; //PrintAndLog("DEBUG - valid high: %d - valid low: %d",high,low); int lastBit = 0; //set first clock check uint32_t bitnum = 0; //output counter uint8_t tol = 0; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave if (*clk==32)tol=1; //clock tolerance may not be needed anymore currently set to + or - 1 but could be increased for poor waves or removed entirely uint32_t iii = 0; uint32_t gLen = *bitLen; if (gLen > 500) gLen=500; uint8_t errCnt =0; uint32_t bestStart = *bitLen; uint32_t bestErrCnt = (*bitLen/1000); uint8_t midBit=0; //PrintAndLog("DEBUG - lastbit - %d",lastBit); //loop to find first wave that works for (iii=0; iii < gLen; ++iii){ if ((BinStream[iii]>=high)||(BinStream[iii]<=low)){ lastBit=iii-*clk; //loop through to see if this start location works for (i = iii; i < *bitLen; ++i) { if ((BinStream[i] >= high) && ((i-lastBit)>(*clk-tol))){ lastBit+=*clk; BitStream[bitnum] = *invert; bitnum++; midBit=0; } else if ((BinStream[i] <= low) && ((i-lastBit)>(*clk-tol))){ //low found and we are expecting a bar lastBit+=*clk; BitStream[bitnum] = 1-*invert; bitnum++; midBit=0; } else if ((BinStream[i]<=low) && (midBit==0) && ((i-lastBit)>((*clk/2)-tol))){ //mid bar? midBit=1; BitStream[bitnum]= 1-*invert; bitnum++; } else if ((BinStream[i]>=high)&&(midBit==0) && ((i-lastBit)>((*clk/2)-tol))){ //mid bar? midBit=1; BitStream[bitnum]= *invert; bitnum++; } else if ((i-lastBit)>((*clk/2)+tol)&&(midBit==0)){ //no mid bar found midBit=1; BitStream[bitnum]= BitStream[bitnum-1]; bitnum++; } else { //mid value found or no bar supposed to be here if ((i-lastBit)>(*clk+tol)){ //should have hit a high or low based on clock!! //debug //PrintAndLog("DEBUG - no wave in expected area - location: %d, expected: %d-%d, lastBit: %d - resetting search",i,(lastBit+(clk-((int)(tol)))),(lastBit+(clk+((int)(tol)))),lastBit); if (bitnum > 0){ BitStream[bitnum]=77; bitnum++; } errCnt++; lastBit+=*clk;//skip over until hit too many errors if (errCnt>((*bitLen/1000))){ //allow 1 error for every 1000 samples else start over errCnt=0; bitnum=0;//start over break; } } } if (bitnum>500) break; } //we got more than 64 good bits and not all errors if ((bitnum > (64+errCnt)) && (errCnt<(*bitLen/1000))) { //possible good read if (errCnt==0) break; //great read - finish if (bestStart == iii) break; //if current run == bestErrCnt run (after exhausted testing) then finish if (errCnt=gLen){ //exhausted test //if there was a ok test go back to that one and re-run the best run (then dump after that run) if (bestErrCnt < (*bitLen/1000)) iii=bestStart; } } if (bitnum>16){ // PrintAndLog("Data start pos:%d, lastBit:%d, stop pos:%d, numBits:%d",iii,lastBit,i,bitnum); //move BitStream back to BinStream // ClearGraph(0); for (i=0; i < bitnum; ++i){ BinStream[i]=BitStream[i]; } *bitLen=bitnum; // RepaintGraphWindow(); //output // if (errCnt>0){ // PrintAndLog("# Errors during Demoding (shown as 77 in bit stream): %d",errCnt); // } // PrintAndLog("ASK decoded bitstream:"); // Now output the bitstream to the scrollback by line of 16 bits // printBitStream2(BitStream,bitnum); //int errCnt=0; //errCnt=manrawdemod(BitStream,bitnum); // Em410xDecode(Cmd); } else return -1; return errCnt; } //translate wave to 11111100000 (1 for each short wave 0 for each long wave) size_t fsk_wave_demod(uint8_t * dest, size_t size, uint8_t fchigh, uint8_t fclow) { uint32_t last_transition = 0; uint32_t idx = 1; uint32_t maxVal=0; if (fchigh==0) fchigh=10; if (fclow==0) fclow=8; // we do care about the actual theshold value as sometimes near the center of the // wave we may get static that changes direction of wave for one value // if our value is too low it might affect the read. and if our tag or // antenna is weak a setting too high might not see anything. [marshmellow] if (size<100) return 0; for(idx=1; idx<100; idx++){ if(maxVal1 transition if (dest[idx-1] < dest[idx]) { // 0 -> 1 transition if ((idx-last_transition)<(fclow-2)){ //0-5 = garbage noise //do nothing with extra garbage } else if ((idx-last_transition) < (fchigh-1)) { //6-8 = 8 waves dest[numBits]=1; } else { //9+ = 10 waves dest[numBits]=0; } last_transition = idx; numBits++; } } return numBits; //Actually, it returns the number of bytes, but each byte represents a bit: 1 or 0 } uint32_t myround2(float f) { if (f >= 2000) return 2000;//something bad happened return (uint32_t) (f + (float)0.5); } //translate 11111100000 to 10 size_t aggregate_bits(uint8_t *dest,size_t size, uint8_t rfLen, uint8_t maxConsequtiveBits, uint8_t invert,uint8_t fchigh,uint8_t fclow )// uint8_t h2l_crossing_value,uint8_t l2h_crossing_value, { uint8_t lastval=dest[0]; uint32_t idx=0; size_t numBits=0; uint32_t n=1; for( idx=1; idx < size; idx++) { if (dest[idx]==lastval) { n++; continue; } //if lastval was 1, we have a 1->0 crossing if ( dest[idx-1]==1 ) { n=myround2((float)(n+1)/((float)(rfLen)/(float)fclow)); //n=(n+1) / h2l_crossing_value; } else {// 0->1 crossing n=myround2((float)(n+1)/((float)(rfLen-2)/(float)fchigh)); //-2 for fudge factor //n=(n+1) / l2h_crossing_value; } if (n == 0) n = 1; if(n < maxConsequtiveBits) //Consecutive { if(invert==0){ //invert bits memset(dest+numBits, dest[idx-1] , n); }else{ memset(dest+numBits, dest[idx-1]^1 , n); } numBits += n; } n=0; lastval=dest[idx]; }//end for return numBits; } //by marshmellow (from holiman's base) // full fsk demod from GraphBuffer wave to decoded 1s and 0s (no mandemod) int fskdemod(uint8_t *dest, size_t size, uint8_t rfLen, uint8_t invert, uint8_t fchigh, uint8_t fclow) { // FSK demodulator size = fsk_wave_demod(dest, size, fchigh, fclow); size = aggregate_bits(dest, size,rfLen,192,invert,fchigh,fclow); return size; } // loop to get raw HID waveform then FSK demodulate the TAG ID from it int HIDdemodFSK(uint8_t *dest, size_t size, uint32_t *hi2, uint32_t *hi, uint32_t *lo) { size_t idx=0; //, found=0; //size=0, // FSK demodulator size = fskdemod(dest, size,50,0,10,8); // final loop, go over previously decoded manchester data and decode into usable tag ID // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0 uint8_t frame_marker_mask[] = {1,1,1,0,0,0}; int numshifts = 0; idx = 0; //one scan while( idx + sizeof(frame_marker_mask) < size) { // search for a start of frame marker if ( memcmp(dest+idx, frame_marker_mask, sizeof(frame_marker_mask)) == 0) { // frame marker found idx+=sizeof(frame_marker_mask); while(dest[idx] != dest[idx+1] && idx < size-2) { // Keep going until next frame marker (or error) // Shift in a bit. Start by shifting high registers *hi2 = (*hi2<<1)|(*hi>>31); *hi = (*hi<<1)|(*lo>>31); //Then, shift in a 0 or one into low if (dest[idx] && !dest[idx+1]) // 1 0 *lo=(*lo<<1)|0; else // 0 1 *lo=(*lo<<1)|1; numshifts++; idx += 2; } // Hopefully, we read a tag and hit upon the next frame marker if(idx + sizeof(frame_marker_mask) < size) { if ( memcmp(dest+idx, frame_marker_mask, sizeof(frame_marker_mask)) == 0) { //good return return idx; } } // reset *hi2 = *hi = *lo = 0; numshifts = 0; }else { idx++; } } return -1; } uint32_t bytebits_to_byte(uint8_t* src, int numbits) { uint32_t num = 0; for(int i = 0 ; i < numbits ; i++) { num = (num << 1) | (*src); src++; } return num; } int IOdemodFSK(uint8_t *dest, size_t size) { uint32_t idx=0; //make sure buffer has data if (size < 66) return -1; //test samples are not just noise uint8_t testMax=0; for(idx=0;idx<65;idx++){ if (testMax170){ // FSK demodulator size = fskdemod(dest, size,64,1,10,8); // RF/64 and invert if (size < 65) return -1; //did we get a good demod? //Index map //0 10 20 30 40 50 60 //| | | | | | | //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23 //----------------------------------------------------------------------------- //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11 // //XSF(version)facility:codeone+codetwo //Handle the data uint8_t mask[] = {0,0,0,0,0,0,0,0,0,1}; for( idx=0; idx < (size - 65); idx++) { if ( memcmp(dest + idx, mask, sizeof(mask))==0) { //frame marker found if (!dest[idx+8] && dest[idx+17]==1 && dest[idx+26]==1 && dest[idx+35]==1 && dest[idx+44]==1 && dest[idx+53]==1){ //confirmed proper separator bits found //return start position return (int) idx; } } } } return 0; } // by marshmellow // not perfect especially with lower clocks or VERY good antennas (heavy wave clipping) // maybe somehow adjust peak trimming value based on samples to fix? int DetectASKClock(uint8_t dest[], size_t size, int clock) { int i=0; int peak=0; int low=128; int clk[]={16,32,40,50,64,100,128,256}; int loopCnt = 256; //don't need to loop through entire array... if (sizepeak){ peak = dest[i]; } if(dest[i]=peak) || (dest[ii]<=low)){ errCnt=0; // now that we have the first one lined up test rest of wave array for (i=0; i<((int)(size/clk[clkCnt])-1); ++i){ if (dest[ii+(i*clk[clkCnt])]>=peak || dest[ii+(i*clk[clkCnt])]<=low){ }else if(dest[ii+(i*clk[clkCnt])-tol]>=peak || dest[ii+(i*clk[clkCnt])-tol]<=low){ }else if(dest[ii+(i*clk[clkCnt])+tol]>=peak || dest[ii+(i*clk[clkCnt])+tol]<=low){ }else{ //error no peak detected errCnt++; } } //if we found no errors this is correct one - return this clock if(errCnt==0) return clk[clkCnt]; //if we found errors see if it is lowest so far and save it as best run if(errCntpeak){ peak = dest[i]; } if(dest[i]=peak) || (dest[ii]<=low)){ errCnt=0; peakcnt=0; // now that we have the first one lined up test rest of wave array for (i=0; i<((int)(size/clk[clkCnt])-1); ++i){ if (dest[ii+(i*clk[clkCnt])]>=peak || dest[ii+(i*clk[clkCnt])]<=low){ peakcnt++; }else if(dest[ii+(i*clk[clkCnt])-tol]>=peak || dest[ii+(i*clk[clkCnt])-tol]<=low){ peakcnt++; }else if(dest[ii+(i*clk[clkCnt])+tol]>=peak || dest[ii+(i*clk[clkCnt])+tol]<=low){ peakcnt++; }else{ //error no peak detected errCnt++; } } if(peakcnt>peaksdet[clkCnt]) { peaksdet[clkCnt]=peakcnt; bestErr[clkCnt]=errCnt; } } } } int iii=0; int best=0; //int ratio2; //debug int ratio; //int bits; for (iii=0; iii<7;++iii){ ratio=1000; //ratio2=1000; //debug //bits=size/clk[iii]; //debug if (peaksdet[iii]>0){ ratio=bestErr[iii]/peaksdet[iii]; if (((bestErr[best]/peaksdet[best])>(ratio)+1)){ best = iii; } //ratio2=bits/peaksdet[iii]; //debug } //PrintAndLog("DEBUG: Clk: %d, peaks: %d, errs: %d, bestClk: %d, ratio: %d, bits: %d, peakbitr: %d",clk[iii],peaksdet[iii],bestErr[iii],clk[best],ratio, bits,ratio2); } return clk[best]; } /* int DetectNRZpskClock(uint8_t dest[], size_t size, int clock) { int i=0; int peak=0; int low=128; int clk[]={16,32,40,50,64,100,128,256}; int loopCnt = 1500; //don't need to loop through entire array... if (sizepeak){ peak = dest[i]; } if(dest[i]=peak) || (dest[ii]<=low)){ lastClk = ii-*clk; errCnt[clkCnt]=0; // now that we have the first one lined up test rest of wave array for (i=ii; i=peak || dest[i]<=low) && (i>=lastClk+*clk-tol && i<=lastClk+*clk+tol)){ bitHigh=1; lastClk=lastClk+*clk; ignorewin=clk[clkCnt]/8; }else if(dest[i]low) { if (ignorewin==0){ bitHigh=0; }else ignorewin--; if (i>=lastClk+*clk+tol){ //past possible bar lowBitCnt[clkCnt]++; } }else if ((dest[i]>=peak || dest[i]<=low) && (i=lastClk+*clk+tol) && (bitHigh==0)){ //error bar found no clock... errCnt[clkCnt]++; } } //if we found no errors this is correct one - return this clock if(errCnt[clkCnt]==0 && lowBitCnt[clkCnt]==0) return clk[clkCnt]; //if we found errors see if it is lowest so far and save it as best run if(errCnt[clkCnt]high) high=bitStream[i]; } high = (int)(((high-128)*.80)+128); low = (int)(((low-128)*.90)+128); //low = (uint8_t)(((int)(low)-128)*.80)+128; for (i=0; i=high) newHigh=1; } return; } int indala26decode(uint8_t *bitStream, int *bitLen, uint8_t *invert) { //26 bit 40134 format (don't know other formats) // Finding the start of a UID int i; int long_wait; //uidlen = 64; long_wait = 29;//29 leading zeros in format int start; int first = 0; int first2 = 0; int bitCnt = 0; int ii; for (start = 0; start <= *bitLen - 250; start++) { first = bitStream[start]; for (i = start; i < start + long_wait; i++) { if (bitStream[i] != first) { break; } } if (i == (start + long_wait)) { break; } } if (start == *bitLen - 250 + 1) { // did not find start sequence return -1; } //found start once now test length by finding next one // Inverting signal if needed if (first == 1) { for (i = start; i < *bitLen; i++) { bitStream[i] = !bitStream[i]; } *invert = 1; }else *invert=0; int iii; for (ii=start+29; ii <= *bitLen - 250; ii++) { first2 = bitStream[ii]; for (iii = ii; iii < ii + long_wait; iii++) { if (bitStream[iii] != first2) { break; } } if (iii == (ii + long_wait)) { break; } } if (ii== *bitLen - 250 + 1){ // did not find second start sequence return -2; } bitCnt=ii-start; // Dumping UID i = start; for (ii = 0; ii < bitCnt; ii++) { bitStream[ii] = bitStream[i++]; //showbits[bit] = '0' + bits[bit]; } *bitLen=bitCnt; return 1; } int pskNRZrawDemod(uint8_t *dest, int *bitLen, int *clk, int *invert) { pskCleanWave(dest,*bitLen); int clk2 = DetectpskNRZClock(dest, *bitLen, *clk); *clk=clk2; uint32_t i; uint8_t high=0, low=128; uint32_t gLen = *bitLen; if (gLen > 1280) gLen=1280; // get high for (i=0; ihigh) high = dest[i]; if (dest[i]=high)||(dest[iii]<=low)){ lastBit=iii-*clk; //loop through to see if this start location works for (i = iii; i < *bitLen; ++i) { //if we found a high bar and we are at a clock bit if ((dest[i]>=high ) && (i>=lastBit+*clk-tol && i<=lastBit+*clk+tol)){ bitHigh=1; lastBit+=*clk; //curBit=1-*invert; //dest[bitnum]=curBit; ignorewin=*clk/8; bitnum++; //else if low bar found and we are at a clock point }else if ((dest[i]<=low ) && (i>=lastBit+*clk-tol && i<=lastBit+*clk+tol)){ bitHigh=1; lastBit+=*clk; ignorewin=*clk/8; //curBit=*invert; //dest[bitnum]=curBit; bitnum++; //else if no bars found }else if(dest[i]low) { if (ignorewin==0){ bitHigh=0; }else ignorewin--; //if we are past a clock point if (i>=lastBit+*clk+tol){ //clock val //dest[bitnum]=curBit; lastBit+=*clk; bitnum++; } //else if bar found but we are not at a clock bit and we did not just have a clock bit }else if ((dest[i]>=high || dest[i]<=low) && (ilastBit+*clk+tol) && (bitHigh==0)){ //error bar found no clock... errCnt++; } if (bitnum>=1000) break; } //we got more than 64 good bits and not all errors if ((bitnum > (64+errCnt)) && (errCnt<(maxErr))) { //possible good read if (errCnt==0){ bestStart = iii; bestErrCnt=errCnt; break; //great read - finish } if (bestStart == iii) break; //if current run == bestErrCnt run (after exhausted testing) then finish if (errCnt=high ) && (i>=lastBit+*clk-tol && i<=lastBit+*clk+tol)){ bitHigh=1; lastBit+=*clk; curBit=1-*invert; dest[bitnum]=curBit; ignorewin=*clk/8; bitnum++; //else if low bar found and we are at a clock point }else if ((dest[i]<=low ) && (i>=lastBit+*clk-tol && i<=lastBit+*clk+tol)){ bitHigh=1; lastBit+=*clk; curBit=*invert; dest[bitnum]=curBit; ignorewin=*clk/8; bitnum++; //else if no bars found }else if(dest[i]low) { if (ignorewin==0){ bitHigh=0; }else ignorewin--; //if we are past a clock point if (i>=lastBit+*clk+tol){ //clock val lastBit+=*clk; dest[bitnum]=curBit; bitnum++; } //else if bar found but we are not at a clock bit and we did not just have a clock bit }else if ((dest[i]>=high || dest[i]<=low) && ((ilastBit+*clk+tol)) && (bitHigh==0)){ //error bar found no clock... bitHigh=1; dest[bitnum]=77; bitnum++; errCnt++; } if (bitnum >=1000) break; } *bitLen=bitnum; } else{ *bitLen=bitnum; *clk=bestStart; return -1; } if (bitnum>16){ *bitLen=bitnum; } else return -1; return errCnt; } /*not needed? uint32_t i; uint8_t high=0, low=128; uint32_t loopMax = 1280; //20 raw bits // get high if (sizehigh) high = dest[i]; if (dest[i]=high) dest[i]=high; else if(dest[i]<=low) dest[i]=low; else dest[i]=0; } */