// Merlok, 2011, 2012 // people from mifare@nethemba.com, 2010 // // This code is licensed to you under the terms of the GNU GPL, version 2 or, // at your option, any later version. See the LICENSE.txt file for the text of // the license. //----------------------------------------------------------------------------- // mifare commands //----------------------------------------------------------------------------- #include "mifarehost.h" #include #include #include #include #include #include "crapto1/crapto1.h" #include "comms.h" #include "usb_cmd.h" #include "cmdmain.h" #include "ui.h" #include "parity.h" #include "util.h" #include "iso14443crc.h" #include "util_posix.h" #include "mifare.h" #include "mifare4.h" // mifare tracer flags used in mfTraceDecode() #define TRACE_IDLE 0x00 #define TRACE_AUTH1 0x01 #define TRACE_AUTH2 0x02 #define TRACE_AUTH_OK 0x03 #define TRACE_READ_DATA 0x04 #define TRACE_WRITE_OK 0x05 #define TRACE_WRITE_DATA 0x06 #define TRACE_ERROR 0xFF static int compare_uint64(const void *a, const void *b) { // didn't work: (the result is truncated to 32 bits) //return (*(int64_t*)b - *(int64_t*)a); // better: if (*(uint64_t*)b == *(uint64_t*)a) return 0; else if (*(uint64_t*)b < *(uint64_t*)a) return 1; else return -1; } // create the intersection (common members) of two sorted lists. Lists are terminated by -1. Result will be in list1. Number of elements is returned. static uint32_t intersection(uint64_t *list1, uint64_t *list2) { if (list1 == NULL || list2 == NULL) { return 0; } uint64_t *p1, *p2, *p3; p1 = p3 = list1; p2 = list2; while ( *p1 != -1 && *p2 != -1 ) { if (compare_uint64(p1, p2) == 0) { *p3++ = *p1++; p2++; } else { while (compare_uint64(p1, p2) < 0) ++p1; while (compare_uint64(p1, p2) > 0) ++p2; } } *p3 = -1; return p3 - list1; } // Darkside attack (hf mf mifare) static uint32_t nonce2key(uint32_t uid, uint32_t nt, uint32_t nr, uint32_t ar, uint64_t par_info, uint64_t ks_info, uint64_t **keys) { struct Crypto1State *states; uint32_t i, pos; uint8_t bt, ks3x[8], par[8][8]; uint64_t key_recovered; uint64_t *keylist; // Reset the last three significant bits of the reader nonce nr &= 0xffffff1f; for (pos=0; pos<8; pos++) { ks3x[7-pos] = (ks_info >> (pos*8)) & 0x0f; bt = (par_info >> (pos*8)) & 0xff; for (i=0; i<8; i++) { par[7-pos][i] = (bt >> i) & 0x01; } } states = lfsr_common_prefix(nr, ar, ks3x, par, (par_info == 0)); if (states == NULL) { *keys = NULL; return 0; } keylist = (uint64_t*)states; for (i = 0; keylist[i]; i++) { lfsr_rollback_word(states+i, uid^nt, 0); crypto1_get_lfsr(states+i, &key_recovered); keylist[i] = key_recovered; } keylist[i] = -1; *keys = keylist; return i; } int mfDarkside(uint64_t *key) { uint32_t uid = 0; uint32_t nt = 0, nr = 0, ar = 0; uint64_t par_list = 0, ks_list = 0; uint64_t *keylist = NULL, *last_keylist = NULL; uint32_t keycount = 0; int16_t isOK = 0; UsbCommand c = {CMD_READER_MIFARE, {true, 0, 0}}; // message printf("-------------------------------------------------------------------------\n"); printf("Executing command. Expected execution time: 25sec on average\n"); printf("Press button on the proxmark3 device to abort both proxmark3 and client.\n"); printf("-------------------------------------------------------------------------\n"); while (true) { clearCommandBuffer(); SendCommand(&c); //flush queue while (ukbhit()) { int c = getchar(); (void) c; } // wait cycle while (true) { printf("."); fflush(stdout); if (ukbhit()) { return -5; break; } UsbCommand resp; if (WaitForResponseTimeout(CMD_ACK, &resp, 1000)) { isOK = resp.arg[0]; if (isOK < 0) { return isOK; } uid = (uint32_t)bytes_to_num(resp.d.asBytes + 0, 4); nt = (uint32_t)bytes_to_num(resp.d.asBytes + 4, 4); par_list = bytes_to_num(resp.d.asBytes + 8, 8); ks_list = bytes_to_num(resp.d.asBytes + 16, 8); nr = (uint32_t)bytes_to_num(resp.d.asBytes + 24, 4); ar = (uint32_t)bytes_to_num(resp.d.asBytes + 28, 4); break; } } if (par_list == 0 && c.arg[0] == true) { PrintAndLog("Parity is all zero. Most likely this card sends NACK on every failed authentication."); } c.arg[0] = false; keycount = nonce2key(uid, nt, nr, ar, par_list, ks_list, &keylist); if (keycount == 0) { PrintAndLog("Key not found (lfsr_common_prefix list is null). Nt=%08x", nt); PrintAndLog("This is expected to happen in 25%% of all cases. Trying again with a different reader nonce..."); continue; } if (par_list == 0) { qsort(keylist, keycount, sizeof(*keylist), compare_uint64); keycount = intersection(last_keylist, keylist); if (keycount == 0) { free(last_keylist); last_keylist = keylist; continue; } } if (keycount > 1) { PrintAndLog("Found %u possible keys. Trying to authenticate with each of them ...\n", keycount); } else { PrintAndLog("Found a possible key. Trying to authenticate...\n"); } uint8_t *keys_to_chk = malloc(keycount * 6); for (int i = 0; i < keycount; i++) { num_to_bytes(keylist[i], 6, keys_to_chk+i); } *key = -1; mfCheckKeys(0, 0, 0, false, keycount, keys_to_chk, key); free(keys_to_chk); if (*key != -1) { free(last_keylist); free(keylist); break; } else { PrintAndLog("Authentication failed. Trying again..."); free(last_keylist); last_keylist = keylist; } } return 0; } static int mfCheckKeysEx(uint8_t blockNo, uint8_t keyType, uint16_t timeout14a, bool clear_trace, uint32_t keycnt, uint8_t *keys, uint64_t *found_key, bool fixed_nonce) { bool display_progress = false; uint64_t start_time = msclock(); uint64_t next_print_time = start_time + 5 * 1000; if (keycnt > 1000) { PrintAndLog("We have %d keys to check. This can take some time!", keycnt); PrintAndLog("Press button to abort."); display_progress = true; } uint8_t bytes_per_key = fixed_nonce ? 5 : 6; uint32_t max_keys = keycnt > USB_CMD_DATA_SIZE/bytes_per_key ? USB_CMD_DATA_SIZE/bytes_per_key : keycnt; *found_key = -1; bool multisectorCheck = false; for (int i = 0, ii = 0; i < keycnt; i += max_keys) { if ((i + max_keys) >= keycnt) { max_keys = keycnt - i; } bool init = (i == 0); bool drop_field = (max_keys == keycnt); uint8_t flags = clear_trace | multisectorCheck << 1 | init << 2 | drop_field << 3 | fixed_nonce << 4; UsbCommand c = {CMD_MIFARE_CHKKEYS, {((blockNo & 0xff) | ((keyType & 0xff) << 8)), flags | timeout14a << 16, max_keys}}; memcpy(c.d.asBytes, keys + i * bytes_per_key, max_keys * bytes_per_key); SendCommand(&c); UsbCommand resp; if (!WaitForResponseTimeout(CMD_ACK, &resp, 3000)) return 1; if ((resp.arg[0] & 0xff) != 0x01) { if ((int)resp.arg[1] < 0) { // error or user aborted return (int)resp.arg[1]; } else { // nothing found yet if (display_progress && msclock() >= next_print_time) { float brute_force_per_second = (float)(i - ii) / (float)(msclock() - start_time) * 1000.0; ii = i; start_time = msclock(); next_print_time = start_time + 10 * 1000; PrintAndLog(" %8d keys left | %5.1f keys/sec | worst case %6.1f seconds remaining", keycnt - i, brute_force_per_second, (keycnt-i)/brute_force_per_second); } } } else { // success if (fixed_nonce) { *found_key = i + resp.arg[1] - 1; } else { *found_key = bytes_to_num(resp.d.asBytes, 6); } return 0; } } return 2; // nothing found } int mfCheckKeys(uint8_t blockNo, uint8_t keyType, uint16_t timeout14a, bool clear_trace, uint32_t keycnt, uint8_t *keys, uint64_t *found_key) { return mfCheckKeysEx(blockNo, keyType, timeout14a, clear_trace, keycnt, keys, found_key, false); } static int mfCheckKeysFixedNonce(uint8_t blockNo, uint8_t keyType, uint16_t timeout14a, bool clear_trace, uint32_t keycnt, uint8_t *keys, uint32_t *key_index) { return mfCheckKeysEx(blockNo, keyType, timeout14a, clear_trace, keycnt, keys, (uint64_t*)key_index, true); } int mfCheckKeysSec(uint8_t sectorCnt, uint8_t keyType, uint16_t timeout14a, bool clear_trace, bool init, bool drop_field, uint8_t keycnt, uint8_t *keyBlock, sector_t *e_sector) { uint8_t keyPtr = 0; if (e_sector == NULL) return -1; bool multisectorCheck = true; uint8_t flags = clear_trace | multisectorCheck << 1 | init << 2 | drop_field << 3; UsbCommand c = {CMD_MIFARE_CHKKEYS, {((sectorCnt & 0xff) | ((keyType & 0xff) << 8)), flags | timeout14a << 16, keycnt}}; memcpy(c.d.asBytes, keyBlock, 6 * keycnt); SendCommand(&c); UsbCommand resp; if (!WaitForResponseTimeoutW(CMD_ACK, &resp, MAX(3000, 1000 + 13 * sectorCnt * keycnt * (keyType == 2 ? 2 : 1)), false)) return 1; // timeout: 13 ms / fail auth if ((resp.arg[0] & 0xff) != 0x01) return 2; bool foundAKey = false; for(int sec = 0; sec < sectorCnt; sec++){ for(int keyAB = 0; keyAB < 2; keyAB++){ keyPtr = *(resp.d.asBytes + keyAB * 40 + sec); if (keyPtr){ e_sector[sec].foundKey[keyAB] = true; e_sector[sec].Key[keyAB] = bytes_to_num(keyBlock + (keyPtr - 1) * 6, 6); foundAKey = true; } } } return foundAKey ? 0 : 3; } // Compare 16 Bits out of cryptostate int Compare16Bits(const void * a, const void * b) { if ((*(uint64_t*)b & 0x00ff000000ff0000) == (*(uint64_t*)a & 0x00ff000000ff0000)) return 0; else if ((*(uint64_t*)b & 0x00ff000000ff0000) > (*(uint64_t*)a & 0x00ff000000ff0000)) return 1; else return -1; } typedef struct { union { struct Crypto1State *slhead; uint64_t *keyhead; } head; union { struct Crypto1State *sltail; uint64_t *keytail; } tail; uint32_t len; uint32_t uid; uint32_t blockNo; uint32_t keyType; uint32_t nt; uint32_t ks1; } StateList_t; // wrapper function for multi-threaded lfsr_recovery32 void #ifdef __has_attribute #if __has_attribute(force_align_arg_pointer) __attribute__((force_align_arg_pointer)) #endif #endif *nested_worker_thread(void *arg) { struct Crypto1State *p1; StateList_t *statelist = arg; statelist->head.slhead = lfsr_recovery32(statelist->ks1, statelist->nt ^ statelist->uid); for (p1 = statelist->head.slhead; *(uint64_t *)p1 != 0; p1++); statelist->len = p1 - statelist->head.slhead; statelist->tail.sltail = --p1; qsort(statelist->head.slhead, statelist->len, sizeof(uint64_t), Compare16Bits); return statelist->head.slhead; } static int nested_fixed_nonce(StateList_t statelist, uint32_t fixed_nt, uint32_t authentication_timeout, uint8_t *resultKey) { // We have a tag with a fixed nonce (nt) and therefore only one (usually long) list of possible crypto states. // Instead of testing all those keys on the device with a complete authentication cycle, we do all of the crypto operations here. uint8_t nr_enc[4] = NESTED_FIXED_NR_ENC; // we use a fixed {nr} uint8_t ar[4]; num_to_bytes(prng_successor(fixed_nt, 64), 4, ar); // ... and ar is fixed too // create an array of possible {ar} and parity bits uint32_t num_ar_par = statelist.len; uint8_t *ar_par = calloc(num_ar_par, 5); if (ar_par == NULL) { free(statelist.head.slhead); return -4; } for (int i = 0; i < num_ar_par; i++) { // roll back to initial state using the nt observed with the nested authentication lfsr_rollback_word(statelist.head.slhead + i, statelist.nt ^ statelist.uid, 0); // instead feed in the fixed_nt for the first authentication struct Crypto1State cs = *(statelist.head.slhead + i); crypto1_word(&cs, fixed_nt ^ statelist.uid, 0); // determine nr such that the resulting {nr} is constant and feed it into the cypher. Calculate the encrypted parity bits uint8_t par_enc = 0; for (int j = 0; j < 4; j++) { uint8_t nr_byte = crypto1_byte(&cs, nr_enc[j], 1) ^ nr_enc[j]; par_enc |= (((filter(cs.odd) ^ oddparity8(nr_byte)) & 0x01) << (7-j)); } // calculate the encrypted reader response {ar} and its parity bits for (int j = 0; j < 4; j++) { ar_par[5*i + j] = crypto1_byte(&cs, 0, 0) ^ ar[j]; par_enc |= ((filter(cs.odd) ^ oddparity8(ar[j])) & 0x01) << (3-j); } ar_par[5*i + 4] = par_enc; } // test each {ar} response uint32_t key_index; int isOK = mfCheckKeysFixedNonce(statelist.blockNo, statelist.keyType, authentication_timeout, true, num_ar_par, ar_par, &key_index); if (isOK == 0) { // success, key found // key_index contains the index into the cypher state list struct Crypto1State *p1 = statelist.head.slhead + key_index; uint64_t key64; crypto1_get_lfsr(p1, &key64); num_to_bytes(key64, 6, resultKey); } if (isOK == 1) { // timeout isOK = -1; } free(statelist.head.slhead); free(ar_par); return isOK; } static int nested_standard(StateList_t statelists[2], uint32_t authentication_timeout, uint8_t *resultKey) { // the first 16 Bits of the crypto states already contain part of our key. // Create the intersection of the two lists based on these 16 Bits and // roll back the crypto state for the remaining states struct Crypto1State *p1, *p2, *p3, *p4; p1 = p3 = statelists[0].head.slhead; p2 = p4 = statelists[1].head.slhead; while (p1 <= statelists[0].tail.sltail && p2 <= statelists[1].tail.sltail) { if (Compare16Bits(p1, p2) == 0) { struct Crypto1State savestate, *savep = &savestate; savestate = *p1; while (Compare16Bits(p1, savep) == 0 && p1 <= statelists[0].tail.sltail) { *p3 = *p1; lfsr_rollback_word(p3, statelists[0].nt ^ statelists[0].uid, 0); p3++; p1++; } savestate = *p2; while (Compare16Bits(p2, savep) == 0 && p2 <= statelists[1].tail.sltail) { *p4 = *p2; lfsr_rollback_word(p4, statelists[1].nt ^ statelists[1].uid, 0); p4++; p2++; } } else { while (Compare16Bits(p1, p2) == -1) p1++; while (Compare16Bits(p1, p2) == 1) p2++; } } *(uint64_t*)p3 = -1; *(uint64_t*)p4 = -1; statelists[0].len = p3 - statelists[0].head.slhead; statelists[1].len = p4 - statelists[1].head.slhead; statelists[0].tail.sltail=--p3; statelists[1].tail.sltail=--p4; // the statelists now contain possible crypto states initialized with the key. The key we are searching for // must be in the intersection of both lists. Sort the lists and create the intersection: qsort(statelists[0].head.keyhead, statelists[0].len, sizeof(uint64_t), compare_uint64); qsort(statelists[1].head.keyhead, statelists[1].len, sizeof(uint64_t), compare_uint64); statelists[0].len = intersection(statelists[0].head.keyhead, statelists[1].head.keyhead); // create an array of the possible keys uint32_t num_keys = statelists[0].len; uint8_t *keys = calloc(num_keys, 6); if (keys == NULL) { free(statelists[0].head.slhead); free(statelists[1].head.slhead); return -4; } uint64_t key64 = 0; for (int i = 0; i < num_keys; i++) { crypto1_get_lfsr(statelists[0].head.slhead + i, &key64); num_to_bytes(key64, 6, keys + i*6); } // and test each key with mfCheckKeys int isOK = mfCheckKeys(statelists[0].blockNo, statelists[0].keyType, authentication_timeout, true, num_keys, keys, &key64); if (isOK == 0) { // success, key found num_to_bytes(key64, 6, resultKey); } if (isOK == 1) { // timeout isOK = -1; } free(statelists[0].head.slhead); free(statelists[1].head.slhead); free(keys); return isOK; } int mfnested(uint8_t blockNo, uint8_t keyType, uint16_t timeout14a, uint8_t *key, uint8_t trgBlockNo, uint8_t trgKeyType, uint8_t *resultKey, bool calibrate) { // flush queue clearCommandBuffer(); UsbCommand c = {CMD_MIFARE_NESTED, {blockNo + keyType * 0x100, trgBlockNo + trgKeyType * 0x100, calibrate}}; memcpy(c.d.asBytes, key, 6); SendCommand(&c); UsbCommand resp; if (!WaitForResponseTimeout(CMD_ACK, &resp, 1500)) { return -1; } if ((int)resp.arg[0]) { return (int)resp.arg[0]; // error during nested } uint32_t uid; memcpy(&uid, resp.d.asBytes, 4); PrintAndLog("uid:%08x trgbl=%d trgkey=%x", uid, (uint16_t)resp.arg[2] & 0xff, (uint16_t)resp.arg[2] >> 8); StateList_t statelists[2]; for (int i = 0; i < 2; i++) { statelists[i].blockNo = resp.arg[2] & 0xff; statelists[i].keyType = (resp.arg[2] >> 8) & 0xff; statelists[i].uid = uid; memcpy(&statelists[i].nt, (void *)(resp.d.asBytes + 4 + i * 8 + 0), 4); memcpy(&statelists[i].ks1, (void *)(resp.d.asBytes + 4 + i * 8 + 4), 4); } uint32_t authentication_timeout; memcpy(&authentication_timeout, resp.d.asBytes + 20, 4); PrintAndLog("Setting authentication timeout to %" PRIu32 "us", authentication_timeout * 1000 / 106); uint8_t num_unique_nonces; uint32_t fixed_nt = 0; if (statelists[0].nt == statelists[1].nt && statelists[0].ks1 == statelists[1].ks1) { num_unique_nonces = 1; memcpy(&fixed_nt, resp.d.asBytes + 24, 4); PrintAndLog("Fixed nt detected: %08" PRIx32 " on first authentication, %08" PRIx32 " on nested authentication", fixed_nt, statelists[0].nt); } else { num_unique_nonces = 2; } // create and run worker threads to calculate possible crypto states pthread_t thread_id[2]; for (int i = 0; i < num_unique_nonces; i++) { pthread_create(thread_id + i, NULL, nested_worker_thread, &statelists[i]); } // wait for threads to terminate: for (int i = 0; i < num_unique_nonces; i++) { pthread_join(thread_id[i], (void*)&statelists[i].head.slhead); } if (num_unique_nonces == 2) { return nested_standard(statelists, authentication_timeout, resultKey); } else { return nested_fixed_nonce(statelists[0], fixed_nt, authentication_timeout, resultKey); } } // MIFARE int mfReadSector(uint8_t sectorNo, uint8_t keyType, uint8_t *key, uint8_t *data) { UsbCommand c = {CMD_MIFARE_READSC, {sectorNo, keyType, 0}}; memcpy(c.d.asBytes, key, 6); clearCommandBuffer(); SendCommand(&c); UsbCommand resp; if (WaitForResponseTimeout(CMD_ACK, &resp, 1500)) { uint8_t isOK = resp.arg[0] & 0xff; if (isOK) { memcpy(data, resp.d.asBytes, mfNumBlocksPerSector(sectorNo) * 16); return 0; } else { return 1; } } else { PrintAndLogEx(ERR, "Command execute timeout"); return 2; } return 0; } // EMULATOR int mfEmlGetMem(uint8_t *data, int blockNum, int blocksCount) { UsbCommand c = {CMD_MIFARE_EML_MEMGET, {blockNum, blocksCount, 0}}; SendCommand(&c); UsbCommand resp; if (!WaitForResponseTimeout(CMD_ACK,&resp,1500)) return 1; memcpy(data, resp.d.asBytes, blocksCount * 16); return 0; } int mfEmlSetMem(uint8_t *data, int blockNum, int blocksCount) { UsbCommand c = {CMD_MIFARE_EML_MEMSET, {blockNum, blocksCount, 0}}; memcpy(c.d.asBytes, data, blocksCount * 16); SendCommand(&c); return 0; } // "MAGIC" CARD int mfCGetBlock(uint8_t blockNo, uint8_t *data, uint8_t params) { uint8_t isOK = 0; UsbCommand c = {CMD_MIFARE_CGETBLOCK, {params, 0, blockNo}}; SendCommand(&c); UsbCommand resp; if (WaitForResponseTimeout(CMD_ACK,&resp,1500)) { isOK = resp.arg[0] & 0xff; memcpy(data, resp.d.asBytes, 16); if (!isOK) return 2; } else { PrintAndLog("Command execute timeout"); return 1; } return 0; } int mfCSetBlock(uint8_t blockNo, uint8_t *data, uint8_t *uid, bool wantWipe, uint8_t params) { uint8_t isOK = 0; UsbCommand c = {CMD_MIFARE_CSETBLOCK, {wantWipe, params & (0xFE | (uid == NULL ? 0:1)), blockNo}}; memcpy(c.d.asBytes, data, 16); SendCommand(&c); UsbCommand resp; if (WaitForResponseTimeout(CMD_ACK, &resp, 1500)) { isOK = resp.arg[0] & 0xff; if (uid != NULL) memcpy(uid, resp.d.asBytes, 4); if (!isOK) return 2; } else { PrintAndLog("Command execute timeout"); return 1; } return 0; } int mfCWipe(uint32_t numSectors, bool gen1b, bool wantWipe, bool wantFill) { uint8_t isOK = 0; uint8_t cmdParams = wantWipe + wantFill * 0x02 + gen1b * 0x04; UsbCommand c = {CMD_MIFARE_CWIPE, {numSectors, cmdParams, 0}}; SendCommand(&c); UsbCommand resp; WaitForResponse(CMD_ACK,&resp); isOK = resp.arg[0] & 0xff; return isOK; } int mfCSetUID(uint8_t *uid, uint8_t *atqa, uint8_t *sak, uint8_t *oldUID) { uint8_t oldblock0[16] = {0x00}; uint8_t block0[16] = {0x00}; int gen = 0, res; gen = mfCIdentify(); /* generation 1a magic card by default */ uint8_t cmdParams = CSETBLOCK_SINGLE_OPER; if (gen == 2) { /* generation 1b magic card */ cmdParams = CSETBLOCK_SINGLE_OPER | CSETBLOCK_MAGIC_1B; } res = mfCGetBlock(0, oldblock0, cmdParams); if (res == 0) { memcpy(block0, oldblock0, 16); PrintAndLog("old block 0: %s", sprint_hex(block0,16)); } else { PrintAndLog("Couldn't get old data. Will write over the last bytes of Block 0."); } // fill in the new values // UID memcpy(block0, uid, 4); // Mifare UID BCC block0[4] = block0[0] ^ block0[1] ^ block0[2] ^ block0[3]; // mifare classic SAK(byte 5) and ATQA(byte 6 and 7, reversed) if (sak != NULL) block0[5] = sak[0]; if (atqa != NULL) { block0[6] = atqa[1]; block0[7] = atqa[0]; } PrintAndLog("new block 0: %s", sprint_hex(block0, 16)); res = mfCSetBlock(0, block0, oldUID, false, cmdParams); if (res) { PrintAndLog("Can't set block 0. Error: %d", res); return res; } return 0; } int mfCIdentify() { UsbCommand c = {CMD_MIFARE_CIDENT, {0, 0, 0}}; SendCommand(&c); UsbCommand resp; WaitForResponse(CMD_ACK,&resp); uint8_t isGeneration = resp.arg[0] & 0xff; switch( isGeneration ){ case 1: PrintAndLog("Chinese magic backdoor commands (GEN 1a) detected"); break; case 2: PrintAndLog("Chinese magic backdoor command (GEN 1b) detected"); break; default: PrintAndLog("No chinese magic backdoor command detected"); break; } return (int) isGeneration; } // SNIFFER // constants static uint8_t trailerAccessBytes[4] = {0x08, 0x77, 0x8F, 0x00}; // variables char logHexFileName[FILE_PATH_SIZE] = {0x00}; static uint8_t traceCard[4096] = {0x00}; static char traceFileName[FILE_PATH_SIZE] = {0x00}; static int traceState = TRACE_IDLE; static uint8_t traceCurBlock = 0; static uint8_t traceCurKey = 0; struct Crypto1State *traceCrypto1 = NULL; struct Crypto1State *revstate; uint64_t lfsr; uint64_t ui64Key; uint32_t ks2; uint32_t ks3; uint32_t uid; // serial number uint32_t nt; // tag challenge uint32_t nt_enc; // encrypted tag challenge uint8_t nt_enc_par; // encrypted tag challenge parity uint32_t nr_enc; // encrypted reader challenge uint32_t ar_enc; // encrypted reader response uint8_t ar_enc_par; // encrypted reader response parity uint32_t at_enc; // encrypted tag response uint8_t at_enc_par; // encrypted tag response parity int isTraceCardEmpty(void) { return ((traceCard[0] == 0) && (traceCard[1] == 0) && (traceCard[2] == 0) && (traceCard[3] == 0)); } int isBlockEmpty(int blockN) { for (int i = 0; i < 16; i++) if (traceCard[blockN * 16 + i] != 0) return 0; return 1; } int isBlockTrailer(int blockN) { return ((blockN & 0x03) == 0x03); } int saveTraceCard(void) { FILE * f; if ((!strlen(traceFileName)) || (isTraceCardEmpty())) return 0; f = fopen(traceFileName, "w+"); if ( !f ) return 1; for (int i = 0; i < 64; i++) { // blocks for (int j = 0; j < 16; j++) // bytes fprintf(f, "%02x", *(traceCard + i * 16 + j)); if (i < 63) fprintf(f,"\n"); } fclose(f); return 0; } int loadTraceCard(uint8_t *tuid) { FILE * f; char buf[64] = {0x00}; uint8_t buf8[64] = {0x00}; int i, blockNum; if (!isTraceCardEmpty()) saveTraceCard(); memset(traceCard, 0x00, 4096); memcpy(traceCard, tuid + 3, 4); FillFileNameByUID(traceFileName, tuid, ".eml", 7); f = fopen(traceFileName, "r"); if (!f) return 1; blockNum = 0; while(!feof(f)){ memset(buf, 0, sizeof(buf)); if (fgets(buf, sizeof(buf), f) == NULL) { PrintAndLog("File reading error."); fclose(f); return 2; } if (strlen(buf) < 32){ if (feof(f)) break; PrintAndLog("File content error. Block data must include 32 HEX symbols"); fclose(f); return 2; } for (i = 0; i < 32; i += 2) sscanf(&buf[i], "%02x", (unsigned int *)&buf8[i / 2]); memcpy(traceCard + blockNum * 16, buf8, 16); blockNum++; } fclose(f); return 0; } int mfTraceInit(uint8_t *tuid, uint8_t *atqa, uint8_t sak, bool wantSaveToEmlFile) { if (traceCrypto1) crypto1_destroy(traceCrypto1); traceCrypto1 = NULL; if (wantSaveToEmlFile) loadTraceCard(tuid); traceCard[4] = traceCard[0] ^ traceCard[1] ^ traceCard[2] ^ traceCard[3]; traceCard[5] = sak; memcpy(&traceCard[6], atqa, 2); traceCurBlock = 0; uid = bytes_to_num(tuid + 3, 4); traceState = TRACE_IDLE; return 0; } void mf_crypto1_decrypt(struct Crypto1State *pcs, uint8_t *data, int len, bool isEncrypted){ uint8_t bt = 0; int i; if (len != 1) { for (i = 0; i < len; i++) data[i] = crypto1_byte(pcs, 0x00, isEncrypted) ^ data[i]; } else { bt = 0; for (i = 0; i < 4; i++) bt |= (crypto1_bit(pcs, 0, isEncrypted) ^ BIT(data[0], i)) << i; data[0] = bt; } return; } bool NTParityCheck(uint32_t ntx) { if ( (oddparity8(ntx >> 8 & 0xff) ^ (ntx & 0x01) ^ ((nt_enc_par >> 5) & 0x01) ^ (nt_enc & 0x01)) || (oddparity8(ntx >> 16 & 0xff) ^ (ntx >> 8 & 0x01) ^ ((nt_enc_par >> 6) & 0x01) ^ (nt_enc >> 8 & 0x01)) || (oddparity8(ntx >> 24 & 0xff) ^ (ntx >> 16 & 0x01) ^ ((nt_enc_par >> 7) & 0x01) ^ (nt_enc >> 16 & 0x01)) ) return false; uint32_t ar = prng_successor(ntx, 64); if ( (oddparity8(ar >> 8 & 0xff) ^ (ar & 0x01) ^ ((ar_enc_par >> 5) & 0x01) ^ (ar_enc & 0x01)) || (oddparity8(ar >> 16 & 0xff) ^ (ar >> 8 & 0x01) ^ ((ar_enc_par >> 6) & 0x01) ^ (ar_enc >> 8 & 0x01)) || (oddparity8(ar >> 24 & 0xff) ^ (ar >> 16 & 0x01) ^ ((ar_enc_par >> 7) & 0x01) ^ (ar_enc >> 16 & 0x01)) ) return false; uint32_t at = prng_successor(ntx, 96); if ( (oddparity8(ar & 0xff) ^ (at >> 24 & 0x01) ^ ((ar_enc_par >> 4) & 0x01) ^ (at_enc >> 24 & 0x01)) || (oddparity8(at >> 8 & 0xff) ^ (at & 0x01) ^ ((at_enc_par >> 5) & 0x01) ^ (at_enc & 0x01)) || (oddparity8(at >> 16 & 0xff) ^ (at >> 8 & 0x01) ^ ((at_enc_par >> 6) & 0x01) ^ (at_enc >> 8 & 0x01)) || (oddparity8(at >> 24 & 0xff) ^ (at >> 16 & 0x01) ^ ((at_enc_par >> 7) & 0x01) ^ (at_enc >> 16 & 0x01)) ) return false; return true; } int mfTraceDecode(uint8_t *data_src, int len, uint8_t parity, bool wantSaveToEmlFile) { uint8_t data[64]; if (traceState == TRACE_ERROR) return 1; if (len > 64) { traceState = TRACE_ERROR; return 1; } memcpy(data, data_src, len); if ((traceCrypto1) && ((traceState == TRACE_IDLE) || (traceState > TRACE_AUTH_OK))) { mf_crypto1_decrypt(traceCrypto1, data, len, 0); uint8_t parity[16]; oddparitybuf(data, len, parity); PrintAndLog("dec> %s [%s]", sprint_hex(data, len), printBitsPar(parity, len)); AddLogHex(logHexFileName, "dec> ", data, len); } switch (traceState) { case TRACE_IDLE: // check packet crc16! if ((len >= 4) && (!CheckCrc14443(CRC_14443_A, data, len))) { PrintAndLog("dec> CRC ERROR!!!"); AddLogLine(logHexFileName, "dec> ", "CRC ERROR!!!"); traceState = TRACE_ERROR; // do not decrypt the next commands return 1; } // AUTHENTICATION if ((len ==4) && ((data[0] == 0x60) || (data[0] == 0x61))) { traceState = TRACE_AUTH1; traceCurBlock = data[1]; traceCurKey = data[0] == 60 ? 1:0; return 0; } // READ if ((len ==4) && ((data[0] == 0x30))) { traceState = TRACE_READ_DATA; traceCurBlock = data[1]; return 0; } // WRITE if ((len ==4) && ((data[0] == 0xA0))) { traceState = TRACE_WRITE_OK; traceCurBlock = data[1]; return 0; } // HALT if ((len ==4) && ((data[0] == 0x50) && (data[1] == 0x00))) { traceState = TRACE_ERROR; // do not decrypt the next commands return 0; } return 0; break; case TRACE_READ_DATA: if (len == 18) { traceState = TRACE_IDLE; if (isBlockTrailer(traceCurBlock)) { memcpy(traceCard + traceCurBlock * 16 + 6, data + 6, 4); } else { memcpy(traceCard + traceCurBlock * 16, data, 16); } if (wantSaveToEmlFile) saveTraceCard(); return 0; } else { traceState = TRACE_ERROR; return 1; } break; case TRACE_WRITE_OK: if ((len == 1) && (data[0] == 0x0a)) { traceState = TRACE_WRITE_DATA; return 0; } else { traceState = TRACE_ERROR; return 1; } break; case TRACE_WRITE_DATA: if (len == 18) { traceState = TRACE_IDLE; memcpy(traceCard + traceCurBlock * 16, data, 16); if (wantSaveToEmlFile) saveTraceCard(); return 0; } else { traceState = TRACE_ERROR; return 1; } break; case TRACE_AUTH1: if (len == 4) { traceState = TRACE_AUTH2; if (!traceCrypto1) { nt = bytes_to_num(data, 4); } else { nt_enc = bytes_to_num(data, 4); nt_enc_par = parity; } return 0; } else { traceState = TRACE_ERROR; return 1; } break; case TRACE_AUTH2: if (len == 8) { traceState = TRACE_AUTH_OK; nr_enc = bytes_to_num(data, 4); ar_enc = bytes_to_num(data + 4, 4); ar_enc_par = parity << 4; return 0; } else { traceState = TRACE_ERROR; return 1; } break; case TRACE_AUTH_OK: if (len ==4) { traceState = TRACE_IDLE; at_enc = bytes_to_num(data, 4); at_enc_par = parity; if (!traceCrypto1) { // decode key here) ks2 = ar_enc ^ prng_successor(nt, 64); ks3 = at_enc ^ prng_successor(nt, 96); revstate = lfsr_recovery64(ks2, ks3); lfsr_rollback_word(revstate, 0, 0); lfsr_rollback_word(revstate, 0, 0); lfsr_rollback_word(revstate, nr_enc, 1); lfsr_rollback_word(revstate, uid ^ nt, 0); crypto1_get_lfsr(revstate, &lfsr); crypto1_destroy(revstate); ui64Key = lfsr; printf("key> probable key:%x%x Prng:%s ks2:%08x ks3:%08x\n", (unsigned int)((lfsr & 0xFFFFFFFF00000000) >> 32), (unsigned int)(lfsr & 0xFFFFFFFF), validate_prng_nonce(nt) ? "WEAK": "HARDEND", ks2, ks3); AddLogUint64(logHexFileName, "key> ", lfsr); } else { if (validate_prng_nonce(nt)) { struct Crypto1State *pcs; pcs = crypto1_create(ui64Key); uint32_t nt1 = crypto1_word(pcs, nt_enc ^ uid, 1) ^ nt_enc; uint32_t ar = prng_successor(nt1, 64); uint32_t at = prng_successor(nt1, 96); printf("key> nested auth uid: %08x nt: %08x nt_parity: %s ar: %08x at: %08x\n", uid, nt1, printBitsPar(&nt_enc_par, 4), ar, at); uint32_t nr1 = crypto1_word(pcs, nr_enc, 1) ^ nr_enc; uint32_t ar1 = crypto1_word(pcs, 0, 0) ^ ar_enc; uint32_t at1 = crypto1_word(pcs, 0, 0) ^ at_enc; crypto1_destroy(pcs); printf("key> the same key test. nr1: %08x ar1: %08x at1: %08x \n", nr1, ar1, at1); if (NTParityCheck(nt1)) printf("key> the same key test OK. key=%x%x\n", (unsigned int)((ui64Key & 0xFFFFFFFF00000000) >> 32), (unsigned int)(ui64Key & 0xFFFFFFFF)); else printf("key> the same key test. check nt parity error.\n"); uint32_t ntc = prng_successor(nt, 90); uint32_t ntx = 0; int ntcnt = 0; for (int i = 0; i < 16383; i++) { ntc = prng_successor(ntc, 1); if (NTParityCheck(ntc)){ if (!ntcnt) ntx = ntc; ntcnt++; } } if (ntcnt) printf("key> nt candidate=%08x nonce distance=%d candidates count=%d\n", ntx, nonce_distance(nt, ntx), ntcnt); else printf("key> don't have any nt candidate( \n"); nt = ntx; ks2 = ar_enc ^ prng_successor(ntx, 64); ks3 = at_enc ^ prng_successor(ntx, 96); // decode key revstate = lfsr_recovery64(ks2, ks3); lfsr_rollback_word(revstate, 0, 0); lfsr_rollback_word(revstate, 0, 0); lfsr_rollback_word(revstate, nr_enc, 1); lfsr_rollback_word(revstate, uid ^ nt, 0); crypto1_get_lfsr(revstate, &lfsr); crypto1_destroy(revstate); ui64Key = lfsr; printf("key> probable key:%x%x ks2:%08x ks3:%08x\n", (unsigned int)((lfsr & 0xFFFFFFFF00000000) >> 32), (unsigned int)(lfsr & 0xFFFFFFFF), ks2, ks3); AddLogUint64(logHexFileName, "key> ", lfsr); } else { printf("key> hardnested not implemented!\n"); crypto1_destroy(traceCrypto1); // not implemented traceState = TRACE_ERROR; } } int blockShift = ((traceCurBlock & 0xFC) + 3) * 16; if (isBlockEmpty((traceCurBlock & 0xFC) + 3)) memcpy(traceCard + blockShift + 6, trailerAccessBytes, 4); if (traceCurKey) { num_to_bytes(lfsr, 6, traceCard + blockShift + 10); } else { num_to_bytes(lfsr, 6, traceCard + blockShift); } if (wantSaveToEmlFile) saveTraceCard(); if (traceCrypto1) { crypto1_destroy(traceCrypto1); } // set cryptosystem state traceCrypto1 = lfsr_recovery64(ks2, ks3); return 0; } else { traceState = TRACE_ERROR; return 1; } break; default: traceState = TRACE_ERROR; return 1; } return 0; } // DECODING int tryDecryptWord(uint32_t nt, uint32_t ar_enc, uint32_t at_enc, uint8_t *data, int len){ /* uint32_t nt; // tag challenge uint32_t ar_enc; // encrypted reader response uint32_t at_enc; // encrypted tag response */ if (traceCrypto1) { crypto1_destroy(traceCrypto1); } ks2 = ar_enc ^ prng_successor(nt, 64); ks3 = at_enc ^ prng_successor(nt, 96); traceCrypto1 = lfsr_recovery64(ks2, ks3); mf_crypto1_decrypt(traceCrypto1, data, len, 0); PrintAndLog("Decrypted data: [%s]", sprint_hex(data,len) ); crypto1_destroy(traceCrypto1); return 0; } /** validate_prng_nonce * Determine if nonce is deterministic. ie: Suspectable to Darkside attack. * returns * true = weak prng * false = hardend prng */ bool validate_prng_nonce(uint32_t nonce) { uint16_t *dist = 0; uint16_t x, i; dist = malloc(2 << 16); if(!dist) return -1; // init prng table: for (x = i = 1; i; ++i) { dist[(x & 0xff) << 8 | x >> 8] = i; x = x >> 1 | (x ^ x >> 2 ^ x >> 3 ^ x >> 5) << 15; } uint32_t res = (65535 - dist[nonce >> 16] + dist[nonce & 0xffff]) % 65535; free(dist); return (res == 16); } /* Detect Tag Prng, * function performs a partial AUTH, where it tries to authenticate against block0, key A, but only collects tag nonce. * the tag nonce is check to see if it has a predictable PRNG. * @returns * TRUE if tag uses WEAK prng (ie Now the NACK bug also needs to be present for Darkside attack) * FALSE is tag uses HARDEND prng (ie hardnested attack possible, with known key) */ int DetectClassicPrng(void){ UsbCommand resp, respA; uint8_t cmd[] = {0x60, 0x00}; // MIFARE_AUTH_KEYA uint32_t flags = ISO14A_CONNECT | ISO14A_RAW | ISO14A_APPEND_CRC | ISO14A_NO_RATS; UsbCommand c = {CMD_READER_ISO_14443a, {flags, sizeof(cmd), 0}}; memcpy(c.d.asBytes, cmd, sizeof(cmd)); clearCommandBuffer(); SendCommand(&c); if (!WaitForResponseTimeout(CMD_NACK, &resp, 2000)) { PrintAndLog("PRNG UID: Reply timeout."); return -1; } // if select tag failed. if (resp.arg[0] == 0) { PrintAndLog("PRNG error: selecting tag failed, can't detect prng."); return -1; } if (!WaitForResponseTimeout(CMD_ACK, &respA, 5000)) { PrintAndLog("PRNG data: Reply timeout."); return -1; } // check respA if (respA.arg[0] != 4) { PrintAndLog("PRNG data error: Wrong length: %d", respA.arg[0]); return -1; } uint32_t nonce = bytes_to_num(respA.d.asBytes, respA.arg[0]); return validate_prng_nonce(nonce); }