//----------------------------------------------------------------------------- // Copyright (C) Merlok - 2017 // // This code is licensed to you under the terms of the GNU GPL, version 2 or, // at your option, any later version. See the LICENSE.txt file for the text of // the license. //----------------------------------------------------------------------------- // Command: hf mf list. It shows data from arm buffer. //----------------------------------------------------------------------------- #include "cmdhflist.h" #include #include #include #include #include #include "util.h" #include "data.h" #include "ui.h" #include "iso14443crc.h" #include "parity.h" #include "protocols.h" #include "crapto1/crapto1.h" #include "mifarehost.h" #include "mifaredefault.h" enum MifareAuthSeq { masNone, masNt, masNrAr, masAt, masAuthComplete, masFirstData, masData, masError, }; static enum MifareAuthSeq MifareAuthState; static TAuthData AuthData; void ClearAuthData() { AuthData.uid = 0; AuthData.nt = 0; AuthData.first_auth = true; AuthData.ks2 = 0; AuthData.ks3 = 0; } /** * @brief iso14443A_CRC_check Checks CRC in command or response * @param isResponse * @param data * @param len * @return 0 : CRC-command, CRC not ok * 1 : CRC-command, CRC ok * 2 : Not crc-command */ uint8_t iso14443A_CRC_check(bool isResponse, uint8_t* data, uint8_t len) { uint8_t b1,b2; if(len <= 2) return 2; if(isResponse & (len < 6)) return 2; ComputeCrc14443(CRC_14443_A, data, len-2, &b1, &b2); if (b1 != data[len-2] || b2 != data[len-1]) { return 0; } else { return 1; } } uint8_t mifare_CRC_check(bool isResponse, uint8_t* data, uint8_t len) { switch(MifareAuthState) { case masNone: case masError: return iso14443A_CRC_check(isResponse, data, len); default: return 2; } } void annotateIso14443a(char *exp, size_t size, uint8_t* cmd, uint8_t cmdsize) { switch(cmd[0]) { case ISO14443A_CMD_WUPA: snprintf(exp,size,"WUPA"); break; case ISO14443A_CMD_ANTICOLL_OR_SELECT:{ // 93 20 = Anticollision (usage: 9320 - answer: 4bytes UID+1byte UID-bytes-xor) // 93 70 = Select (usage: 9370+5bytes 9320 answer - answer: 1byte SAK) if(cmd[1] == 0x70) { snprintf(exp,size,"SELECT_UID"); break; }else { snprintf(exp,size,"ANTICOLL"); break; } } case ISO14443A_CMD_ANTICOLL_OR_SELECT_2:{ //95 20 = Anticollision of cascade level2 //95 70 = Select of cascade level2 if(cmd[2] == 0x70) { snprintf(exp,size,"SELECT_UID-2"); break; }else { snprintf(exp,size,"ANTICOLL-2"); break; } } case ISO14443A_CMD_REQA: snprintf(exp,size,"REQA"); break; case ISO14443A_CMD_READBLOCK: snprintf(exp,size,"READBLOCK(%d)",cmd[1]); break; case ISO14443A_CMD_WRITEBLOCK: snprintf(exp,size,"WRITEBLOCK(%d)",cmd[1]); break; case ISO14443A_CMD_HALT: snprintf(exp,size,"HALT"); MifareAuthState = masNone; break; case ISO14443A_CMD_RATS: snprintf(exp,size,"RATS"); break; case MIFARE_CMD_INC: snprintf(exp,size,"INC(%d)",cmd[1]); break; case MIFARE_CMD_DEC: snprintf(exp,size,"DEC(%d)",cmd[1]); break; case MIFARE_CMD_RESTORE: snprintf(exp,size,"RESTORE(%d)",cmd[1]); break; case MIFARE_CMD_TRANSFER: snprintf(exp,size,"TRANSFER(%d)",cmd[1]); break; case MIFARE_AUTH_KEYA: if ( cmdsize > 3) { snprintf(exp,size,"AUTH-A(%d)",cmd[1]); MifareAuthState = masNt; } else { // case MIFARE_ULEV1_VERSION : both 0x60. snprintf(exp,size,"EV1 VERSION"); } break; case MIFARE_AUTH_KEYB: MifareAuthState = masNt; snprintf(exp,size,"AUTH-B(%d)",cmd[1]); break; case MIFARE_MAGICWUPC1: snprintf(exp,size,"MAGIC WUPC1"); break; case MIFARE_MAGICWUPC2: snprintf(exp,size,"MAGIC WUPC2"); break; case MIFARE_MAGICWIPEC: snprintf(exp,size,"MAGIC WIPEC"); break; case MIFARE_ULC_AUTH_1: snprintf(exp,size,"AUTH "); break; case MIFARE_ULC_AUTH_2: snprintf(exp,size,"AUTH_ANSW"); break; case MIFARE_ULEV1_AUTH: if ( cmdsize == 7 ) snprintf(exp,size,"PWD-AUTH KEY: 0x%02x%02x%02x%02x", cmd[1], cmd[2], cmd[3], cmd[4] ); else snprintf(exp,size,"PWD-AUTH"); break; case MIFARE_ULEV1_FASTREAD:{ if ( cmdsize >=3 && cmd[2] <= 0xE6) snprintf(exp,size,"READ RANGE (%d-%d)",cmd[1],cmd[2]); else snprintf(exp,size,"?"); break; } case MIFARE_ULC_WRITE:{ if ( cmd[1] < 0x21 ) snprintf(exp,size,"WRITEBLOCK(%d)",cmd[1]); else snprintf(exp,size,"?"); break; } case MIFARE_ULEV1_READ_CNT:{ if ( cmd[1] < 5 ) snprintf(exp,size,"READ CNT(%d)",cmd[1]); else snprintf(exp,size,"?"); break; } case MIFARE_ULEV1_INCR_CNT:{ if ( cmd[1] < 5 ) snprintf(exp,size,"INCR(%d)",cmd[1]); else snprintf(exp,size,"?"); break; } case MIFARE_ULEV1_READSIG: snprintf(exp,size,"READ_SIG"); break; case MIFARE_ULEV1_CHECKTEAR: snprintf(exp,size,"CHK_TEARING(%d)",cmd[1]); break; case MIFARE_ULEV1_VCSL: snprintf(exp,size,"VCSL"); break; default: snprintf(exp,size,"?"); break; } return; } void annotateMifare(char *exp, size_t size, uint8_t* cmd, uint8_t cmdsize, uint8_t* parity, uint8_t paritysize, bool isResponse) { if (!isResponse && cmdsize == 1) { switch(cmd[0]) { case ISO14443A_CMD_WUPA: case ISO14443A_CMD_REQA: MifareAuthState = masNone; break; default: break; } } // get UID if (MifareAuthState == masNone) { if (cmdsize == 9 && cmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT && cmd[1] == 0x70) { ClearAuthData(); AuthData.uid = bytes_to_num(&cmd[2], 4); } if (cmdsize == 9 && cmd[0] == ISO14443A_CMD_ANTICOLL_OR_SELECT_2 && cmd[1] == 0x70) { ClearAuthData(); AuthData.uid = bytes_to_num(&cmd[2], 4); } } switch(MifareAuthState) { case masNt: if (cmdsize == 4 && isResponse) { snprintf(exp,size,"AUTH: nt %s", (AuthData.first_auth) ? "" : "(enc)"); MifareAuthState = masNrAr; if (AuthData.first_auth) AuthData.nt = bytes_to_num(cmd, 4); else AuthData.nt_enc = bytes_to_num(cmd, 4); AuthData.nt_enc_par = parity[0]; return; } else { MifareAuthState = masError; } break; case masNrAr: if (cmdsize == 8 && !isResponse) { snprintf(exp,size,"AUTH: nr ar (enc)"); MifareAuthState = masAt; AuthData.nr_enc = bytes_to_num(cmd, 4); AuthData.ar_enc = bytes_to_num(&cmd[4], 4); AuthData.ar_enc_par = parity[0] << 4; return; } else { MifareAuthState = masError; } break; case masAt: if (cmdsize == 4 && isResponse) { snprintf(exp,size,"AUTH: at (enc)"); MifareAuthState = masAuthComplete; AuthData.at_enc = bytes_to_num(cmd, 4); AuthData.at_enc_par = parity[0]; return; } else { MifareAuthState = masError; } break; default: break; } if (!isResponse && ((MifareAuthState == masNone) || (MifareAuthState == masError))) annotateIso14443a(exp, size, cmd, cmdsize); } bool DecodeMifareData(uint8_t *cmd, uint8_t cmdsize, uint8_t *parity, bool isResponse, uint8_t *mfData, size_t *mfDataLen) { static struct Crypto1State *traceCrypto1; static uint64_t mfLastKey; *mfDataLen = 0; if (MifareAuthState == masAuthComplete) { if (traceCrypto1) { crypto1_destroy(traceCrypto1); } MifareAuthState = masFirstData; return false; } if (cmdsize > 32) return false; if (MifareAuthState == masFirstData) { if (AuthData.first_auth) { AuthData.ks2 = AuthData.ar_enc ^ prng_successor(AuthData.nt, 64); AuthData.ks3 = AuthData.at_enc ^ prng_successor(AuthData.nt, 96); struct Crypto1State *revstate = lfsr_recovery64(AuthData.ks2, AuthData.ks3); lfsr_rollback_word(revstate, 0, 0); lfsr_rollback_word(revstate, 0, 0); lfsr_rollback_word(revstate, AuthData.nr_enc, 1); lfsr_rollback_word(revstate, AuthData.uid ^ AuthData.nt, 0); uint64_t lfsr = 0; crypto1_get_lfsr(revstate, &lfsr); crypto1_destroy(revstate); mfLastKey = lfsr; PrintAndLog(" | * | key | probable key:%x%x Prng:%s ks2:%08x ks3:%08x | |", (unsigned int)((lfsr & 0xFFFFFFFF00000000) >> 32), (unsigned int)(lfsr & 0xFFFFFFFF), validate_prng_nonce(AuthData.nt) ? "WEAK": "HARD", AuthData.ks2, AuthData.ks3); AuthData.first_auth = false; traceCrypto1 = lfsr_recovery64(AuthData.ks2, AuthData.ks3); } else { // check last used key if (mfLastKey) { if (NestedCheckKey(mfLastKey, &AuthData, cmd, cmdsize, parity)) { PrintAndLog(" | * | key | last used key:%x%x ks2:%08x ks3:%08x | |", (unsigned int)((mfLastKey & 0xFFFFFFFF00000000) >> 32), (unsigned int)(mfLastKey & 0xFFFFFFFF), AuthData.ks2, AuthData.ks3); traceCrypto1 = lfsr_recovery64(AuthData.ks2, AuthData.ks3); }; } // check default keys if (!traceCrypto1) { for (int defaultKeyCounter = 0; defaultKeyCounter < MifareDefaultKeysSize; defaultKeyCounter++){ if (NestedCheckKey(MifareDefaultKeys[defaultKeyCounter], &AuthData, cmd, cmdsize, parity)) { PrintAndLog(" | * | key | default key:%x%x ks2:%08x ks3:%08x | |", (unsigned int)((MifareDefaultKeys[defaultKeyCounter] & 0xFFFFFFFF00000000) >> 32), (unsigned int)(MifareDefaultKeys[defaultKeyCounter] & 0xFFFFFFFF), AuthData.ks2, AuthData.ks3); traceCrypto1 = lfsr_recovery64(AuthData.ks2, AuthData.ks3); break; }; } } // nested if (!traceCrypto1 && validate_prng_nonce(AuthData.nt)) { printf("nested. uid:%x nt:%x ar_enc:%x at_enc:%x\n", AuthData.uid, AuthData.nt, AuthData.ar_enc, AuthData.at_enc); uint32_t ntx = prng_successor(AuthData.nt, 90); for (int i = 0; i < 16383; i++) { ntx = prng_successor(ntx, 1); if (NTParityChk(&AuthData, ntx)){ uint32_t ks2 = AuthData.ar_enc ^ prng_successor(ntx, 64); uint32_t ks3 = AuthData.at_enc ^ prng_successor(ntx, 96); struct Crypto1State *pcs = lfsr_recovery64(ks2, ks3); memcpy(mfData, cmd, cmdsize); mf_crypto1_decrypt(pcs, mfData, cmdsize, 0); crypto1_destroy(pcs); if (CheckCrc14443(CRC_14443_A, mfData, cmdsize)) { AuthData.ks2 = ks2; AuthData.ks3 = ks3; traceCrypto1 = lfsr_recovery64(AuthData.ks2, AuthData.ks3); break; } } } if (traceCrypto1) printf("key> nt=%08x nonce distance=%d \n", ntx, nonce_distance(AuthData.nt, ntx)); else printf("key> don't have any valid nt( \n"); } //hardnested if (!traceCrypto1) { printf("hardnested not implemented. uid:%x nt:%x ar_enc:%x at_enc:%x\n", AuthData.uid, AuthData.nt, AuthData.ar_enc, AuthData.at_enc); } } MifareAuthState = masData; } if (MifareAuthState == masData && traceCrypto1) { memcpy(mfData, cmd, cmdsize); mf_crypto1_decrypt(traceCrypto1, mfData, cmdsize, 0); *mfDataLen = cmdsize; } return *mfDataLen > 0; } bool NTParityChk(TAuthData *ad, uint32_t ntx) { if ( (oddparity8(ntx >> 8 & 0xff) ^ (ntx & 0x01) ^ ((ad->nt_enc_par >> 5) & 0x01) ^ (ad->nt_enc & 0x01)) || (oddparity8(ntx >> 16 & 0xff) ^ (ntx >> 8 & 0x01) ^ ((ad->nt_enc_par >> 6) & 0x01) ^ (ad->nt_enc >> 8 & 0x01)) || (oddparity8(ntx >> 24 & 0xff) ^ (ntx >> 16 & 0x01) ^ ((ad->nt_enc_par >> 7) & 0x01) ^ (ad->nt_enc >> 16 & 0x01)) ) return false; uint32_t ar = prng_successor(ntx, 64); if ( (oddparity8(ar >> 8 & 0xff) ^ (ar & 0x01) ^ ((ad->ar_enc_par >> 5) & 0x01) ^ (ad->ar_enc & 0x01)) || (oddparity8(ar >> 16 & 0xff) ^ (ar >> 8 & 0x01) ^ ((ad->ar_enc_par >> 6) & 0x01) ^ (ad->ar_enc >> 8 & 0x01)) || (oddparity8(ar >> 24 & 0xff) ^ (ar >> 16 & 0x01) ^ ((ad->ar_enc_par >> 7) & 0x01) ^ (ad->ar_enc >> 16 & 0x01)) ) return false; uint32_t at = prng_successor(ntx, 96); if ( (oddparity8(ar & 0xff) ^ (at >> 24 & 0x01) ^ ((ad->ar_enc_par >> 4) & 0x01) ^ (ad->at_enc >> 24 & 0x01)) || (oddparity8(at >> 8 & 0xff) ^ (at & 0x01) ^ ((ad->at_enc_par >> 5) & 0x01) ^ (ad->at_enc & 0x01)) || (oddparity8(at >> 16 & 0xff) ^ (at >> 8 & 0x01) ^ ((ad->at_enc_par >> 6) & 0x01) ^ (ad->at_enc >> 8 & 0x01)) || (oddparity8(at >> 24 & 0xff) ^ (at >> 16 & 0x01) ^ ((ad->at_enc_par >> 7) & 0x01) ^ (ad->at_enc >> 16 & 0x01)) ) return false; return true; } bool NestedCheckKey(uint64_t key, TAuthData *ad, uint8_t *cmd, uint8_t cmdsize, uint8_t *parity) { uint8_t buf[32] = {0}; struct Crypto1State *pcs; AuthData.ks2 = 0; AuthData.ks3 = 0; pcs = crypto1_create(key); uint32_t nt1 = crypto1_word(pcs, ad->nt_enc ^ ad->uid, 1) ^ ad->nt_enc; uint32_t ar = prng_successor(nt1, 64); uint32_t at = prng_successor(nt1, 96); crypto1_word(pcs, ad->nr_enc, 1); // uint32_t nr1 = crypto1_word(pcs, ad->nr_enc, 1) ^ ad->nr_enc; // if needs deciphered nr uint32_t ar1 = crypto1_word(pcs, 0, 0) ^ ad->ar_enc; uint32_t at1 = crypto1_word(pcs, 0, 0) ^ ad->at_enc; if (!(ar == ar1 && at == at1 && NTParityChk(ad, nt1))) return false; memcpy(buf, cmd, cmdsize); mf_crypto1_decrypt(pcs, buf, cmdsize, 0); crypto1_destroy(pcs); if(!CheckCrc14443(CRC_14443_A, buf, cmdsize)) return false; if (!CheckCrypto1Parity(cmd, cmdsize, buf, parity)) return false; AuthData.ks2 = AuthData.ar_enc ^ ar; AuthData.ks3 = AuthData.at_enc ^ at; return true; } bool CheckCrypto1Parity(uint8_t *cmd, uint8_t cmdsize, uint8_t *cmd_enc, uint8_t *parity_enc) { printf("parity check. size=%d\n", cmdsize); printf("cmd =%s\n", sprint_hex(cmd, cmdsize)); printf("cmd_enc=%s\n", sprint_hex(cmd_enc, cmdsize)); printf("parity=%s\n", printBitsPar(parity_enc, cmdsize)); // (oddparity8(ntx >> 8 & 0xff) ^ (ntx & 0x01) ^ ((ad->nt_enc_par >> 5) & 0x01) ^ (ad->nt_enc & 0x01)) || for (int i = 0; i < cmdsize - 1; i++) { bool b = oddparity8(cmd[i]) ^ (cmd[i + 1] & 0x01) ^ ((parity_enc[i / 8] >> (6 - i % 8)) & 0x01) ^ (cmd_enc[i + 1] & 0x01); printf("i=%d b=%d\n", i, b); if (b) return false; } return true; }